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Abstract
Let G = (V, E) be a finite simple connected graph. For any vertex v
in V, let N; (v)={ue V:uve E} be the open neighbourhood of v, and let

Ng[v]=Ng (v)U{v} be the closed neighbourhood of v. A connected
graph G is said to be neighbourhood highly irregular (or simply NHI) if for
any vertex v€ V, any two distinct vertices in the open neighbourhood of v
have distinct closed neighbourhood sets. In this paper, we give a necessary
and sufficient condition for a graph to be NHI. For any n > 1, we obtain a
lower bound for the order of regular NHI graphs and a sharp lower bound for
the order of NHI graphs with clique number n, which is better than the bound
attained earlier.
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1 Introduction

Throughout this paper, we consider only finite simple connected

graphs. Notations and terminology are as in [5]. In a graph G = (V, E), for
any vertex vE V, the open neighbourhood of v is the set of all vertices
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adjacent to v, that is, N (v)={ue V:uve E}. The closed neighbourhood
of vis Ng[v]=Ng(v)u{v}. Degree of a vertex v is denoted by d(v).
Clearly if u and v are two distinct vertices which are non — adjacent or with
distinct degrees, then N [u]# Nj[v]. For any two subsets V; and V, of

v, let(Vl ) denote the induced subgraph of G induced by V; and let
<Vl , V2) denote the bipartite subgraph of G with bipartition (V1 » Vo) which
contains all the edges of G having one end vertex in V; and the other in V.
For example, (Vl)and(Vl , V2> in a graph G, where V= {v,, v4, vs}and

V, = {vy, v3}are shown in Figure 1.
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A connected graph G is said to be highly irregular (or simply HI) if
each of its vertices is adjacent only to vertices with distinct degrees, that is,
for any vertex u, if v and w are neighbours of u, then d(v) # d(w). For
example, the graphs shown in Figure 2 are highly irregular. Yousef Alavi et
al. [2] introduced the concept of highly irregular graphs and established some
properties of HI graphs.



®

Figure 2

The concept of HI graphs has been extended to k-neighbourhood
regular graphs in [6]. A connected graph G is said to be k-neighbourhood
regular if each of its vertices is adjacent to exactly k vertices of same degree,

that is, ifu € N G (v) and d(u) = m, then there are exactly k-1 other vertices
of degree m in Ng(v). For example, the graphs G and G, shown in

Figure 3 are 2-neighbourhood regular and 3-neighbourhood regular
respectively. Note that 1-neighbourhood regular graphs are nothing but HI

graphs.

Figure 3

Inspired by these two definitions, S. Gnaana Bhragsam and S. K.
Ayyaswamy [7] introduced the concept of neighbourly irregular graphs. If in
a connected graph G, no two adjacent vertices have the same degree, then G
is called a neighbourly irregular graph (or simply NI graph). The graphs
shown in Figure 4 are NI graphs.

In [2], it has been noted that if v is a vertex of maximum degree d in
a HI graph, then for every k, 1 £ k < d, vis adjacent to exactly one vertex of
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Figure 4

degree k. This forces that, any HI graph is not NI. However, the converse
need not be true. For example, the graph shown in Figure 5 is neither HI nor
NIL

Figure §

More results on HI graphs, k-neighbourhood regular graphs and NI
graphs have been obtained in [1]}, [2], [3], [4], [6], [7] and [8].

Recently, V.Swaminathan and A.Subramanian [9] introduced a new
class of graphs called neighbourhood highly irregular graphs. A connected
graph G is said to be Neighbourhood highly irregular (or simply NHI) if for
any vertex ve V, u, we N (v), and u# w implies that Ng [u] # Ng[w],
that is, any two distinct neighbours of v have distinct closed neighbourhood
sets.

Note that any HI graph is NHI but there are NHI graphs, which are
not HI. For example, any path with at least S vertices is NHI but not HI.

The class of NHI graphs is wider than that of NI graphs also, that is,
any NI graph is NHI. For, if a graph G is NI, then no two adjacent vertices



have the same degree. Letv € V,andu, w € Ng (v). If uand w are
adjacent, then d(u) # d(w) and hence Ng [u] # N;[w]. On the other hand,
if u and w are not adjacent, then ug Ng[w], we Ng [u]and again N [u]

#Ng[w] . Therefore, G is NHI. However, an NHI graph need not be NI.
For example, any cycle of length n > 3, is NHI but not NI.

Any regular graph with at least 3 vertices is neither HI nor NI and
every regular graph is k-neighbourhood regular for some k. However, for
any n >3, Cp, is NHI where as for anyn 2 3, K;, is not NHI. This means

that some regular graphs are NHI and some are not.

The following facts and theorems have been obtained in [9].
Fact1 For every n, there exists an NHI graph of order n.
Fact2 Any connected triangle free graph is NHI.

In this paper, we will prove a more general case.

Fact3 The number of edges of an NHI graph of order n = 3 is
. {Zm(m-l) if n = 2m

2m2  ifn = 2m+1

Theorem A Every graph G of order n > 2 is an induced subgraph of an
NHI graph of order 2n-k where k is the number of pendant vertices of G.

Theorem B For n 2 3, the smallest order of NHI with clique number n
is 2n-1.

The bound mentioned in this result is not sharp. For example, the
graph shown in Figure 6 is NHI with order 6 and clique number 4. In this
paper, we obtain a sharp lower bound for the order of any NHI graph with
clique number n, foranyn 2 1.
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Figure 6
2 Results on NHI graphs

The following result gives a necessary and sufficient condition for a
graph to be NHI.

Theorem 1 A connected graph G with n = 3 is NHI if and only if
Ng [u] #Ng[w] for any pair of adjacent vertices u and v in G with d(u) =
d(v).

Proof Let G be a connected graph in which, N [u] # N [w] for any two

adjacent vertices u and v of same degree in G. However, obviously, for any
two non-adjacent vertices u and v of G and for any two adjacent vertices u

and v of distinct degrees, N [u] # N [v] and therefore, G is NHI.

Conversely, assume that G is NHI. Let u and v be two adjacent
vertices of same degree in V. We claim that N [u] # N [v].

If u and v have a common neighbour w, then u and v are in N(w),
this implies that, N [u] # N [v], since G is NHI. Otherwise, u and v have

no common neighbour. In this case, since n = 3 and since G is connected,
there is a vertex w in N(u) ( in N(v) ) which is not in N(v) (in N(u) ). This
forces that N [u] # N [v]. Hence the theorem. m



Note that K, is NHI, in which N [u] =N [v]. In fact, Ky is the
only graph in which Nj[u]=Ng;[v] for any two vertices u and v. For,
clearly inKy, , Ng [u] =N [v] for any two vertices u and v. In addition, if
G is a graph with N [u]=N[v] for any two vertices u and v, then u and v
are adjacent in G. This means that, G is complete.

For any connected graph G which is not NI, let £ (or simply ¢)

denote the least positive integer such that G has two adjacent vertices of
degree ¢. Note that, £ = 2 whenevern = 3.

Recall that for any two vertex disjoint graphs Gl=(Vl, El) and
G,=(V,, E, ), the graph G = (V, E), where V=V, UV, and E =E, UE, is
called the union of G,and G,and is denoted by G, U G,. The join,
G, v G,, of Gand G, is the graph obtained from G, U G, by joining
each vertex of G, to every vertex of G,.

Let G be a simple graph. Then the complement G° of G is the graph
with the same vertex set V(G) in which two vertices u and v are adjacent if
and only if they are non adjacent in G.

Corollary 1.1  Let G be a connected graph withn = 3. If Gis Nl or G
contains no K, v Kj; as a subgraph, then G is NHI.

Proof If G is NI, then obviously G is NHI. Assume that G contains no
K, vKj,, as a subgraph. If G is not NHI, then by the above theorem, there
are two adjacent vertices u and v of same degree m in G such thatN [u]

=Ng[v]. Therefore, ING [u] I = ING[V] I = m+1 and hence K, vKS,

is a subgraph of G. Since ¢ < m, this forces that G contains K, vKj,, asa
subgraph, a contradiction. Hence G must be NHI. ]
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The converse of the above corollary need not be true. For example,
the graph shown in Figure 7 is NHI but not NI with ¢ = 2. In addition, it

contains K, v K} as a subgraph.

Figure 7
Corollary 1.2  Any connected triangle free graph is NHI.

Proof Ifn =1 orn =2, the result is obvious. Assume that n = 3. If G is
NI, then clearly it is NHI. If G is not NI, then £ 2 2. Since G is triangle

free, G contains no K, vKj_;and this follows that G is NHI by Corollary
1.1 .

Corollary 1.3  Any connected bipartite graph is NHI. m

Theorem 2 A connected graph G with n 2 3 is NHI if and only if
NG° (u) # NGc (v) for any two vertices u and v.

Proof Let G be an NHI graph. Suppose there are vertices u and v such

thatN __ (u)=N__(v). Then u and v are not adjacent in G°®and hence
G G

adjacent in G and N (u) = N (v) also. Therefore u and v have same degree
in G such that Ng[u] =Ng[v], which is a contradiction to Theorem 1.

Hence, NG° (u) = NG . (v) for any two vertices u and v.

Conversely, suppose G is not NHI. Again, by Theorem 1, G has two
adjacent vertices u and v with same degree such that N [u] =N [v]. This

implies that u and v are non-adjacent in G° with NGc (u)= N (v). Thatis,



in G there are two vertices u and v such thatN _ (u)=N . (v). Hence the
G G

theorem. m

Theorem 3 Foranyn 2 5, K, \ H is NHI, where H is a Hamiltonian
cycleinK,, .

Proof Let the vertices of Kp be v,V,,..,v, ;. Through out this proof,
the operation + is addition modulo n. Let EH) = {e, = vv ;:
0 £ i < n-1 }is an n — 3 regular graph of order n, in which, for 0 < i < n-1,
N(v;) = {Vi,zr Viyzs - +V,24 - Therefore, if v;and vj,0<i<j<nl,
are adjacent vertices in G, then clearly for (i, j)& {(0, n-2), (1, n-1)},
v, € N[vj] \ N[vi] and vj_”e N[vi] \ N[vj] otherwise,vme

N[v;] \ N[v,Jand v, e N[ ]\ N[v;] , hatis, N[v,]# N[v;].
Hence, by Theorem 1, G is NHI. [

The above theorem can be restated as follows:

Corollary 3.1  C’ is NHIL. n

In a similar way, one can prove that

Corollary3.2 P'=K \P isNHI foranyn>3. =

For even n = 4, let the vertices of K, bev,,v,,..,v and let F=
{ vy Vg» 1S i < n/2}bea | —factorin K . Then in [9], it has been proved
that the regular graph K \F is NHL

Corollary 3.3  Forr 2 2, the smallest order of an r — regular NHI graph is
{r +2, ifriseven

r+3, if ris odd.
Also the bound is strict.



Proof Let G be an r —regular NHI graph with p vertices. Thenp 2 r + 1.
If p=r+ 1, then G is complete which is not NHI and hence p 2 r + 2.
However, when r is even, K _,\ F is an r — regular NHI graph on r+2

vertices, where F is a 1 — factor in KH_2 .

In addition, when r is odd, r + 2 is also odd and hence p 2 r + 3.
Moreover, K .\ H where H is a Hamiltonian cyclein K, is an r — regular

NHI graph on r + 3 vertices. Hence, the smallest order of the r — regular NHI
graph withr 2 2,isr+2ifriseven andisr+3ifrisodd. m

Theorem 4 For any n = 1, the smallest order of an NHI graph with
clique number n is n + m where m is the least positive integer such that

ng 2™,
To prove this theorem, we need the following two lemmas.

For any two positive integersi andk, 1 < k <i,a B(k, i) - graph
is a bipartite graph with bipartition (V, , V,) wherelVJ:G() and |V,| =1 in
which every vertex in V, is of degree k and every vertex in V, is of degree
G(_—ll) . For example, the graph shown in Figure 8 is B(2,4). The

existence of such a graph is proved in Lemma 4.1. Note that when k = 1,
B(1,i) isa 1 -regular graph with 2i vertices.

Figure 8
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For 1< k < i, a graph is called a B.(k ,1)- graph if it is a bipartite
graph with bipartition(V, , V, ) where|V,| < (L) and |V,|= i in which

every vertex in V| is of degree k and every vertex in V, is of degree less

i
than or equal to
“ (k-l

]. For example, a B (3, 5) - graph is shown in Figure

9. The existence of a B (k,i)- graph is proved in Lemma 4.2.

Clearly, all the B(k, i) - graphs and the B (k,i)- graphs are NHI,
since they are bipartite.

Figure 9

Lemma 4.1 Forany 1< k < i, B(k, i) - graph exists.

Proof Let V= VU v, where V, contains the vertices v, ,v2,...,v[

y

(subsets with k elements) of V,. Joinv f with every element of U i for1<j

y

and V,={uy, uy, ..., u;}and let Ul,Uz,...,U( be the distinct k- subsets

< (:{] . Then the resultant graph G is bipartite with bipartition (Vl ’ V2) in

which IVII =(;{) and |V2| =i. Moreover, every vertex in V, is adjacent to



i-1
exactly k vertices of V, and every vertex in 'V, is adjacent to exactly (;( l)
vertices of V,. Thus each vertex in V, is of degree k and each vertex in V,
i1

is of degree (k J and hence Gisa B(k,i)- graph. m

In a similar way, one can prove the following
Lemma 4.2 For any 1< k £ i, thereis a B' (k , i)- graph. [ ]

Proof of Theorem 4

For any n 2 1, we first construct an NHI graph G, of order n + m
with clique number n.

Ifn=1or2, thenK, and P are respectively the required graphs. So,
assume thatn 2 3.
Let{vl, Vos e Vi Ups Uy, ey um}be the vertices of G, . Take

Vl={"1’ Vas e vn}and w ={“v Uys oo um}. Suppose U, contains the

m m
first (O J vertex, that is, v of Vl . Ul contains the next (1 ) vertices of Vl

m .
and so on. In general, U, contains the (k ) vertices next to the vertices of
Uk-l in Vl .

m
When n < 2™, there exists j, 0 <j <m, such that IUiI = (j ) and

J
vi\ U U,
k=0

m j
< . In this case, take U;,, = V| \ Uyand U, ,,,
(j-l'l) jl 1 kL=JO k j+2
Uj3, «..s Uy areall empty sets. Note that the set Uj,; may also be empty.

Now we define the edge set of G, as follows:
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1. Add the edges among the vertices of V, such that(V;) = K,,.

2. When n = 2™, for 1< k < m add the edges between the
vertices of U, and W such that (Uk,W) isa B(k s m) - graph.

3. Whenn< 2™,
a.For 1 < k < j<m, add the edges between the vertices

of Uy and W such that (U, W) isa B(k, m)- graph
and b. If Uy, is nonempty then add the edges between the

vertices of Uj,; and W such that (Uj,; , W) isa B'(j+1,m)-
graph,

The resultant graph G, is an NHI graph of order n + m with clique
number n.

For example, the graphs G5, Gg, and Gy are illustrated in Figure 10.

Now, it is enough to show that n + m is minimum.

Suppose that there is a graph G with clique number n and order n + s
where s <m. Let W = {v, v,, .., v, } be the set of vertices of G which

induces K, in G. Let U={uy, u,, ..., u } be the set of remaining vertices of

G. Let W, be the set of all vertices of W having no neighbours in U. For
I <t<s, let W, € W be the set of all vertices of G with degree t in

(W, U).
s .
Claim W, contains at most (J vertices, 0 <t < s.

If W, contains two vertices u and v, then N[u] = N[v] = W in G.
This implies that G is not NHI, which is a contradiction.

s
Therefore W, contains at most one vertex, that is, |Wp| < (O) . Thus the

result is true whent=0.
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When t 21, each vertex in W, has degree t in{W, , U). But|U|=s.
Therefore, for each vertex v in W,, N(v) in{W, , U) is a t-subset (subset with
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t elements) of U. But the number of distinct t-subsets of U is cxactly(j. If

. § . .
W, contains more than (t) vertices, then, there are at least two vertices u

and vin W, such that N(u) = N(v) in (W, , U)and hence in G, N[u] = N[v].
This is a contradiction to the fact that G is NHI. Hence the claim. This
forces that,

0 =|W|=[Wo| + [Wi] + .+ [W| & [Z) . (i) = (:]=25_

Thus n € 2°, where s < m. This is a contradiction, to the choice of m.
Hence the theorem. m
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