Directed Hamilton cycle decompositions of the tensor product of symmetric digraphs

R.S. Manikandan[†], P. Paulraja and S. Sivasankar Department of Mathematics Annamalai University Annamalainagar 608 002 India

Abstract

The first two authors have shown, in [13], that if $K_{r,r} \times K_m$, $m \ge 3$, is an even regular graph, then it is Hamilton cycle decomposable, where \times denotes the tensor product of graphs. In this paper, it is shown that if $K_{r,r} \times K_m$ is odd regular, then $(K_{r,r} \times K_m)^*$ is directed Hamilton cycle decomposable, where $(K_{r,r} \times K_m)^*$ denotes the symmetric digraph of $K_{r,r} \times K_m$.

Keywords: Tensor product, Wreath product, Hamilton cycle decomposition.

1 Introduction

All graphs considered here are simple and finite. A k-regular graph G is called Hamilton cycle decomposable if G is decomposable into k/2 Hamilton cycles when k is even and into (k-1)/2 Hamilton cycles together with a perfect matching when k is odd. If H_1, H_2, \ldots, H_k are edge-disjoint subgraphs of G such that $E(G) = E(H_1) \cup E(H_2) \cup \ldots \cup E(H_k)$, then we write $G = H_1 \oplus H_2 \oplus \ldots \oplus H_k$. The complete graph on m vertices is denoted by K_m and its complement is denoted by \overline{K}_m .

For a graph G, G^* is obtained from G by replacing every edge of G by a symmetric pair of arcs. $K_{m,m}^*$ and K_n^* are the complete symmetric

[†]Department of Mathematics, Velalar college of Engineering and Technology, Erode - 638 009, India.

balanced bipartite digraph on 2m vertices and the complete symmetric digraph of order n, respectively.

Let C_k (resp. \vec{C}_k) denote a cycle (resp. directed cycle) of length k and let P_k (resp. \vec{P}_k) denote a path (resp. directed path) on k vertices. A C_k -factor of G is a spanning subgraph H of G such that each component of H is a C_k . Partitioning the edge set of G into C_k -factors is called a C_k -factorization of G. If G admits a G_k -factorization, then we denote it by $G_k \parallel G$.

For two simple graphs (resp. digraphs) G and H their tensor product, denoted by $G \times H$, has vertex set $V(G) \times V(H)$ in which $(g_1, h_1)(g_2, h_2)$ is an edge (resp. arc) whenever (g_1, g_2) is an edge (resp. arc) in G and (h_1, h_2) is an edge (resp. arc) in H. Similarly, the wreath product of the graphs (resp. digraphs) G and H, denoted by $G \circ H$, has vertex set $V(G) \times V(H)$ in which $(g_1, h_1)(g_2, h_2)$ is an edge (resp. arc) whenever (g_1, g_2) is an edge (resp. arc) in G, or $g_1 = g_2$ and (h_1, h_2) is an edge (resp. arc) in G, or G1 is an edge (resp. arc) in G2. It is well known G3 that the tensor product is commutative and distributive over edge-disjoint union of graphs, that is, if $G = H_1 \oplus H_2 \oplus \ldots \oplus H_k$, then $G \times H = (H_1 \times H) \oplus (H_2 \times H) \oplus \ldots \oplus (H_k \times H)$.

We shall use the following notation throughout this note. Let G and H be simple graphs with vertex sets $V(G) = \{x_0, x_1, \ldots, x_{m-1}\}$ and $V(H) = \{y_0, y_1, \ldots, y_{n-1}\}$. Then $V(G \times H) = V(G) \times V(H)$ and for our convenience, we write $V(G) \times V(H) = \bigcup_{i=0}^{m-1} X_i$, where X_i stands for $\{x_i\} \times V(H)$. Further, in the sequel, we shall denote the vertices of X_i by $\{x_j^i \mid 0 \leq j \leq n-1\}$, where x_j^i stands for the vertex (x_i, y_j) . We shall call X_i , $0 \leq i \leq m-1$, the ith layer of $G \times H$. It is clear that $G \times H$ is an m-partite graph with parts $X_0, X_1, \ldots, X_{m-1}$ (It can also be considered as an n-partite graph with parts $Y_0, Y_1, \ldots, Y_{n-1}$, where $Y_i = V(G) \times \{y_i\}$).

If G is a bipartite graph with bipartition (X, Y), where $X = \{x_0, x_1, \ldots, x_{n-1}\}, Y = \{y_0, y_1, \ldots, y_{n-1}\}$ and if G contains the set of edges $F_i(X, Y) = \{x_j y_{i+j} \mid 0 \le j \le n-1\}$, where addition in the subscript is taken modulo $n\}$, $0 \le i \le n-1$, then we say that G has the 1-factor of distance i from X to Y. Note that $F_i(X, Y) = F_{n-i}(Y, X)$, $0 \le i \le n-1$. Clearly, if $G = K_{n,n}$, then $E(G) = \bigcup_{i=0}^{n-1} F_i(X, Y)$. In a bipartite graph with bipartition (X, Y) with |X| = |Y|, if $x_i y_j$ is an edge, then $x_i y_j$ is called an edge of distance j - i if $i \le j$, or n - (i - j), if i > j, from X to Y (The same edge is said to be of distance i - j if $i \ge j$ or n - (j - i), if i < j, from Y to X). For $S \subseteq V(G)$, $\langle S \rangle$ denotes the subgraph of G induced by S. Definitions which are not seen here can be found in [5] or [8].

It is well known [11] that K_n is Hamilton cycle decomposable. Also, the k-cycle system problem of decomposing K_n into cycles of length k if $k \mid \binom{n}{2}$ when n is odd, or if $k \mid \binom{n}{2} - \binom{n}{2}$ when n is even has been settled recently [2, 18]. More recently, Alspach et al. [3] have solved the problem of decomposing K_n^* into \vec{C}_k if $k \mid n(n-1)$.

For the odd regular graph K_{2m} , Tillson [20] obtained a directed Hamilton cycle decomposition of K_{2m}^* , for $2m \geq 8$. In this note, we discuss the directed Hamilton cycle decomposition of $(K_{r,r} \times K_m)^*$. The problem of finding Hamilton cycle decompositions of product graphs is not new. Hamilton cycle decompositions of various products have been studied in [1, 4, 6, 7, 10, 13]. In [16], Ng has obtained a partial solution to the following conjecture of Alspach et al. [1]: If D_1 and D_2 are Hamilton cycle decomposable digraphs, then $D_1 \circ D_2$ is Hamilton cycle decomposable. Also, Ng [17] has proved that the complete symmetric r-partite regular digraph $K_r^*(s)$ is decomposable into directed hamiltonian cycles if and only if $(r,s) \neq (4,1)$ or (6,1). It has been shown that $K_r \times K_s$ is Hamilton cycle decomposable [6]. Manikandan and Paulraja [13] have proved that $K_{r,r} \times K_s$ is Hamilton cycle decomposable. If $K_{r,r} \times K_s$ is an even regular graph, then it is easy to see that $(K_{r,r} \times K_s)^*$ is directed Hamilton cycle decomposable. However, it is not trivial to see if $(K_{r,r} \times K_s)^*$ is directed Hamilton cycle decomposable when $K_{r,r} \times K_s$ is odd regular. In this note, we prove that $(K_{r,r} \times K_s)^*$ is directed Hamilton cycle decomposable. We prove the following

Theorem 1.1. For $r \geq 2$, $(K_{r,r} \times K_m)^*$ admits a directed Hamilton cycle decomposition except possibly when r is odd and m = 4, and (r,m) = (3,6).

2 Proof of the Theorem

First we prove a few lemmas, then using them we prove Theorem 1.1. The following theorems will be used to prove the main result of this note.

Theorem 2.1. [3] For positive integers m and n, with $2 \le m \le n$, the digraph K_n^* can be decomposed into directed cycles of length m if and only if m divides the number of arcs in K_n^* and $(n,m) \ne (4,4),(6,3),(6,6)$.

Theorem 2.2. [13] For $m \geq 3$, $K_{r,r} \times K_m$ has a Hamilton cycle decomposition.

Theorem 2.3. [14] For $m \geq 3$ and $k \geq 2$, $C_{2k+1} \parallel C_{2k+1} \times K_m$.

Lemma 2.4. For $r \geq 2$, the complete symmetric bipartite digraph, $K_{r,r}^*$, is directed Hamilton cycle decomposable.

Proof. Let the bipartition of $K_{r,r}^*$ be (X,Y), with $X=\{x_0, x_1, \ldots, x_{r-1}\}$ and $Y=\{y_0, y_1, \ldots, y_{r-1}\}$. Let $\vec{H}_i=\{x_0, y_{1+i}, x_1, y_{2+i}, x_2, y_{3+i}, x_3, \ldots, x_{r-3}, y_{r+i-2}, x_{r-2}, y_{r+i-1}, x_{r-1}, y_{0+i}, x_0\}, 0 \le i \le r-1$, where the additions in the subscripts are taken modulo r. Clearly, these r directed Hamilton cycles are arc-disjoint.

The above lemma can also be obtained from [19].

Lemma 2.5. For $m \geq 3$ and $k \geq 2$, $P_{2k+2} || P_{2k+2} \times K_m$.

Proof. Let $V(C_{2k+1}) = \{x_0, x_1, x_2, \ldots, x_{2k}\}$. View the graph $C_{2k+1} \times K_m$ as follows: assume that the layers $X_0, X_1, X_2, \ldots, X_{2k}$ of $C_{2k+1} \times K_m$ are arranged one after the other, beginning with X_0 , see Figure 2.1; instead of joining the edges from X_{2k} to X_0 upwards, keep a copy of X_0 after X_{2k} and the edges are joined from X_{2k} to that X_0 (that is, an identification of the last layer X_0 with the first layer X_0 we get $C_{2k+1} \times K_m$). The resulting graph is precisely $P_{2k+2} \times K_m$ with layers $X_0, X_1, X_2, \ldots, X_{2k}$ and X_0 . Clearly, $C_{2k+1} \times K_m$ admits a C_{2k+1} -factorization, by Theorem 2.3, and any 2k+1 cycle of a C_{2k+1} -factor of $C_{2k+1} \times K_m$ becomes a path P_{2k+2} in this drawing (observe that any 2k+1 cycle of $C_{2k+1} \times K_m$ must meet all of its layers). Hence corresponds to a C_{2k+1} -factor of $C_{2k+1} \times K_m$ there is a P_{2k+2} factor of $P_{2k+2} \times K_m$ and hence the result follows.

Remark 2.6. By the construction of the P_{2k+2} -factorization obtained in the above Lemma 2.5, it is clear that the origin and terminus of any path of a P_{2k+2} -factor are in the single column of $P_{2k+2} \times K_m$.

Lemma 2.7. For $m \geq 3$ and $m \neq 4, 6$, $\vec{C}_{2r} \times K_m^*$ is directed Hamilton cycle decomposable.

Proof. Let $V(C_{2r}) = \{x_0, x_1, \ldots, x_{2r-1}\}$. Let $V(C_{2r} \times K_m) = \bigcup_{i=0}^{2r-1} X_i$, where $X_i = \{x_0^i, x_1^i, \ldots, x_{m-1}^i\}$. By Theorem 2.1, $K_m^* = \vec{H}_1 \oplus \vec{H}_2 \oplus \ldots \oplus \vec{H}_{m-1}$, where \vec{H}_i is a directed Hamilton cycle of K_m^* . Let $V(K_m^*) = \{y_0, y_1, \ldots, y_{m-1}\}$; to each directed Hamilton cycle \vec{H}_i of K_m^* , we obtain the 1-factor F_i' of the induced subgraph $\langle X_{2r-1} \cup X_0 \rangle$ of $C_{2r} \times K_m$, as follows: $F_i' = \{(x_i^{2r-1}, x_i^0) \mid (y_i, y_j) \in \vec{H}_i\}, 1 \leq i \leq m-1$.

Clearly, $(C_{2r} \times K_m) \setminus E(\langle X_{2r-1} \cup X_0 \rangle) \cong P_{2r} \times K_m$; obtain a P_{2r} -factorization $\mathcal{F} = \{\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_{m-1}\}$ of $P_{2r} \times K_m$ as in Lemma 2.5. Each factor \mathcal{P}_i has m path-components, and each path-component of P_i has its origin x_l^0 and terminus x_l^{2r-1} for some $l \in \{0, 1, \ldots, m-1\}$, see the Remark 2.6. Clearly, $H_i' = \mathcal{P}_i \cup F_i'$, $1 \leq i \leq m-1$, is a Hamilton cycle of $C_{2r} \times K_m$. Thus $\{H_1', H_2', \ldots, H_{m-1}'\}$ is a Hamilton

cycle decomposition of $C_{2r} \times K_m$. Orient all edges of H_i' , $1 \le i \le m-1$, from the layer X_i to X_{i+1} for $i=0,1,\ldots,2r-1$, where addition in the subscript is taken modulo 2r. Let \vec{H}_i' be the corresponding directed Hamilton cycle in the resulting oriented graph. The resulting directed graph is $\vec{C}_{2r} \times K_m^*$ and \vec{H}_1' , \vec{H}_2' , ..., \vec{H}_{m-1}' is a directed Hamilton cycle decomposition of it.

Figure 2.1

Lemma 2.8. For odd $r \geq 5$, $C_{2r} \times K_6$ has a Hamilton cycle decomposition.

Proof. Let $V(C_{2r} \times K_6) = \bigcup_{i=0}^{2r-1} X_i$, where $X_i = \{x_0^i, x_1^i, \dots, x_5^i\}$. By Lemma 2.5, the subgraph of $C_{2r} \times K_6$ induced by $\left\langle \bigcup_{i=0}^{2r-3} X_i \right\rangle$ has a path factorization $\mathscr{P} = \{\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3, \mathcal{P}_4, \mathcal{P}_5\}$ such that for each $i, 1 \leq i \leq 5$,

each path-component of \mathcal{P}_i has its end vertices x_l^0 and x_l^{2r-3} , for some $l, 0 \leq l \leq 5$, see the Remark 2.6. Let $F_k(X_i, X_j)$ denote the 1-factor of distance k from X_i to X_j . Let

$$\begin{array}{l} H_1 = \mathcal{P}_1 \, \cup \, F_1(X_{2r-3}, \, X_{2r-2}) \, \cup \, F_1(X_{2r-2}, \, X_{2r-1}) \, \cup \, F_3(X_{2r-1}, \, X_0), \\ H_2 = \mathcal{P}_2 \, \cup \, F_2(X_{2r-3}, \, X_{2r-2}) \, \cup \, F_2(X_{2r-2}, \, X_{2r-1}) \, \cup \, F_1(X_{2r-1}, \, X_0), \\ H_3 = \mathcal{P}_3 \, \cup \, F_3(X_{2r-3}, \, X_{2r-2}) \, \cup \, F_3(X_{2r-2}, \, X_{2r-1}) \, \cup \, F_5(X_{2r-1}, \, X_0), \\ H_4 = \mathcal{P}_4 \, \cup \, F_4(X_{2r-3}, \, X_{2r-2}) \, \cup \, F_5(X_{2r-2}, \, X_{2r-1}) \, \cup \, F_4(X_{2r-1}, \, X_0) \, \text{ and } \\ H_5 = \mathcal{P}_5 \, \cup \, F_5(X_{2r-3}, \, X_{2r-2}) \, \cup \, F_4(X_{2r-2}, \, X_{2r-1}) \, \cup \, F_2(X_{2r-1}, \, X_0). \\ \text{Clearly, } \{H_1, \, H_2, \, \dots, \, H_5\} \, \text{ is a Hamilton cycle decomposition of } \\ C_{2r} \times \, K_6. \end{array}$$

The proof of the following lemma follows from the above lemma, since $\vec{C}_{2r} \times K_6^*$ is nothing but orienting the edges of $C_{2r} \times K_6$ from X_i to X_{i+1} , where addition in the subscript of X_{i+1} is taken modulo 2r. The Hamilton cycles of $C_{2r} \times K_6$ obtained in Lemma 2.8 with this orientation become directed Hamilton cycles of $\vec{C}_{2r} \times K_6^*$.

Lemma 2.9. For odd $r \geq 5$, $\vec{C}_{2r} \times K_6^*$ has a directed Hamilton cycle decomposition.

Proof of Theorem 1.1.

Case 1: $K_{r,r} \times K_m$ is an even regular graph.

The result follows by a Hamilton cycle decomposition of $K_{r,r} \times K_m$, see [13].

Case 2: $K_{r,r} \times K_m$ is an odd regular graph.

Observe that
$$(K_{r,r} \times K_m)^* = K_{r,r}^* \times K_m^*$$

= $(\vec{H}_1 \oplus \vec{H}_2 \oplus \ldots \oplus \vec{H}_r) \times K_m^*$, by Lemma 2.4,
= $(\vec{H}_1 \times K_m^*) \oplus \ldots \oplus (\vec{H}_r \times K_m^*)$.

By Lemmas 2.7 and 2.9, each $\vec{H}_i \times K_m^*$ is directed Hamilton cycle decomposable. Thus $(K_{r,r} \times K_m)^*$ is directed Hamilton cycle decomposable.

Conclusion: It is shown, in [4], that if both G and H are Hamilton cycle decomposable graphs, then $G \times H$ need not be Hamilton cycle decomposable. Hence it is interesting to find pairs of Hamilton cycle decomposable graphs G_1 and G_2 such that $G_1 \times G_2$ is Hamilton cycle decomposable if $G_1 \times G_2$ is even regular or, if $G_1 \times G_2$ is odd regular, then $(G_1 \times G_2)^*$ is directed Hamilton cycle decomposable. Recently, it has been shown, see [15], that the tensor product of a pair of regular complete multipartite graphs is Hamilton cycle decomposable. In fact, R.S. Manikandan and P. Paulraja [12] have conjectured that if both G and H

are Hamilton cycle decomposable circulants and $G \times H$ is connected, then $G \times H$ is Hamilton cycle decomposable. Further, R. Balakrishnan and P. Paulraja have conjectured that if G and H are r and s regular Hamilton cycle decomposable graphs, respectively, and $G \times H$ is rs-edge connected, then it is Hamilton cycle decomposable.

Acknowledgments: The last two authors would like to thank the Department of Science and Technology, Government of India, New Delhi, for partial financial assistance through the Project grant No: SR/S4/MS: 217/03.

References

- B. Alspach, J.-C. Bermond, D. Sotteau, In: G. Hahn et al. (Eds.), Decompositions into Cycles I: Hamilton Decompositions: in Cycles and Rays, Kluwer Academic Press, Dordrecht, (1990), pp. 9-18.
- [2] B. Alspach and H. Gavlas, Cycle decompositions of K_n and $K_n I$, J. Combinatorial Theory (B) 81 (2001) 77-99.
- [3] B. Alspach, H. Gavlas, M. Šajna and H. Verrall, Cycle decompositions IV: complete directed graphs and fixed length directed cycles, J. Combinatorial Theory (A) 103 (2003) 165-208.
- [4] R. Balakrishnan and P. Paulraja, Hamilton cycles in tensor product of graphs, Discrete Mathematics 186 (1998) 1-13.
- [5] R. Balakrishnan and K. Ranganathan, A Text Book of Graph Theory, Springer-Verlag, New York (2000).
- [6] R. Balakrishnan, J.-C. Bermond, P. Paulraja and M.-L. Yu, On Hamilton cycle decompositions of the tensor product of complete graphs, Discrete Mathematics 268 (2003) 49-58.
- [7] J.-C. Bermond, Hamiltonian decompositions of graphs, digraphs and hypergraphs, Ann. Discrete Mathematics 3 (1978) 21-28.
- [8] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Elsevier, New York (1976).
- [9] W. Imrich and Sandi Klavžar, Product graphs: Structure and Recognition, John Wiley (2000).
- [10] P. Jha, Hamilton decompositions of product of cycles, Indian J. Pure Applied Mathematics 23 (1992) 723-729.

- [11] D. E. Lucas, Récréations Mathématiques, Vol. II, Gauthier Villars, Paris (1892) 162.
- [12] R.S. Manikandan, Decompositions of graphs into cycles, Ph.D. Thesis, Annamalai University, 2005.
- [13] R.S. Manikandan and P. Paulraja, Hamiltonian decompositions of the tensor product of complete graphs and complete bipartite graph, Ars Combinatoria 80 (2006) 33-44.
- [14] R.S. Manikandan and P. Paulraja, C_p Decompositions of some regular graphs, Discrete Mathematics 306 (2006) 429-451.
- [15] R.S. Manikandan and P. Paulraja, Hamilton cycle decompositions of the tensor product of complete multipartite graphs (revised version submitted to Discrete Mathematics).
- [16] L. Ng, Hamiltonian Decomposition of Lexicographic Products of Digraphs, J. Combinatorial Theory (B) 73 (1998) 119-129.
- [17] L. Ng, Hamiltonian decomposition of complete regular multipartite digraphs, Discrete Mathematics 177 (1997) 279-285.
- [18] M. Šajna, cycle decompositions III: Complete graphs and fixed length cycles, J. Combinatorial Designs 10 (2002) 27-78.
- [19] D. Sotteau, Decomposition of $K_{m,n}$ ($K_{m,n}^*$) into cycles (circuits) of length 2k, J. Combinatorial Theory (B) 30 (1981) 75-81.
- [20] T.W. Tillson, A Hamiltonian decomposition of K_{2m}^* , $2m \geq 8$, J. Combinatorial Theory (B) 29 (1980) 68-74.