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Abstract

In (8] it was introduced the concept of H-kernel, which generalizes
the concepts of kernel and kernel by monochromatic paths. In this
paper we prove necessary and sufficient conditions for the existence
of H-kernels in the D-join of digraphs and consequently we will give
a sufficient condition for D-join to be H-kernel perfect.
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1 Introduction

For general concepts we refer the reader to [2] and [3]. For a digraph D,
the vertex set is denoted by V(D) and the arc set by A(D).

1.1 Operations on Graphs and Digraphs.

Since it is often more easy to work with graphs whose structure can be char-
acterized in terms of smaller and simpler graphs, authors such as Harary,
Trauth, Weichsel, Ore, and Zykov, among others, defined binary operations
on two vertex disjoint graphs such as: the union, the join, the composi-
tion, the cartesian product, the lexicographic product, by mentioning some
operations, see page 21 of [20] for a summary.

Because of that in graph theory there are several open problems, which
are characterized by their complexity, several authors decided to study
each problem in particular when the graph is the result of two graphs and
a binary operation between them. For example, in Theory of Domination
in Graphs, W.E. Clark and S. Suen(7] studied the number of domination for
the cartesian product of two graphs. In [10] B. Effantin and H. Kheddouci
studied the Grundy number for the cartesian product of a complete graph
by another graph. Beside, the operations on graphs allow us to obtain a
large family of examples and counterexamples in graph theory.
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On the other hand, due to the similarity between graph theory and
digraphs theory, operations defined on graphs were extended to digraphs.
For example, in [5] the generalized cartesian product and the generalized
lexicographical product with respect to graphs were introduced. And in
[32] these concepts were extended to digraphs.

Let a digraph D be defined on the vertex set V(D) = {1,2,...,p}, and
a = (D;)iea,....p} be & sequence of digraphs where the digraphs Ds,..., Dy
are of the same order n with vertex set V(D;) = {y1,..., yn} =V, n 21
for each i € {1,...,p}.

The generalized lezicographical product of the digraph D and the se-
quence « is the digraph D[Dy,..., Dp] such that:

V(D[D1,...Dp)) = V(D) x V. and

A(D[D1,--,Dp]) = {((s,3:),(r,y;)) | (s = r and (y,y5) € A(Ds)) or ((s7)
€ A(D))}.

Notice that Putting D; = H, for each ¢ = 1,..., p, we obtain the lexico-
graphical product of D and H which is denoted by D[H].

Now, the following digraph generalizes the previous construction. Let
D be a digraph with V(D) = {1,2,...,p}, p = 2 and a = (D;)icq,....p} be
a sequence of vertex disjoint digraphs on V(D;) = {i1,...,ip,}, pi > 1 for
each i € {1,...,p}. The D-join of the digraph D and the sequence a is the
digraph o(e,D) such that:

Vie(aD)) = |J ({i} x V(D:))  and
i=1
A(o(e,D)) = {((s,81),(r72)) | (s =7 and (s;,r:) € A(Ds)) or ((s,7) €
A(D)}-

It may be noted that if all digraphs from the sequence have the same
vertex set, then from the D-join we obtain the generalized lexicographic
product of the digraph D and the sequence a, i.e., o(a,D) = D[Dx,...,Dy].
If all digraphs from the sequence ¢ are isomorphic to the same digraph H,
then from the D-join we obtain the composition of the digraphs D and H.

Since many mathematical results assert that some properties are pre-
served under certain operations, then several authors are interested in
knowing what kind of digraph constructions preserve their properties. In
particular we will study the D-join.
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1.2 Kernels, (k,!)-kernels, Kernels by monochromatic
paths and H-kernels.

A set K C V(D) is said to be a kernel if it is both independent (a vertex
in K has no successor in K) and absorbing (a vertex not in K has a suc-
cessor in K). This concept was introduced in [31] by Von Neumann and
Morgenstern. A classical problem in Digraph Theory is to find sufficient
conditions for the existence of a kernel in a digraph, since not every digraph
has a kernel. Moreover, in [6] Chvatal showed that deciding if a graph pos-
sesses a kernel is an NP-complete problem; and in [11] Fraenkel showed
that it remains NP-complete for planar directed graphs with indegrees less
or equal to 2, outdegrees less or equal to 2 and degrees less or equal to
3. Several authors have been investigating sufficient conditions for the ex-
istence of kernels in digraphs, see for example [9], [12], [26], [27]). Such
conditions are usually hereditary and so they also imply the existence of a
kernel for every induced subdigraph. A digraph such that every induced
subdigraph has a kernel is called kernel-perfect. The existence of kernels
in digraphs formed by some operations from another digraphs have been
studied by M. Blidia, P. Duchet, H. Jacob, F. Maffray and H. Meyniel [4],
J. Topp [30], Galeana-Sanchez [14], by mentioning some. In particular, in
[15] Galeana-Sédnchez and Neumann-Lara proved that the D-join, o(a,D),
is a kernel-perfect digraph whenever D and D; are kernel-perfect digraphs
for each D; € a.

Let k, ! be fixed integers, £ > 2 and [ > 1. We say that a subset J C
V(D) is a (k, !)-kernel of D if

(i) for each z, y in J and z # y, dp(z, y) > k and
(ii) for each z € V(D) \ J, dp(z, J) < 1.

The concept of a (k, I)-kernel was introduced by M. Kwasnik in [23] and
the existence of (k, [)-kernels in digraphs was studied, for example, in [17],
[21], [32]. Note that if £ = 2 and ! = 1, then we obtain the definition of a
kernel of a digraph. Therefore, since the concept of (k, [)-kernel generalizes
that of kernel, in [22] M. Kucharska studied necessary and sufficient condi-
tions for the existence of (k, I)-kernels in the D-join, where D is a digraph
without circuits of length less than k; and in [29] W. Szumny, A. Wioch
and I. Wloch studied necessary and sufficient conditions for the existence
of (k, I)-kernels in the D-join if D is an arbitrary digraph on p > 2 vertices
and @ = (D;);e(1,....p} is an arbitrary sequence of vertex disjoint digraphs.

Let D be an m-coloured digraph. A set N C V(D) is said to be a kernel
by monochromatic paths if it satisfies the following two conditions:
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1. for every pair of diferent vertices u, v € N there is no monochromatic
directed path between them and,

2. for every vertex z € V(D) \ N there is a vertex y € N such that there
is an zy-monochromatic directed path.

Another generalization of the concept of kernel is the concept of kernel
by monochromatic paths, which was introduced by H. Galeana-Sdnchez
in [16], since a digraph D has a kernel if and only if the m-coloured di-
graph D, in which every two different arcs have different colours, has a ker-
nel by monochromatic paths. The existence of kernels by monochromatic
paths in edge-coloured digraphs was studied primarily by Sauer, Sands
and Woodrow in [28], where they proved that any 2-coloured digraph has
a kernel by monochromatic paths. Sufficient conditions for the existence of
kernels by monochromatic paths in m-coloured digraphs have also been in-
vestigated by several authors, see for example [1], [13], 18], [19], [25]. And
as expected, in [33] I. Wloch showed necessary and sufficient conditions for
guarantee the existence of kernels by monochromatic paths in the D-join,
o(a,D), and consequently she exhibited a sufficient condition for o(a,D)
to be a monochromatic kernel perfect.

Let H be a digraph possibly with loops and D a digraph whose arcs are
colored with the vertices of H. For an arc (21,z2) of D we will denote by
c(z1,22) its color. A directed path P = (2o, 21,..., 2) in D will be called
an H-path if (c(z0, 21), ¢(21, 22),-, €(2¢—1, 2¢)) is a directed walk in H.
A set S C V(D) is said to be an H-kernel if it satisfies the following two
conditions:

1. for every two different vertices in S there is no H-path in D joining
them and,

2. for every z € V(D) \ S there exists an H-path in D from z to S.

In [8] H. Galeana-Sénchez and P. Delgado-Escalante introduced the
concept of H-kernel, which generalizes that of kernel by monochromatic
paths; since an H-kernel is a kernel by monochromatic paths when H con-
sists only of loops. The concept of H-kernel was motived by the work done
by P. Arpin and V. Linek [3]. It is worth mentioning that in [3] Arpin and
Linek define what is an H-independent set by walks and an H-absorbent
set by walks and these concepts were later used by H. Galeana-Sénchez
and P. Delgado-Escalante (8] in order to introduce formally the concept of
H-kernel.

In this paper we will give a generalization on all the results exposed by
I. Wioch in [33] making use of the concept of H-kernel.
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2 Preliminaries

If S € V(D) is a nonempty set, then the subdigraph of D induced by the
vertex set S is that digraph having vertex set S, whose arc set consist of all
those arcs of D joining vertices of S. The arc (21,22) € A(D) is called as an
SS*-arc whenever 2; € S C V(D) and 2z € S* C V(D). If C is a directed
walk, directed path or directed cycle in D, then {(C) will denote its length.
For {21,202} C V(D) a z,2o-walk(path) is a directed walk(path) from 2, to
zp in D and if we restrict 2; and 22 to V(C), then the 2;2;-walk(path)
contained in C will be denoted by (21, C, 22). If S C V(D) and z € V(D),
then a directed walk(path) from 2 to S is a zz-walk(path) for some z € S.
A digraph H, possibly with loops, is a transitive digraph if for any v, v, w
in V(D) we have {(u,v), (v,w)} € A(D) implies (u,w) € A(D).

A digraph D is said to be edge-coloured if its arcs are coloured. A di-
graph D is said to be m-colored if the arcs of D are colored with m colors.
Let D be an m-colored digraph. For an arc (21,2z2) of D we will denote by
¢(21,22) its color. A directed path (or directed cycle) is called monochro-
matic if all of its arcs are coloured alike. A set I C V(D) is said to be
independent by monochromatic paths (or independent by monochromatic
directed paths) if for every pair of different vertices u,u € I there is no
monochromatic path between them. The set A C V(D) is absorbent by
monochromatic paths (or absorbent by monochromatic directed paths) if
for every vertex z € V(D) \ A there exist a vertex y € A such that there
is a monochromatic path from = to y. A set N C V(D) is called a kernel
by monochromatic paths of the m-coloured digraph D if N is an absorbent
and independent set by monochromatic paths. A digraph D such that ev-
ery induced subdigraph in D has a kernel by monochromatic paths is called
monochromatic kernel perfect digraph.

Let H be a digraph possibly with loops and D a digraph whose arcs are
colored with the vertices of H (this is what we call an H-colored digraph).
A directed path (walk) P = (2, 21,..., 2¢) in D will be called an H-restricted
path (walk) (or H-path(walk)) if (c(z0, 21), ¢(21, 22),..., ¢(2t-1, 2¢)) is a
directed walk in H. We will say that an arc is an H-restricted path (walk).
We remark that in the general case the existence of an H-walk between
two vertices does not guarantee the existence of an H-path between those
vertices, although for some H this is true. Furthermore, there are examples
where the concatenation of two H-paths is an H-walk, but no H-path exists
between the endpoints. Let z € V(D), a closed directed walk C = (2 = 2,
21,...,2¢ = 2z) will be called an H-quasirestricted closed walk on z if (¢(z;,
Zi41),6(Zi41, 2it2)) € A(H) for each i € {0, 1,...,t—2}. By Cp(z) we denote
the set of all H-quasirestricted closed walks on z. We will say that S C
V(D) is H-independent by paths (walks) if for every two different vertices
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in S there is no H-restricted path (walk) in D joining them. We will say
that § C V(D) is H-absorbent by paths (walks) if for every z € V(D) \ S
there exists an H-restricted path (walk) in D from 2z to S. A set N C V(D)
is called an H-kernel if N is H-independent by paths (H-independent) and
H-absorbent by paths (H-absorbent). An H-colored digraph D will be
called an H-kernel perfect digraph if every induced subdigraph of D has
an H-kernel.

Let D be an H-colored digraph, V(D) = {1,2,...,p} p 2 2, and a =
(D:)iequ,...p} be a sequence of vertex disjoint H-colored digraphs where
V(D;) = {i1,-vip; }, pi = 1 for each i € {1,...,p}. For the rest of the work

o(a,D) is the H-colored digraph such that:

Vio(e,D)) = |J ({i} x V(D))  and

A(o(e,D)) = {((s,sl),(r,rt))i:;loured k| (s =r and (s;,r;) € A(Ds)
coloured k) or ((s,r) € A(D) coloured k)}.

By Df we mean a copy of the digraph D; in o(a,D).

3 Main Results

The Theorem 3.1 was considered of great importance in [33}, since from it
1. Wloch proved of a very natural way the existence of kernel by monochro-
matic paths in the D-join.

Theorem 3.1. Let D be an edge coloured digraph, a = (Dg)een,....p}
a sequence of edge coloured vertez disjoint digraphs and (i,n), (j,m) €
V(o (., D)) two different vertices. There is a monochromatic path in o (c,D)

from (i,n) to (5,m) if and only if

(a) for i # j, there erists a monochromatic path in D from i to j

or

b) for i = j, there exists a monochromatic path in D; from n to m or
J

Cp(i) #0

Since the concatenation of two H-walks(paths) is not always an H-
walk(path), then guarantee the existence of H-walks in D from the ex-
istence of H-walks in o(a,D) might appear to be a problem quite com-
plicated. For example, in the digraph o(c,D) of Figure 1 we have that
((lvul)a (2,‘1)1), (277)2)3 (3,'“’2)) and ((1,’“1), (2avl)1 (2)'02)) (3)w2)v (11u2)) are
H-paths, while in D there are no H-walks from 1 to 3 and there are no
H-quasirestricted closed walks on 1.

358



Figure 1:

Therefore, if H is a transitive digraph, then our problem is solved and
so the Theorem 3.5 generalizes the Theorem 3.1.

The following pair of results will be useful for the rest of the work.
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Lemma 3.2. Let H be a transitive digraph possibly with loops. If C is
a directed walk from u to v of length at least one in H, possibly u = v, then
(v,v) € A(H).

Lemma 3.3. Let H be a transitive digraph and D an H-colored digraph.
For u, v in V(D) with u # v every H-walk in D from u to v contains an
H-path in D from u to v.

Proof. Let C be an H-walk in D from u to v. We proceed by induction on
[(C), the length of C.

If I(C) = 1, then C is already an H-path.

Assume that the statement holds for every H-walk from u to v of length
less than n.

Let C = (u = v, v1,...,¥n = v) € D be an H-walk in D from u to v
with length n.

If v; # v; for every ¢ # j, then C is the desire H-path. Suppose that
there exist 7 and j, 7 # j, such that v; = v;. Without loss of generality let
us suppose that 1 < 7 — 1.

Being as C is an H-walk, we get that (c(vn—1,V4),¢(Vh,vh41)) € A(H) for
each h € {1, ...,n—1}. Even more, since (c(vi—1,v;), ¢(i,Vi41);-,¢(V5-1,5),
¢(v;,vj4+1)) is a directed walk in H, then it follows from Lemma 3.2 that
(c(vi-1,03),¢(vj,vj41)) € A(H). Hence C' = (u = vg, C, v;) U (v; = v,
C, v, = v) is an H-walk from u to v of length less than n, so it follows
from the induction hypothesis that C' contains an H-path T from u to v.
Finally notice that T c C’' c C. 0

The previous result allow us to establish the following Theorem.

Theorem 3.4. Let H be a transitive digraph and D an H-colored di-
graph. N C V(D) is an H-kernel by walks in D if and only if N is an
H-kernel in D.

a

Theorem 3.5. Let H be a transitive digraph, D an H-colored digraph,
a = (Dy)geqn,...p) @ sequence of H-colored vertez disjoint digraphs and
(i,n),(,m) € V(o(a,D)) two different vertices. There is an H-walk in
o(a,D) from (i,n) to (j,m) if and only if

(a) for i # j, there exzists an H-walk in D from i to j

or
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(b) for i = j, there exists an H-walk in D; from n to m or Cp(i) # 0

Proof. (sufficiency) If ¢ # j and there exists an H-walk in D from i to j,
say (i = dq, i1,.--, & = j), then by the definition of o'(a,D) we have that
for each (in,s) € V(Dg,) and for each (int1,l) € V(Ds,,,) ((Gn,8)s(ins1:d))
€ A(o(,D)) and c(ip,ins1) = c((in,s),(in+1,8)) for every h € {0, ..., k—1}.
Hence, there is an H-walk in o(a,D) from (i,n) to (j,m).

If i = j and there exists an H-walk in D; from n to m, say (n =
V1,V2,...,Uk = m), then from the definition of o(a,D) we get that ((i,n),
(i,v2),..., (4;m)) is an H-walk in o(a,D) from (i,n) to (i,m), since c((i,v,),
(3vr+1)) = c(vr,vpy) for each r € {1,...,k — 1}.

Suppose that i = j, Cp(i) # 0 and there are no H-walks in D; from n
to m. If (¢ = 4p,%1,...,ix = ) is an H-quasirestricted closed walk on ¢ con-
tained in D, then from the definition of o(a,D) we get that for each (ix,s)
€ V(Ds,) and for each (in41,l) € V(D§, +1) ((Ers8),(8n41,0)) € A(o(e,D))
and c(in,int1) = c((in,8),(in41,)) for every h € {0, ..., k — 1}, which means
that there is an H-walk in o(a,D) from (i,n) to (i,m).

(neceSSity) Let C = ((z,n), (7‘1,81), (7‘2’32)1"4 (rk—l1sk—l)7 (.71m)) be
an H-walk in o(e,D).

We consider the two possible cases:

Case 1. i # j
In this case we will prove that there is an H-walk in D from i to j by

induction on {(C), the length of C.

It I(C) = 1, since i # 3, from the definition of o(,D) we get that (i,5)
€ A(D). Hence, there is an H-walk in D from i to j.

If I(C) = 2, three possibilities will be analyzed:

(1) ™ = 1.

Since ((r1,51), (§,m)) € A(o(e,D)), from the definition of o(c,D) we
get that ((i,n), (j,m)) € A(o(a,D), which means that (¢,7) € A(D)
(because ¢ # j). Hence, there is an H-walk in D from i to j.

(2) ™ = ]
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Since ((i,n),(r1,51)) € A(o(a,D)), from the definition of o(e,D) we
get that ((¢,n), (j,m)) € A(o(a,D), which means that (i,j) € A(D)
(because i # j). Hence, there is an H-walk in D from i to j.

@B)ym ¢ {":’ .7}

In this case, from the definition of o(a,D) we get that (i, rq, j) is
an H-walk in D from ¢ to j, since ¢(¢,r1) = ¢((z,n),(71,81)), ¢(m1,3) =
c(("'1,81),(j,m)), i # J and ™ ¢ {il .7}
Now assume that if C' is an H-walk in o(e,D) from (i,n) to (j,m) of
length less than k, with ¢ # 7, then there is an H-walk in D from i to j.

Let C = ((i,n)a (’rlasl): (T2132)$--'; ('rk—lask—l): (]sm)) be an H-walk in
o(a,D) from (i,n) to (j,m) of length k, with k& > 3.

If C is not an H-path, then from Lemma 3.3 we get that C contains
an H-path from (¢,n) to (j,m) of length less than k. It follows from the
inductive hypothesis that there is an H-walk in D from ¢ to j.

Suppose that C is an H-path.

If V(C) N V(DZ,) = {(rn,sn)} for each h € {1,...,k — 1}, then from
the definition of o(c,D) we get that (i = 7o, r1, 72,00, Thk=1, J = Tk) is
an H-walk in D from i to j; since ¢(i,r1) = e((¢,n),(r1,81)), ¢(r1,m2) =
((r1,81),(r2,82))--0s ST=1,3) = ((Tk=1,5k-1),(3sm)), ¢ # j and 7h # Thya
for each h € {1,...,k — 2}.

Suppose that there exists 2 € {1,...,k — 1} such that | V(C) N V(Dg,)
| > 2.

Nex, consider
l=min{he{l,..,k-1} /| V(C)NV(D;,) | > 2}

and let

(Twy 8w, ) the first vertex in C that appears in Dy
(Tws»Sw,) the second vertex in C that appears in Dy,

(TwgSw,) the last one vertex in C that appears in D,
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with 8 > 2.
We will analyze the following possibilities for Dg,.

(i) D7, = Df

Since (j,m) ¢ V( D) (because i # 5); in particular (j,m) # (Twg 1Swp)s
which means that there exists (rws41, Sws41) € V(C) such that
((rwgs5wp)s (Twg+1,5wg+1)) € A(C), and since (Twg 5w, ) is the last
vertex in C that appears in Df, then (ru,+1,5ws+1) € V(D§). Hence,
from the definition of o(e,D) we get that ((4,n),(Twp+1,5ws+1)) €
A(o(e,D)) and e((i,n),(Twp+1,8wp+1)) = ((Twp 1Suwp ) (Twg+1,5ws+1));
thus €' = ( (i)n): (TWg+1’3w5+l) ) U ((rw5+1’SWp+1)7 C, (Jtm)) is an
H-walk in o(a,D) from (i,n) to (j,m) of length less than k, so it
follows from the induction hypothesis that there exists an H-walk in
D from i to j.

(ii) DS, # Dg

Since (i,n) ¢ V(Df,) (because DS, # Df); in particular (i,n) #
(Tw, +5w, ), which means that there exists (ry,—1,5w,-1) € V(C) such
that ((rw;~1, Sw,-1),(Tw;,5w,)) € A(C), and since (ry,,ss,) is the
first vertex in C that appears in D¢, then (ry,—1,84,-1) ¢ V(Dz,).

If (j,m) € V(D{,), then from the definition of o(a,D) we get that
((rwr"l’ s‘wl—l)’(j’m)) € A(a(a,D)) and c((rwl—l’swl—l)’ (J,m)) =
e((Twy 15 Swy~1)s (Tw,,5w,)). Hence, €' = ((4,n),C,(Tw;~1,5uw, 1)) U
((rwy-1,5w,-1), (4,m)) is an H-walk in o(a,D) from (i,n) to (j,m) of
length less than &, so it follows from the induction hypothesis that
there exists an H-walk in D from 4 to j.

Suppose that (j,m) ¢ V(Dg). Due to | V(C) N V(D) | > 2 we
can choose (rw,,Sw,) € V(Df,) such that (ru,,Sw,) # (Tw;,8w,)-
Since (j,m) ¢ V(Dg,); in particular (j,m) # (Tw, 18w, ), Which means
that there exists (1w, +1,5w,+1) € V(C) such that ((rw, 5w, ),(Tw,+1,
sw7+1)) € A(C) Bemg as P = ((Tw‘—l’swl-l))(rwxas‘wl)) U ((T‘wn
Sur)s €, (TwysSw,)) U ((TwysSwy )y(Tw, +1:5w,+1)) is an H-walk in
o(c,D) (because P C C), it follows from the definition of H-walk that
(c((rwl-'l:swl—l)a (rwl,sw,)), c((rwus"u)’ (rw1+11sw1+l)):"" c(("‘wﬁs
8w, )y (Twy+1:5w,+1))) is an directed walk in H, and so from Lemma
3.2 we get that (C((wa—l’swl—l)' (rwnswl))) C((Tw,,’, S'w-,)t (TW7+1’
sw‘7+1))) € A(H)' Hence: C' = ((z,n), Ca (wa—l’su)l-l)) v ((rwl—l’
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Swy-1)s(Twy 18w,)) U ((Tw, 8w, ), C, (4,;m)) is an H-walk in a(a,D)
from (i,n) to (j,m), since ¢((rw;~1, Sw;-1),(Twys Sw,)) = c((Tw; -1,
Sw,-1)s (Tw, 5w, )). Being as {(C’) < k, it follows from the induction
hypothesis that there exists an H-walk in D from 3 to j.

Case 2. i=3j

If C = ((¢,n), (r1,81), (r2,82),-ery (TR—1,8k—1), (4,m)) is contained in D§,
then from the definition of o(c,D) we get that there is an H-walk in D;
from n to m.

Suppose that there are no H-walks in D; from n to m.

Remark 1. Since there are no H-walks in D; from n to m, then
[(C) 2 2 and there exists € € {1, ...,k — 1} such that (r¢,s) € V(Dg).

We will prove that Cp(i) # @ by induction on [(C), the length of C.

If I(C) = 2, then it follows from the Remark 1 that (ry,s1) ¢ V(D) and
from the definition of o(a,D) we get that (2, r1, ) is an H-quasirestricted
closed walk on i, since ¢(i,r1) = ¢((3,n), (r1,51)) and ¢(r1,2) = c((r1,51),
(¢,m)). Hence, Cp(i) # 0.

Assume that if C’ is an H-walk in o(a,D) from (¢,n) to (i,m) of length
less than k, then Cp(i) # 0.

Let C = ((i,n), (r1,81), (r2,52),-s (Tk—1,8k-1), (,;m)) be an H-walk in
o(a,D) from (i,n) to (i,m) of length k, with k& > 3.

If C is not an H-path, then from Lemma 3.3 we get that C contains
an H-path from (i,n) to (i,mm) of length less than k. It follows from the
inductive hypothesis that Cp () # 0.

Suppose that C is an H-path.

By Remark 1 we can choose t € {1,...,k — 1} such that (r:,s;) is the
first vertex in C that does not appear in V(D5).

If (7¢,8¢) # (71,81), then it follows from the choice of ¢ that (r;—1,5:—1)
€ V(Dg) and ((r¢—1,8:-1),(¢,8:)) € A(C), moreover from the definition
of o(a,D) we have that c((¢,n),(r¢,5t)) = c((re=1,5:—1),(T¢,8¢)). Hence,
((,n),(Te,8¢)) U ((7e,8¢), C, (i,m)) is an H-walk in o(e,D) from (¢,n) to
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(i,m) of length less than k, so it follows from the induction hypothesis that
Cp(i) # 0.

If (r;,s¢) = (r1,81), then proceeding as in Case 1 we have that Cp(i) #

O

The previous results allow us establish the following Theorems.

Theorem 3.6. Let H be a transitive digraph, D an H-colored digraph
and a = (Dg)ee(n,...p} @ Sequence of H-colored vertex disjoint digraphs.
S* C V(o(e,D)) is an H-independent set by walks in o (D) if and only if
there ezists an H-independent set by walks S C V(D) in D such that S* =
U Si, where S; C V(D) and for every i€ S
i€S

is an H-independent set by walks in D§ ifCp(i) =0
(1) Si— or
contains ezactly one vertez from V(D§) ifCp(i) #0

Proof. (necessity) Let S* C V(o(a,D)) be an H-independent sét by walks
in o(a,D).

Consider S = {ie V(D) | (S*NV(D§))#0}.
Claim 1. S is an H-independent set by walks of D.

We proceed by contradiction, suppose that S is not an H-independent
set by walks in D. Then there exists 7,j € S, i # j, such that there is
an H-walk in D from i to j. By Theorem 3.5 (a) we have that for each
(i,n) € V(Dg) and for each (j,m) € V(D$) there is an H-walk in o(c,D)
from (i,n) to (j,m). Since ,j € S, we have that (S* N V(Df)) # 0 and
(S* N V(D5)) # 0. Therefore, in particular, there are H-walks in o(c,D)
from (S* N V(Df)) to (§* N V(D5)), which is not possible because S* is
H-independent by walks in o(a,D).

On the other hand, if we denote by S; = S* N V(D$) ( for each ¢ such
that (§* N V(Dg)) # ), then it follows from the definition of S that §* =

U s.
€S
Claim 2. For every ¢ € S, S; satisfies (1).
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Let ¢ € S be. We distinguish two possible cases:

Case 1. Cp(i) = 0.
We will prove that S; is an H-independent set by walks in Df.

Since S* is H-independent by walks in o(a,D), then S; must be H-in-
dependent by walks in Df (because Df C o(c,D)).

Case 2. Cp(i) # 0.
We will prove that | S; | = 1.

Since i € S, then S; # 0. Now, we proceed by contradiction. Let us
suppose that | S; | > 2.

Since Cp(i) # 0, it follows from Theorem 3.5 (b) that for each pair of
vertices (i,n),(i,m) € V(Df) there is an H-walk in o(a,D) between them.
So, in particular, there are H-walks between every pair of elements of S;,
which can not happen because S* is H-independent by walks in o(a,D)
and S; C S*. Hence | S; | = 1.

(sufficiency) Let S C V(D) be an H-independent set by walks of D
and S; C V(Df) as in the hypothesis of Theorem 3.6 for each i € S.

We will prove that S* = U S; is an H-independent set by walks of
€S
o(a,D).

If | S* | = 1, then S* is an H-independent set by walks in o(a,D).
Hence, suppose that | $* | > 2.

Let (i,n),(j,m) € S* be distinct vertices. We will prove that there are
no H-walks between (i,n) and (j,m) in o(a,D).

We proceed by contradiction. Let us suppose that there exists an H-
walk from (i,n) to (j,m) in o(e,D).

Case a. 7 # j.

In this case, it follows from Theorem 3.5 (a) that there is an H-walk in
D from i to §, which is not possible because S is H-independent by walks
in D and {%,j} C S.

Case b. i = 3.
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Since | S; | > 2 (because {(i,n),(i,m)} C S;), then the choice of S; implies
that Cp(i) = 0. On the other hand, since there is an H-walk in o(a,D)
from (i,n) to (j,m), it follows from Theorem 3.5 (b) that there is an H-walk
in D; from n to m, which means that there is an H-walk in D{ from (i,n)
to (i,m), which is not possible because S; is H-independent by walks in Df.

Hence, S* is an H-independent set by walks in o(a,D). O

Theorem 3.7. Let H be a transitive digraph, D an H-colored digraph
and a = (Dg)seqa,....p) @ sequence of H-colored vertex disjoint digraphs. S§*
C V(o(a,D)) is an H-absorbent set by walks in o(a,D) if and only if there
exists an H-absorbent set by walks S C V(D) in D such that §* = | J §;,

i€s
where S; C V(D) and for everyi € S

[ is an H-absorbent set by walks in D, ifCp(i) =0
and for each
j€ S\{i}
there are no
H-restricted
(1) S;-¢ walks in D

A fromitoj

or

| is an nonempty subset of V(D§), otherwise

Proof. (necessity) Let S* C V(o(a,D)) be an H-absorbent set by walks
in o(a,D).

Consider S={ie V(D) | (S*N V(D)) #0}.
Claim 1. S in an H-absorbent set by walks of D.

Let k € V(D) \ S. Since k ¢ S, then (S* N V(D)) = 0, and since S* is
H-absorbent by walks in o(a,D), we get that for each (k,n) € V(Dj) there
exists (j,m) € S* such that there is an H-walk in o(e,D) from (k,n) to
(j,m). Therefore, from the definition of S we get that j € S and it follows
from Theorem 3.5 (a) that there is an H-walk in D from & to j (because &

# J)-
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On the other hand, if we denote by S; = S* N V(Df) ( for each 7 such
that (S* N V(Df)) # 0), then it follows from the definition of S that $* =
U s
€S

Claim 2. for every ¢ € S, S; satisfies (1).

Let i € S be. We distinguish two possible cases:

Case 1. Cp(i) = 0 and for each j € S\{¢} there are no H-walks in D
from ¢ to j.

We will prove that S; is an H-absorbent set by walks in Df.

Since there are no H-walks in D from i to j for each j € S\{i}, it
follows from Theorem 3.5 (a) that for each (i,n) € V(D) and for each
(;m) € V(D5) there are no H-walks in o(c,D) from (i,n) to (j,m) for each
7 € S\{i}. Since S* is an H-absorbent set by walks in o(a,D), if there
exists (i,n) € V(D§) \ S;, then there exists (i,m) € S; such that there is an
H-walk in o(a,D) from (i,n) to (i,m). Hence, since Cp(i) = @, it follows
from Theorem 3.5 (b) that there is an H-walk in D; from n to m, which
means that there is an H-walk in D{ from (i,n) to (i,m). Thus, S; is an
H-absorbent set by walks in Df.

Case 2. either Cp(i) # 0 or there exists j € S\{i} such that there is
an H-walk in D from i to j.

Because of the definition of S; we get that S; # 0.

(sufficiency) Let S C V(D) be an H-absorbent set by walks of D and
S; C V(D¥) as in the hypothesis of Theorem 3.7 for each i € S.

We will prove that S* = U S; is an H-absorbent set by walks in o(a,D).
i€S
Let (k,n) € V(o(e,D)) \ S*.

Casea. k ¢ S.

Since k ¢ S and S is H-absorbent by walks in D, there exists 7 € S such
that there is an H-walk in D from k to i. Hence, it follows from Theorem
3.5 (a) that for each (k,l) € V(Dg) and for each (i,m) € V(D5) there is an
H-walk in o(a,D) from (k,l) to (¢,m), and so there is an H-walk in o(e,D)
from (k,n) to S; C S* (because S; C V(D5)).
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Caseb. ke S.

If S is an H-absorbent set by walks in Df, then there exists an H-walk
in o(a,D) from (k,n) to S C S* (because (k,n) ¢ Sk).

If Sy is an nonempty subset of V(Dg), then the choice of Sy, implies that
either Cp(k) # 0 or there exists j € S\{k} such that there is an H-walk
in D from k to j. If Cp(k) # 0, then it follows from Theorem 3.5 (b) that
for each pair of vertices (k,n), (k;m) € V(D§) there is an H-walk between
them, so in particular there is an H-walk in o(e,D) from (k,n) to Sy C
S*. If there exists j € S\{k} such that there is an H-walk in D from k to
J, then it follows from Theorem 3.5 (a) that there is an H-walk in o(a,D)
from (k,n) to S; C S*.

Hence S* is an H-absorbent set by walks in o(a,D). ]

Theorem 3.8. Let H be a transitive digraph, D an H-colored digraph
and & = (Dy)seqn,...p} 0 sequence of H-colored vertex disjoint digraphs.
N* C V(o(a,D)) is an H-kernel by walks in o(a,D) if and only if there
exists an H-kernel by walks N C V(D) in D such that N* = U N;, where

: ieN
N; C V(D§) and for everyi € N
is an H-kernel by walks of D§, ifCp(i) =90
(1) N,'—- or
contains exactly one vertez from V(D5), ifCpli) # 0

Proof. (necessity) Let N* C V(o(e,D)) be an H-kernel by walks in
o(a,D).

Consider N ={ie€ V(D) | (N*NnV(D$) )#£0 }.

Claim 1. N is an H-kernel by walks in D.

It follows from Theorems 3.6 and 3.7 that N is H-independent by walks
and H-absorbent by walks in D, respectively. Hence, N is an H-kernel by
walks in D.

On the other hand, if we denote by N; = N* n V(Dg) (for each 7 such
that ( N* N V(D§) ) # 0), then it follows from the definition of N that N*
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= N

ieEN
Claim 2. for every i € N, N; satisfies (1).

Let ¢ € N be. We distinguish two possible cases:
Case 1. Cp(i) =0
We will prove that N; is an H-kernel by walks in Df.

It follows from Theorem 3.6 that N; is an H-independent set by walks
in Df. Since there are no H-walks in D from 7 to j for each j € N\{i}
(because N is H-independent by walks in D), then it follows from Theorem
3.7 that N; is an H-absorbent set by walks in Df. Hence, N; is an H-kernel
by walks in Df.

Case 2. Cp(i) # 0
We will prove that | N; | = 1.

Since N* is an H-independent set by walks in o(a,D) and Cp(i) # 9,
it follows from Theorem 3.6 that | N; | = 1.

(sufficiency) Let N C V(D) be an H-kernel by walks of D and N; C
V(DS) as in the hypothesis of Theorem 3.8 for each i € N.

We will prove that N* = U N; is an H-kernel by walks of o(e,D).
ieN
Since N is an H-independent set by walks in D, we have that for each
i,j € N, i # j, there are no H-walks in D from i to j. On the other hand,
since N; is H-independent by walks and H-absorbent by walks in Df, if
Cp(i) = 0 (because N; is an H-kernel by walks in Df); or | N; | = 1, if
Cp(i) # 0, for each i € N. Then

or

is an H-independent set by walks in Df, ifCp(i) =0
N; -
contains exactly one vertex from V(Df), ifCp(i) #0

and
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[ is an H-absorbent set by walks in Df, if Cp(i) = 0 and
for each j € N\ {i}
there are no
H-restricted walks
in D from i to j

or

is an nonempty subset of V(D§), otherwise
[ (due to | N; | =1)

Therefore, it follows from Theorems 3.6 and 3.7 that N* is H-independent
by walks and H-absorbent by walks in o(c,D), respectively. (]

The following Lemma will be useful:

Lemma 3.9. Every induced subdigraph of o(a.,D) is

1. a digraph of the form o (o/,D'), where D' is an induced subdigraph of
D, with | V(D') | > 2, and o is an sequence of induced subdigraphs
of D;, for eachi € V(D'),

2. an induced subdigraph of Df for some i € {1,...,p}

or

3. the union of the digraphs as in 1 and 2

Theorem 3.10. Let H be a transitive digraph, D an H-colored digraph
and a = (Dy)ocq1,....p} @ sequence of H-colored vertex disjoint digraphs. If
o(a,D) is H-kernel perfect, then D and D; are H-kernel perfect digraphs,
for each i € {1,...,p}.

Proof. ( 1) We will prove that D is H-kernel perfect.
Let G be an induced subdigraph of D. We will see that G contains an

H-kernel.

If | V(G) | = 1, then G contains an H-kernel. Let us assume that G
has at least two vertices.
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Let o’ = (Dy)rev(c) € . Since o(a’,G) is an induced subdigraph of
o(a,D), then o(o/,G) contains an H-kernel (because o(a,D) is H-kernel
perfect). Hence, it follows from Theorem 3.8 that G contains an H-kernel.

( IT ) We will prove that D; is an H-kernel perfect digraph, for each ¢
€ {1,..,p}.

Let i € {1,...,p} and G an induced subdigraph of D;. We will see that
G contains an H-kernel.

If | V(G) | = 1, then G contains an H-kernel. Let us assume that G
has at least two vertices

Let o/ = (G) and D’ = ({i}, #). Since o(c/,D’) is an induced subdigraph
of o(a,D), then o(a’,D’) contains an H-kernel (because o(c,D) is an H-
kernel perfect digraph). Hence, it follows from Theorem 3.8 that G contains
an H-kernel. O

Theorem 3.11. Let H be a transitive digraph, D an H-colored digraph
and a = (Dy)eeqn,....p} @ sequence of H-colored vertex disjoint digraphs. If
D is an H-kernel perfect digraph and for each i € {1, ...,p}

is H-kernel perfect, ifCp(i) =0
or

has the property that all of its if Cp(i) # 0

induced subdigraphs have an H-kernel

and each of them

contains ezactly one vertez,

(1) D; -

then o(a,D) is an H-kernel perfect digraph.

Proof. We will prove that every induced subdigraph of o(c,D) has an H-
kernel.

Let G be an induced subdigraph of o(a,D). It follows from Lemma 3.9
that G has three possibilities for its characterization.

I. G is a digraph of the form o(a’,D’), where D’ is an induced subdi-

graph of D (with | V(D’) | > 2) and o/ = (D})icv(p) is an suquence
of induced subdigraphs of D;, for each i € V(D').

372



IL

111

Since D is H-kernel perfect, then D’ contains an H-kernel N. On the
other hand, it follows from (1) that for each i € N there exists N; C
V(D;¢) such that

is an H-kernel of Di¢, ifCp(i) =0
or
(2) ... N; — ¢ is an H-kernel of D¢, ifCp(d) #0
which contains exactly
one vertex of V(D;°),

Now, we will see that for each i € N

is an H-kernel of D¢, if Cp/(3) =0
or

contains exactly if Cpr(3) # 0

one vertex of V(D{¢),

3) ... N; —

If Cp:(i) = 0, then either Cp(i) = @ or Cp(i) # @ and in both cases
it follows from (2) that N; is an H-kernel of D}°. On the other hand,
observe that if Cp:(i) # @, then Cp(i) # 9, and it follows from (2)
that in particular N; contains exactly one vertex of V(D;¢). There-
fore (3) is satisfied.

Hence, it follows from Theorem 3.8 that o(a/,D’) contains an H-
kernel.

G is an induced subdigraph of D;¢, for some i € {1,...,p}.

In this case, it follows from (1) that G contains an H-kernel, since G is

isomorphic to an induced subdigraph of D; (because of the definition
of o(a,D)).

G is the union of the digraphs as in I and II.

In this case G contains an H-kernel; namely, the union of each of the
H-kernels in each digraph as in I or II (due to V(D) N V(D5) = 0
for each 7 # j).

a
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Corollary 3.12. Let H be a transitive digraph, D an H-colored digraph
and @ = (Dy)oeqn,....p} @ sequence of H-colored vertex disjoint digraphs. If
Cp(i) =0 for each i € V(D), then o(a,D) is an H-kernel perfect digraph if
and only if D and D; are H-kernel perfect digraphs, for each i € {1,...,p}.

As a consequence of the previous results is obtained a generalization of
the work made by I. Wioch in [33] in the case that the set A(H) consists
only of loops.

Theorem 3.13. Let D be an edge coloured digraph and a=(Dy )eeq1,....p)
a sequence of edge coloured vertex disjoint digraphs. If o (,D) is monochro-
matic kernel perfect, then D and D; are monochromatic kernel perfect di-
graphs, for each i € {1,...,p}.

Theorem 3.14. Let D be an edge coloured digraph and a=(D, )eec(1,....p}
be an sequence of edge coloured vertez disjoint digraphs. If D is an monoch-
romatic kernel perfect digraph and for each i € {1,...,p}

( is monochromatic kernel perfect, ifCp(i) =0
or

D; — { has the property that if Cp(i) #0
all of its induced subdigraphs

have a kernel by monochromatic

paths and each of them

contains exactly one vertez,

then o (a,D) is an monochromatic kernel perfect digraph.

Corollary 3.15. Let D be an edge coloured digraph and a=(Dy )geq1,....p}
a sequence of edge coloured vertex disjoint digraphs. If Cp(i) = 0 for each
i € V(D), then o(a,D)} is an monochromatic kernel perfect digraph if and
only if D and D; are monochromatic kernel perfect digraphs, for each i €

{1,...,p}.
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