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Abstract

The first two authors have shown, in [13], that if K, » XKy, m > 3, is
an even regular graph, then it is Hamilton cycle decomposable, where
x denotes the tensor product of graphs. In this paper, it is shown
that if K., X Ky is odd regular, then (K., X Km)* is directed
Hamilton cycle decomposable, where (K, x Km)* denotes the
symmetric digraph of Ky r X Km.

Keywords:  Tensor product, Wreath product, Hamilton cycle
decomposition.

1 Introduction

All graphs considered here are simple and finite. A k-regular graph
G is called Hamilton cycle decomposable if G is decomposable into k/2
Hamilton cycles when &k is even and into (k — 1)/2 Hamilton cycles
together with a perfect matching when k is odd. If H,, Hs, ..., Hy are
edge-disjoint subgraphs of G such that E(G) = E(H;) UE(H2) U ... U
E(H}), then we write G = H, @ Hy & ... ® Hj. The complete graph on

m vertices is denoted by K,, and its complement is denoted by K,,.

For a graph G, G* is obtained from G by replacing every edge of G
by a symmetric pair of arcs. K}, m and K are the complete symmetric
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balanced bipartite digraph on 2m vertices and the complete symmetric
digraph of order n, respectively.

Let Ci (resp. Gy ) denote a cycle (resp. directed cycle) of length & and
let Pi (resp. B ) denote a path (resp. directed path) on k vertices. A Cj -
factor of G is a spanning subgraph H of G such that each component
of H is a Cy. Partitioning the edge set of G into Cj -factors is called a
Cy. -factorization of G. If G admits a Cy, -factorization, then we denote
it by Ci || G.

For two simple graphs (resp. digraphs) G and H their tensor product,
denoted by G x H, has vertex set V(G) x V(H) in which (g1, k1)(g2, h2)
is an edge (resp.arc) whenever (g1, g2) is an edge (resp.arc) in G and
(h1, ho) is an edge (resp.arc) in H. Similarly, the wreath product of the
graphs (resp.digraphs) G and H, denoted by G o H, has vertex set
V(G) x V(H) in which (g1, h1)(g2, h2) is an edge (resp.arc) whenever
(91, g2) is an edge (resp.arc) in G, or g, = g2 and (hy, hp) is an
edge (resp.arc) in H. It is well known [9] that the tensor product is
commutative and distributive over edge-disjoint union of graphs, that is, if
G=H ®H:®.. ®Hy, then GxH = (HyxH)®(HoxH)®...®(Hyx H).

We shall use the following notation throughout this note. Let G and
H be simple graphs with vertex sets V(G) = {zo, 21, ..., Tm-1} and
V(H) = {y0, ¥1, --+» Yn-1}. Then V(G x H) = V(G) x V(H) and for
our convenience, we write V(G) x V(H) = U:';};l X;, where X; stands
for {z;} x V(H). Further, in the sequel, we shall denote the vertices of
X: by {:z; | 0 <j <n-—1}, where z}} stands for the vertex (=i, y;).
We shall call X;, 0 <i<m—1, the ith layer of G x H. It is clear that
G x H is an m-partite graph with parts Xg, X, ..., Xm—-1 (It can also
be considered as an n -partite graph with parts Yo, Y1, ..., Ya—1, where

Y =V(G) x {w:})-

If G is a bipartite graph with bipartition (X,Y), where X =
{zo, 1, ..., Zn=1}, Y = {¥0, %1, .- -, Yn—1} and if G contains the set of
edges Fi(X,Y) = {z;yis; | 0 < j < n—1, where addition in the subscript
is taken modulo n}, 0 < i < n— 1, then we say that G has the I-factor
of distance © from X to Y. Note that Fi(X,Y)=Fo—i(Y, X), 0<i<
n—1. Clearly, if G = Kn ., then E(G) = UiZy Fi(X,Y). In a bipartite
graph with bipartition (X, Y) with | X |=|Y|, if z;y; is an edge, then
z;y; is called an edge of distance j—i if i < j, or n— (i —j), if i > j,
from X to Y (The same edge is said to be of distance ¢ —j if i > j or
n—(—1i),ifi<j fromY to X). For S C V(G), (S) denotes the
subgraph of G induced by S. Definitions which are not seen here can be
found in [5] or (8].
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It is well known [11] that K, is Hamilton cycle decomposable. Also,
the k-cycle system problem of decomposing K, into cycles of length k
if k| (3) when n isodd, orif k| ((3) — (%)) when n is even has been
settled recently (2, 18]. More recently, Alspach et al. [3] have solved the

problem of decomposing K, into Ck if k| n(n —1).

For the odd regular graph Kbsn,, Tillson [20] obtained a directed
Hamilton cycle decomposition of K3,,, for 2m > 8. In this note, we
discuss the directed Hamilton cycle decomposition of (K, x K;;)*. The
problem of finding Hamilton cycle decompositions of product graphs is not
new. Hamilton cycle decompositions of various products have been studied
in [1, 4, 6, 7, 10, 13]. In [16], Ng has obtained a partial solution to the
following conjecture of Alspach et al. [1]: If D; and D, are Hamilton cycle
decomposable digraphs, then D; o Dy is Hamilton cycle decomposable.
Also, Ng [17] has proved that the complete symmetric r-partite regular
digraph K} (s) is decomposable into directed hamiltonian cycles if and only
if (r,s) # (4,1) or (6,1). It has been shown that K, x K, is Hamilton
cycle decomposable [6]. Manikandan and Paulraja [13] have proved that
K., x K, is Hamilton cycle decomposable. If K, , x K is an even regular
graph, then it is easy to see that (K, X K,)* is directed Hamilton cycle
decomposable. However, it is not trivial to see if (K, x K,)* is directed
Hamilton cycle decomposable when K., x K is odd regular. In this note,
we prove that (K, x K,)* is directed Hamilton cycle decomposable. We
prove the following

Theorem 1.1. For r > 2, (K, x Kn)* admits a directed Hamilton
cycle decomposition ezcept possibly when r is odd and m = 4, and
(r,m) = (3,6).

2 Proof of the Theorem

First we prove a few lemmas, then using them we prove Theorem 1.1.
The following theorems will be used to prove the main result of this note.

Theorem 2.1. [3] For positive integers m and n, with 2 < m < n, the
digraph K, can be decomposed into directed cycles of length m if and only
if m divides the number of arcs in K and (n,m) # (4,4), (6,3),(6,6). ®

Theorem 2.2. [13] For m > 3, K., x K, has a Hamilton cycle
decomposition. |

Theorem 2.3. [14] For m >3 and k 2> 2, Cory1 || Cors1 X K. [ ]

Lemma 2.4. For r > 2, the complete symmetric bipartite digraph, K},
is directed Hamilton cycle decomposable.
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Proof.  Let the bipartition of Ky, be (X,Y), with X =

{=o0, %1, ..., :B,-_l} and Y = {yo, Y1, ...,y,-..l}. Let H; =
(Zo, Y144> T1y Y2+is T2, Y3+is L3+« +y Tr=3, Yr4i=2) Tr=2) Yr+i-1; Tr-1,

Yo+i» To), 0 < i <1 — 1, where the additions in the subscripts are taken
modulo 7. Clearly, these r directed Hamilton cycles are arc-disjoint. W

The above lemma can also be obtained from [19)].

Lemma 2.5. For m >3 and k > 2, Porio || Paky2 X Km.

Proof. Let V(Caks1) = {Zo, 21, 72, ..., Tox}. View the graph Corqq X
K., as follows: assume that the layers Xo, X1, X2, ..., Xor of Corq1 X
K, are arranged one after the other, beginning with X, see Figure 2.1;
instead of joining the edges from Xs; to Xp upwards, keep a copy of
Xo after Xor and the edges are joined from Xg; to that Xo (that
is, an identification of the last layer Xo with the first layer Xo we get
Cory1 X K ). The resulting graph is precisely Pory2 X Kin with layers
Xo, X1, X2, ..., Xor and Xo. Clearly, Coxy1 X K;n admits a Copryy -
factorization, by Theorem 2.3, and any 2k + 1 cycle of a Cyiq -factor
of Cak41 X Ky becomes a path Paiyo in this drawing (observe that any
2k+1 cycle of Cay1 X K, must meet all of its layers). Hence corresponds
to a Cogyy -factor of Cory1 X Ky thereis a Pogya factor of Porya x Ky
and hence the result follows. [ |

Remark 2.6. By the construction of the Pay.o -factorization obtained in
the above Lemma 2.5, it is clear that the origin and terminus of any path
of a Popya -factor are in the single column of Porio X K. |

Lemma 2.7. For m > 3 and m # 4,6, Cop x K}, is directed Hamilton
cycle decomposable.

Proof. Let V(Ca,) = {z0, 71, ..., T2r_1}. Let V(CorxKpm) = U5" Xi,
where X; = {zi, zi, ..., 2% _,}. By Theorem 2.1, K% = 0 H,...0
Hp_1, where H; is a directed Hamilton cycle of K7, . Let V(K%) =
{vo, 1, .-+, y"‘,‘l} ; to each directed Hamilton cycle H; of K., we obtain
the 1-factor F; of the induced subgraph (X2,_1 U Xo) of Cor X Ky, as
follows: F, = {(z2""!, :z:?) | (i, y5) € H}, 1<i<m-1.

Clearly, (02,- x Km)\E((Xg,-_l UX())) &~ P, x Kn,; obtain a Po,-
factorization F = {P1, P2, ..., Pm-1} of P2 X K;p as in Lemma 2.5.
Each factor P; has m path-components, and each path-component of P;
has its origin z{ and terminus xf"l for some ! € {0,1,...,m - 1},
see the Remark 2.6. Clearly, H; =P UF;, 1<i<m-1, isa

Hamilton cycle of Cor x Km. Thus {H;, Hy, ..., H,,_;} is a Hamilton
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cycle decomposition of Ca, x Kp,. Orient all edges of H,f ,y 1£i<m-1,
from the layer X; to X;4; for i =0, 1,...,2r — 1, where addition in
the subscript is taken modulo 2r. Let I-f: be the corresponding directed
Hamilton cycle in the resulting oriented graph. The resulting directed
graph is Cy, x K, and I?;, H";, ciey H,',,_1 is a directed Hamilton cycle
decomposition of it. n
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Counx Ky

Figure 2.1
Lemma 2.8. For odd r > 5, Co, xKs has a Hamilton cycle decomposition.
Proof. Let V(Cor x Kg) = U¥"5! Xi, where X; = {z}, «i, ...,zi}. By

Lemma 2.5, the subgraph of C,, x K¢ induced by <U?;53 X,-> has a path
factorization & = {P,, Py, P3, P4, Ps} such that for each 7, 1 < i <5,
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each path-component of P; has its end vertices z{ and m?”a, for some
l, 0 <1< 5, see the Remark 2.6. Let Fi(X;, X;) denote the 1-factor of
distance k from X; to X;. Let
Hy =Py U Fi(X2r-3, Xor—2) U Fi(Xar—2, Xar_1) U F3(X2r_1, Xo),
Hy =Py U Fy(Xar_3, Xor—2) U Fo(Xar—2, X2r-1) U F1(X2r-1, Xo),
H3 =P3 U F3(Xor—3, Xor-2) U F3(Xar—2, Xor_1) U F5(X2r-1, Xo),
Hy =Py U Fy(Xor-3, Xor—2) U F5(Xor—2, X2r—1) U F4(X2r_1, Xo) and
Hys = Ps U F5(Xor-3, Xor—2) U F4(Xor—2, Xor-1) U Fa(X2r-1, Xo).
Clearly, {H1, Ha, ..., Hs} is a Hamilton cycle decomposition of
Csr X Kp. n

The proof of the following lemma follows from the above lemma, since
Car x K} is nothing but orienting the edges of Cpr x K¢ from X; to
Xiy1, where addition in the subseript of X;;; is taken modulo 2r. The
Hamilton cycles of Ca, x K¢ obtained in Lemma 2.8 with this orientation
become directed Hamilton cycles of Cp, x K.

Lemma 2.9. For odd v > 5, Cor X K¢ has a directed Hamilton cycle
decomposition. |

Proof of Theorem 1.1.
Case 1: K,, x K, is an even regular graph.

The result follows by a Hamilton cycle decomposition of K, x Kpn,
see [13].

Case 2: K,, x K, is an odd regular graph.

Observe that (K, x Kn)* =K}, x K},
= (o He..o H) x K, by
Lemma 2.4, . .
=H xK;))® ... (H x K}).

By Lemmas 2.7 and 2.9, each H; x K is directed Hamilton
cycle decomposable. Thus (K., x K;)* is directed Hamilton cycle
decomposable. [ ]

Conclusion: It is shown, in [4], that if both G and H are Hamilton
cycle decomposable graphs, then G x H need not be Hamilton cycle
decomposable. Hence it is interesting to find pairs of Hamilton cycle
decomposable graphs G; and G2 such that G; x G2 is Hamilton cycle
decomposable if G; x Gz is even regular or, if Gy x G2 is odd regular,
then (G1 x Gg)* is directed Hamilton cycle decomposable. Recently, it
has been shown, see [15], that the tensor product of a pair of regular
complete multipartite graphs is Hamilton cycle decomposable. In fact, R.S.
Manikandan and P. Paulraja [12] have conjectured that if both G and H
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are Hamilton cycle decomposable circulants and G x H is connected, then
G x H is Hamilton cycle decomposable. Further, R. Balakrishnan and P.
Paulraja have conjectured that if G and H are r and s regular Hamilton
cycle decomposable graphs, respectively, and Gx H is rs-edge connected,
then it is Hamilton cycle decomposable.
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