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Abstract

In this paper we initiate the study of k-connected restrained dom-
ination in graphs. Let G = (V,E) be a graph. A k-connected re-
strained dominating set is a set § C V where S is a restrained dom-
inating set and G[S] has at most k components. The k-connected
restrained domination number of G, denoted by v¥(G), is the small-
est cardinality of a k-connected restrained dominating set of G. First,
some exact values and sharp bounds for 7¥(G) are given in Section
2. Then the necessary and sufficient conditions for 7-(G) = 7}(G) =
72(G) are given if G is a tree or a unicyclic graph in Section 3 and
Section 4.

Key words: restrained domination, 2-connected restrained domi-
nation number, tree, unicyclic graph.

1 Introduction

Graph theory terminology not presented here can be found in (1}. Let
G = (V, E) be a graph with |V| = n. The degree, neighborhood and closed
neighborhood of a vertex v in a graph G are denoted by d(v), N(v) and
N[v] = N(v) U {v}, respectively. The graph induced by § C V is denoted
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by G[S]. The number of components of G is denoted by w(G). A vertex of
degree one is called a leaf. A vertex v of G is called a stem if it is adjacent
to a leaf. Let L(G) denote the set of leaves. Let C(G) = {(u,v)juv €
E(G),d(u) = d(v) = 2}. For any connected graph G a set S C V is called
a cutset of G if G — S is no longer connected. A graph G is called unicyclic
graph if G contains exactly one cycle. A set S is a dominating set if for
every vertex u € V —S there exists v € S such that uv € E. The domination
number of G, denoted by v(G), is the minimum cardinality of a dominating
set of G. We call a set S a 7y-set if S is a dominating set with cardinality
¥(G).

A set § C V is a restrained dominating set if every vertex in V — §
is adjacent to a vertex in S and to another vertex in V — S. Let v,.(G)
denote the size of a smallest restrained dominating set. A set S is called
a 7r-set if S is a restrained dominating set with cardinality +,(G). It has
been studied by G.S. Domke [2] and M.A. Henning (3].

In this paper we initiate the study of k-connected restrained domination
in graphs. It is a particular case of the restrained domination. Let G =
(V, E) be a graph. A k-connected restrained dominating set isaset SC V
where S is a restrained dominating set and G[S)] has at most k components.
The k-connected restrained domination number of G, denoted by v¥(G),
is the smallest cardinality of a k-connected restrained dominating set of G.
We will call a set S a 4¥-set if S is a k-connected restrained dominating
set of cardinality v¥(G). For k = 1, 4}(G) is the connected restrained
domination number.

For G connected and k > 1, obviously, 7+(G) < v¥(G) < vX(G).

One possible application of the concept of k-connected restrained dom-
ination is that of prisoners and guards. Here, each vertex not belonging
to the k-connected restrained dominating set corresponds to a position of
a prisoner, and every vertex in the k-connected restrained dominating set
corresponds to a position of a guard. Note that each prisoner’s position
is observed by a guard’s position (to effect security) while each prisoner’s
position is seen by at least one other prisoner’s position (to protect the
rights of prisoners) and the guards can be divided into at most k parts
(since there are at most k posts). To be cost-effective, it is desirable to
place as few guards as possible (in the sense above).

In this paper we give the following results. First, some exact values and
sharp bounds for v%(G) are given in Section 2. Then the necessary and
sufficient conditions for v,(G) = ¥1(G) = ¥2(G) holding are given if G is a
tree or a unicyclic graph in Section 3 and Section 4.
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2 General graphs

Let K,,, C, and P, denote, respectively, the complete graph, the cycle and
the path of order n. Also, let Ky,, n,, ..., n, denote the complete multipar-
tite graph with vertex set S; US2 U...U S; where |S;] =n; for1 <i <t
We call K, ,— a star.

Lemma 2.1 can be read out of results from Domke et al.[2]

Lemma 2.1 (1) If n > 1 is an integer, then 7,(P,) = n — 2| 252 |.

(2) If n > 3, then 1(Cn) =n - 2§/

(3) Let G be a connected graph of order n. Then +,-(G) = n if and only
if G is a star.

(4) If T is a tree of order n > 3, then v.(T) > A(T). Furthermore,
7(T) = A(T') if and only if T is a wounded spider which is not a star.

Lemma 2.2 7,.(G) = v¥(G) if and only if there exists a v,-set S of G
such that w(G[S]) < k.

The following result is immediate.

Proposition 2.1 (1) If n # 2 is a positive integer, then v¥(K,) = 1.

(2) If n > 2 is an integer, then ¥5(K1, n-1) = n.

(3) If n; and ny are integers such that min{n;,n2} > 2, then Y¥ (K, , n,) =
2

(4) Ift > 3is an integer, then v*(Kn, ..., n,)= { 1 if min{ny,...,m} =1,

2 otherwise

Theorem 2.11Ifn > 1 is an integer, then ¥5(P,) = max{n—2| 23|, n—
2(k—1)}.

Proof. Let S be a 7y,-set of P,,. Then |S|=n — 2[@—;—1“ by Lemma
2.1(1). There are now two cases to consider.

Case 1. w(G[S]) < k. By Lemma 2.2, v5(P,) = 7+(P.) = n—2| {272
It is easy to prove that n — 2[513"—1” >n—-2k-1).

Case 2. w(G|[S)) > k. Let S’ be a restrained dominating set of P, and
w(G[S']) £ k. Then |S’] > |S|. Subject to these conditions, S’ has been
chosen to be of minimum size. Since w(G[S’]) < k, V — 5’ has at most k—1
components and any component of V — .5’ is of size exactly two. Since S’ is
of minimum size, we have v5(P,) = |S'| > n—2(k~1) > |5 = n—2| 252
The result follows.

We omit the proof of the following result as it is similar to that of The-

orem 2.1.
Theorem 2.2 If n > 3, then v¥(C,) = max{n — 2| 2],n — 2k}.
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We close this section by providing a lower bound for the k- connected
restrained domination number of a tree.

Theorem 2.3 If T is a tree of order n > 3, then y*(T') > A(T'). Further-
more, 7¥(T) = A(T) if and only if k > A(T) and T is a wounded spider
which is not a star.

Proof. Since v*(T) > 7~(T), by Lemma 2.1(4), 7¥(T) > A(T). Clearly
for any wounded spider T which is not a star and k¥ > A(T), we have
~¥(T) = A(T). So suppose T is a tree for which 4*(T') = A(T'). Then
there are A(T') components in any 7%-set of T and v,(T) = A(T). So
A(T) < k and by Lemma 2.1(4), we have T is a wounded spider which is
not a star.

3 Trees

This section is devoted to proving necessary and sufficient conditions for
¥(T) = 17(T), ¥} (T) = ¥2(T) and 7(T) = v2(T).

31 %) =%
Lemma 3.1 If T is a tree of order n, then v}(T') = n.
The following theorem is immediate from Lemma 2.1(3) and Lemma 3.1.

Theorem 3.1 Let T be a tree of order n. Then v.(T') = 4}(T) if and
only if T is a star.

3.2 ANT)=+(T)

Theorem 3.2 Let T be a tree of order n > 2. Then v}(T') = +2(T) if
and only if C(T") = 0. '

Proof. Let 7}(T") = v3(T). If L(T) = V(T), then T = K, and C(T') =
9. If |V(T) - L(T)| = 1, then T is a star, C(T) = @ . Without loss of
generality, we can assume that |V (T") — L(T')| > 2. If there exists (u,v) €
C(T), then V(T) — {u,v} is a 2-connected restrained dominating set of
G with cardinality n — 2, which contradicts the fact v}(T) = v2(T) = n.
Hence,C(T') = 0.

Conversely, let S be a y2-set of G. Then L(T) C S. For any v €
V(T) — L(T), if v ¢ S, then there exists a vertex v ¢ S such that
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wv € E(T) and d(u) = d(v) = 2. So (u,v) € C(T), a contradiction.
Hence, V(T') — L(T) C S, that is, L(T) U (V(T) - L(T)) € 5. It follows
that V(T) C S. So |S| = n, that is, Y2(T') = v2(T).

3.3 1(T) = +(D).

Lemma 3.3 (Domke, Hattingh et al.) If T is a tree of order » > 3, then
7(T) = n — 2 if and only if T is obtained from Py, Ps, or P; by adding
zero or more leaves to the stems of the path.

Lemma 3.4 Let T be a tree of order n, then v,.(T') = ¥2(T) if and only
if ¥(T) = n or %(T') =n — 2 and if 4(T") = n — 2, there exists a v,-set S
such that v;,v2 € V — 8 and d(v,) = d(v2) = 2.

Proof. Suppose v,.(T') = n. Since 7(T) < 2(T) , it follows that
¥ (T) = v%(T).

Suppose 1(T) =n—-2, S is a y-set, vj,v2 € V-85 and d(v;) =
d(vg) = 2. Then V — {v;,v;} is a 2-connected restrained dominating set.
s0 YA(T) < |V = {v1,v2}| = n ~ 2. Since ¥2(T) > 7,(T) = n — 2, we have
¥ (T) = ¥(T).

Conversely, if v,(T) = 42(T), by Lemma 2.2 , there exists a y,-set S of
T such that w(T'[S]) < 2. There are now two cases to consider.

Case 1. w(T[S]) = 1. Then ~.(T) = n, for otherwise, there exist at
least two vertices vy,v2 € V — S, vyv2 € E(T) and v;,v, are adjacent to
some vertex in S. It follows that T has a cycle, which is a contradiction.

Case 2. w(T[S]) = 2. Let T[S1],T[S2] be two components of T'[S].
Then |V - S| > 2.

If [V — 8| > 3, we may assume vy,v2,v3,...,9, €V — S, m > 3. We
consider two cases.

Case 2.1 Each vertex in T[V - S] is degree one. We suppose v,vs €
E(T),vsvs € E(T). Let vyv; € E(T),v, € 51. Thenv,y can’t be adjacent to
some vertex in S;. So let ’U2’02 € E(T),v2 € Ss. Let '0303 € E(T),'va € S;.
Then v4 is adjacent to some vertex in Sa, say '04 There forms a cycle,
which is a contradiction.

Case 2.2 There exists at least one vertex in T[V — S] whose degree
is not less than 2. say v. We may assume v,v; € E(T),vv3 € E(T).
Let v;vl € E(T), 'vl € 5). Then vs is adjacent to some vertex in Ss, say
v3 It follows that v can’t be adjacent to any vertex in S, which is a
contradiction. Hence, |V ~ S| = 2, that is, .(T) = n — 2.

If the degree of one of the two vertices in V — S is more than 2, say
vy, then v; is adjacent to at least one vertex in S, or in S; other than
v}. No matter which case, we can get cycles, which is a contradiction. So
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d(v1) = d(v2) = 2. The result follows.

The following theorem, which is the main result of this section, now
follows as a corollary from Lemma 2.1(3), Lemma 3.3 and Lemma 3.4.

Theorem 3.3 Let T be a tree of order n. Then 7,(T') = 72(T") if and
only if one of cases (1)-(4) below occur.

(1) T is a star.

(2) T is Py.

(3) T is obtained from P; by adding zero or more leaves to one of the
stems of the path.

(4) T is obtained from Ps by adding zero or more leaves to the stems of
the path.

4 Unicyclic graphs

Let G be a unicyclic graph with cycle C,, and let X be the set of all
vertices of degree 2 in C,,. Without loss of generality, we can assume that
v1,v9,. .., is the longest path in G[X]. Let Cp, = v1,v2,..., V6 Veg1, - -, Um, ¥

4.1 %(G)=%(G)

Lemma 4.1 (Domke, Hattingh et al.) Let G be a connected graph of
order n containing a cycle. Then 4,.(G) = n — 2 if and only if G is C4 or
Cs or G can be obtained from C3 by attaching zero or more leaves to at
most two of the vertices of the cycle.

Lemma 4.2 Let G be a connected unicyclic graph of order n. Then
7(G) = v}(G) if and only if 4+(G) = n—2 and there exists a v,-set S such
that V — .S is not a cutset.

Proof. Suppose 7,.(G) = n—2, S is a y-set of G, v,v2 € V-8
and {v;,v2} is not a cutset. Then V — {v;,v2} is a connected restrained
dominating set. So 72(G) < |V — {v1,v2}| = n—2. Since v}(G) = 7(G) =
n — 2, we have 7.(G) = 7}(G).

Conversely, let v.(G) = ¥}(G). By Lemma 2.2, there exists a y,-set S of
G such that w(G[S]) = 1. If |S| = n, by Lemma 2.1(3), G is a star, which
contradicts the fact that G is a unicyclic graph. So [V — 5| > 2.

If [V — S| > 3, we may assume v;,v2,V3,...,0 € V=85, t > 3. We
consider two cases.

Case 1v,v2 € E(G), vaus € E(G). Let v1vy, vavp, vavs € E(G), vy,5,v5 €
S.
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Case 2 vivg € E(G), vavy € E(G). Let 'ulvl, ‘1)2'02, v3vg, v4v4 €
E(G), v;,vy,v5,v4 € 8.

No matter which case, G is not a unicyclic graph, a contradiction. Hence,
|V =8| =2, that is 'y,-(G) =n-2.

It is obvious that V' — S is not a cutset. The result follows.

Theorem 4.1 Let G be a connected unicyclic graph of order n. Then
¥(G) = ¥}(G) if and only if one of cases (1)-(3) below occur.

(1) Gis Cy.

(2) G is Cs.

(3)G is obtained from C; by attaching zero or more leaves to at most
one of the vertices of the cycle.

4.2 YHG) =+2(G)

Lemma 4.3 If G is a connected unicyclic graph of order n, then
Y (G)=norn-2.

Lemma 4.4 Let Cy, be a cycle with m vertices. Then ¥}(Crn,) = v2(Crn)
if and only if m = 3,4, 5.

Lemma 4.5 Let G be a umcychc graph with cycle Cp, and 5 < ¢t <
|X| £ m — 1. Then v}(G) # 72(G).

Lemma 4.6 Let G be a umcychc graph with cycle Cp,. If |X| =
- 1,m # 5, then 7}(G) = ~+2(G) if and only if the following condi-
tmns hold:

(a) 3<m < 4.
(b) Suppose d(vn) > 3. Let G = G — {v1}. Then C(G’) = 0.

Proof. Let ~, (G) v%(G). By Lemma 4.5, it follows that 3 < m < 4.
It is obvious that 4}(G’ ) =n-1, ¥}G) = '72(0) =n-2.

Let S be a v2-set of G . Then v, € S. For otherwise, if v, € V(G)-8,
then there exists a vertex v € V(G') — S such that v € E(G). So
I.S'l <n—3and § is a 2-connected restrained dominating set of G. Hence

Y2(G) £ |S| <n—3, whichisa contradiction.

If there exists a vertex » in V(G') which is not in S, then there exists
another vertex v € V(G') — S such that wv € E(G). So S| <n-3.
Then S — {v2} is a 2-connected restrained dominating set of G. Hence,

¥2(G) < |S| —1 < n — 4, a contradiction. So V(G') C 8, that is, v2(G' ) 2

393



-1 Smce 2(G') <G ) =n—1,4G") = 42(G"). By Theorem 3.2,

(G' )=

Conversely, let S be a y2-set of G. Then V(G') - {'02, v3} C S, for other-
wise, if u € (V(G')—{v2,vs})— 8, then there exists v € V(G')-S such that
wv € E(G), dg (u) = dgs (v) = 2, which contradicts the fact C(G') = 0. It
is obvious that G cannot be dominated by V(G') - {v2,v3},50 |S] > n—2.
Since v2(G) < YX(G) = n - 2, 72(G) = ¥2(G). The result follows.

Lemma 4.7 Let G be a unicyclic graph with cycle Cn. If |X| =
-1m = 5 let G = G - {v1,v2}, then ¥2(G) = 72(G) if and only
if C’(G )=

Proof. Let 4}(G) = 7,2(G) It is obvious that (G = Y4G) =

Y2(G) = n-2. Let S be a 42-set of G'. If there exists (u,v) € C(G'),
then 72(G") < ¥(G’) by Theorem 3.2. If v,, € S, then S is a 2-connected
restrained dominating set of G. Hence, v2(G) < fy,?(G ) <¥(C) =1L(G),
which is a contradiction. If v, & S, then |N(vm) — {v1,v}| = 1 Let
N(vp) — {v1,v4} = {u}. It is obvious either v4 or u is not in S. So
|S] £ n — 4 and S U {vq} is a 2-connected restrained dominating set of
G. Then 'y,?(G) < |SU {»}| £ n— 3, which is a contradiction. Hence,
C(G)=0.

Conversely, by Theorem 3.2, it follows that 'y,l(G )=12(G)=n-2.
Since v}(G') = 41(G), it follows that 42(G) = 72(G’). Let S be a y2-set of
G Ifv,v & S then S is a 2-connected restralned dormna,tmg set of G.
So 7H(G) = 3(G') < 72(C). It follows that v2(G) = 12(G).

Ifvi,v9 €S, then there exist at least two adjacent vertices which are not
in S. Since C(G’) = 0, the two vertices are v3, v4. So (S— {'vl,vg})u{v;;,m}
is a 2-connected restrained dommatmg set of G'. Tt follows that 7(G) =

72(G') < IS| =73(G). Hence, ¥}(G) = 13(G).

If one of the vertices v and v, is in 9, then v; € S,v & S. For other-
wise, if vy € S,v; & S, then v,,, & S. Since C(G') =0, d(v) = 4. Then S
has at least three components, which is a contradiction. So v3 € S. Since
C(G)=0,vm€eS. It follows that (S {'ul}) U {vs} is a 2-connected re-
strained domma.tmg set of G'. So v1(G) = v2(G’) < |S| = 72(G). Hence,
7H(G) = ¥2(G). The result follows.

Lemma 4.8 Let G be a unicyclic graph with cycle Cy, and | X| < m—2.
Suppose ¢t = 0,1. Then v}(G) = 73(G) if and only if C(G) = # and if
v; € V(Cr), d(v;) = 3, then for any vertex u € N(v;), d(u) # 2.

Proof. Let v}(G) = 72(G) and let S be a }-set of G. Then S = V(G).
If there exists (u,v) € C(G), then S — {u,v} is a 2-connected restrained
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dominating set of G. So ¥2(G) < |5| -2 < |S| = 7X(G), & contradiction.
Hence, C(G) =

Suppose v; € V( m) and d(v;) = 3. If uwv; € E(G) and d(u) = 2, then
S — {u,v;} is a 2-connected restrained dominating set of G. So v2(G) <
7+ (G), a contradiction. Hence, for any vertex u € N(v;), d(u) # 2.

Conversely, let S be a 'y,?-set. of G. Then V(G) C S. For otherwise, if
u € V(G) — S, then there exists another vertex v € V(G) — S such that
wv € E(G). It is obvious 2 < d(u) < 3, 2 < d(v) < 3. There are now three
cases to consider.

Case 1. d(u) = d(v) = 2, which contradicts the fact C(G) =

Case 2. d(u) = d(v) = 3. Then S has at least three components, a
contradiction.

Case 3. One of the vertices u and v is degree two, the other is degree
three. We may assume d(u) = 2, d(v) = 3. It is obvious u,v € V(Cy,).
Then S has at least three components, a contradiction.

So S = V(G), that is v}(G) = v3(G).

Lemma 4.9 Let G be a unicyclic graph with cycle C;, and | X| < m—2.
Suppose ¢ = 2. Let G' = G ~ {v1}. Then 7}(G) = 73(G) if and only if
C(G') = 0 and any vertex of degree three in C,, has at most one neighbor
of degree two.

Proof. Let 7}(G) = ¥2(G) . The proof of C(G") = 0 is similar to that of
Lemma 4.6. If v; € V(Cy,), d(v;) = 3 and uy,up € N(v;), d(uq) = d(uz) =
2, then V(G’) {u1,u2,v;} is a 2-connected restrained dominating set of
G. So v2(G) < n—38, but 7}(G) = v3(G) = n — 2, a contradiction. Hence,
any vertex of degree three in Cy, has at most one neighbor of degree two.

Conversely, let S be a y2-set of G. Then at least one of the vertices v3 and
Uy is in S, for otherwise, S has at least three components, a contradiction.
We consider three cases:

Case 1. v3 € S,vn € S. Thend(vpn) =3, v; € Sand N(v,)—{n1} C S.
All vertices in V(G) ~ {v1,vm } are in S, for otherwise, S has at least three
components, a contradiction. So S = V(G) — {v1,vm}, that is 72(G) =
n—2=}G).

Case 2. v, € S,v3 € S. The proof is similar to that of Case 1.

Case 3. v3 € S,v,, € S. If v1,v2 € S, then any vertex in V(G) — {vy, v2}
is in S. For otherwise, S has at least three components a contradiction.
So S = V(G) - {2)1,‘02} that is 72(G) = n — 2 = 7X(G). If v;,v2 € S,
since 72(G) < vX(G) = n — 2, there exist at least two vertices which are
not in S. Let u,v € S, wv € E'(G’) Since C(G') = @, one of the vertices u
and v is a vertex of degree three in Cy, and the other is a vertex of degree
two. Assume d(u) = 3, d(v) = 2. Then N(u) — {v} C 5. Any vertex in
V(G) — {u,v} is in 8. For otherwise, S has at least three components, a
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contradiction. So § = V(G) — {u,v}, that is v2(G) = 7X(G). The result
follows.

with a similar proof to that of Lemma 4.7 and Lemma 4.9, the following
lemma holds.

Lemma 4.10 Let G be a unicyclic graph with cycle Cp, and | X| < m—2.
Suppose t = 3,4. Let G’ = G — {1, v}, then 4}(G) = 72(G) if and only if
C(G') = 0 and any vertex of degree three in Cy, has at most one neighbor
of degree two.

The following theorem, which is the main result of this section, now as
a corollary from Lemmas 4.4, 4.6, 4.7, 4.8, 4.9 and 4.10.

Theorem 4.2 Let G be a unicyclic graph with cycle Cr,. Then 7}(G) =
72(G) if and only if one of the following conditions holds:

(a) Suppose |X| =m. Then m = 3,4,5.

(b)Suppose|X|—m 1,m#5 Let @ =G - {v1}. Then3<m<4
and C(G') =

(c) Suppose |X[ =m—1,m=5. Let G = G—{v;,v3}. ThenC(G') =

(d) Suppose |X| < m -2, t = 0,1. Then C(G) = 0 and if v,
V(Cm), d(vi) = 3, then for any vertex u € N(v;), d(u) #2.

(e) Suppose | X| < m —2,t=2. Let G =G - {v1}. Then C(G) =
and any vertex of degree three in Cy;, has at most one neighbor of degree
two.

(f) Suppose | X| < m—2,t = 3,4. Let G’ = G—{v1,v2}. Then C(G') = ¢
and any vertex of degree three in C,, has at most one neighbor of degree
two.
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