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Abstract

Let k be a positive integer and let G = (V(G), E(G)) be a graph with
|[V(G)| > 4k. In this paper it is proved that if the minimum degree sum is at
least 6k — 1 for each pair of nonadjacent vertices in V' (G), then G contains
k vertex disjoint chorded cycles. This result generalizes the main Theorem
of Finkel. Moreover, the degree condition is sharp in general.
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1 Terminology and Introduction

In this paper, we consider only finite undirected graphs without loops or mul-
tiple edges and we use Bondy and Murty [2] for terminology and notation not
defined here. Let G = (V, E) be a graph, the order of G is |G| = |V| and
its size is e(G) = [E|. A set of subgraphs is said to be vertex-disjoint or in-
dependent if no two of them have any common vertex in G, and we use dis-
joint or independent to stand for vertex-disjoint throughout this paper. Let Gy
and G2 be two subgraphs of G or subsets of V(G). If Gy and G2 have no any
common vertex in G, we define E(G1, G2) to be the set of edges of G between
G and Ga, and let (G, G3) = |E(G1,G2)|. Let H be a subgraph of G and
u € V(G) a vertex, N (u, H) is the set of neighbors of u contained in H. We let
d(u, H) = |N(u, H)|. Clearly, d(u, G) is the degree of u in G, and we write d(z)
to replace d(z, G). The minimum degree of G will be denoted by §(G). If there
is no fear of confusion, we often identify a subgraph H of G with its vertex set
V(H). Forasubset U of V(G), we denote by G|U] the subgraph of G induced by
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U and write dg (U) = 3__ydr(z) for asubgraph H of G. Let C be acycle. We
use [(C) to denote the length of C, then {(C) = |C|. A Hamiltonian cycle of G is
a cycle which contains all vertices of G, and a Hamiltonian path of G is a path of
G which contains every vertex in G. A cycle of length 4 is called a quadrilateral.
A chorded cycle in G is a cycle with at least one chord. For a graph G, we define

02(G) = min{d(z) + d(y)|zy ¢ E(G),z # y and z,y € V(G)}.
When G is a complete graph, we define a3(G) = oo.

One of the basic results on paths and cycles is Dirac’s theorem [4] that ev-
ery graph of order n > 3 and minimum degree > n/2 is Hamiltonian. In 1963,
Corrddi and Hajnal [3] proved Erdés’s conjecture in the early 1960s which con-
cerns independent cycles in a graph.

Theorem 1.1 (Corrddi and Hajnal [3]) Suppose n > 3k and 6(G) = 2k, then G
contains k disjoint cycles.

Enomoto and Wang proved a stronger result than Theorem 1.1, independently.

Theorem 1.2 (Enomoto [6]; Wang [9]) Suppose n > 3k and 02(G) > 4k — 1,
then G contains k disjoint cycles.

Theorem 1.1 is in a sense a natural generalization of the well know fact that
every graph G with 6(G) > 2 contains a cycle. P6sa posed the same question for
chorded cycles [10] and he proved that any graph G with §(G) > 3 contains a
chorded cycle. In view of this, Bialostocki et al [1] propose the following natural
common generalization of the previous result.

Conjecture 1.3 Let r, s be two nonnegative integers and let G be a graph with
|V(G)| > 3r + 4s and minimum degree (G) > 2r + 3s. Then G contains a
collection of r cycles and s chorded cycles, all vertex disjoint.

Note that the complete bipartite graph Ka,435—1,n—2r—3s+1 Shows that the
minimum degree is sharp if n > 4r + 6s — 2. With respect to Conjecture 1.3,
Bialostocki et al verified the case for r = 0, s = 2 and for s = 1. Finkel [§]
proved that this conjecture is true if 7 = 0 (only chorded cycles).

Theorem 1.4 Let G be a graph with |V(G)| > 4k and §(G) > 3k. Then G
contains k disjoint chorded cycles.

Very recently, we prove that Conjecture 1.3 is true for any nonnegative integers
 and s. In this paper, we consider a similar generalization likewise Theorem 1.1
to Theorem 1.2. Our main result is as follows.

Theorem 1.5 Let G be a graph with |V (G)| > 4 and 02(G) > 5. Then G
contains a chorded cycle.
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Theorem 1.6 Let G be a graph with |V (G)| > 4k and 52(G) > 6k — 1. Then G
contains k disjoint chorded cycles.

Note that the degree conditions in Theorems 1.5 and 1.6 are also sharp by
previous example. Theorem 1.6 generalizes Theorem 1.4,

2 Lemmas
In the following, G is a graph of order n > 3.

Lemma 2.1 [8] Let C be a chorded cycle and w be a vertex not on C. Suppose
UC) > 5 and d(w,C) > 4. Then there is a chorded cycle C' on a subset of
V(C)U {w} with I(C*) < I(C).

Lemma2.2 Let P, = 2123...2p and Py = wyws ... w; be two paths and C a
quadrilateral in G such that they are disjoint. Suppose e({z\,zp, w1, w;},C) >
13, then G[v(P, U P, U C| contains two disjoint chorded cycles.

Proof Label C' = y1y2y3yay1. By symmetry, we may assume that e({z;, z,},C) >
e({w1, w1}, C). Ase(P,C) > 13, then e({z1,z,},C) > 7ande({w1,w},C) >
5. Without loss of generality, say e({wi,wi},ysya) > 3. Then G[V(P,) U
3aya) contains a chorded cycle C’, which disjoints from the chorded cycle C” in
G[V(P1) Uy1yz). This proves the lemma. O

3 Proof of Theorem 1.5

Proof By contradiction. Suppose that G does not contain a chorded cycle.
Now, we choose a maximal path P in G. Clearly, [V(P)] > 3. Label P =
ujugus ... w. We may assume that uyu; € E(G). Otherwise, uyur ¢ E(G).
Since d(u), P) + d(w;, P) > 5, by the maximality of P, it is easy to see that
G[V (P)] contains a chorded cycle, a contradiction.

Since uyu; € E(G), V(P) contains a cycle ujus . . . wpu; . Furthermore, there
is no vertex of P may have a neighbor outside V{(P), else the maximality of P
will be violated. We can assume that there exists a pair of nonadjacent vertices z
and w € V(P), otherwise, we immediately have a chorded cycle. However, note
that d(z, P) + d(w, P) > 5, without loss of generality, say d(z, P) > 3. Then it
is easy to see that G|V (P)] contains a chorded cycle, a contradiction. O
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4 Proof of Theorem 1.6

Proof. By induction on k. For k& = 1, Theorem 1.5 gives the required result.
Hence, we may assume that k& > 2. Suppose the theorem is true forall s < k-1,
and take a graph G with |V (G)| > 4k and o3(G) > 6k — 1. By induction on k
we obtain that G contains k — 1 disjoint chorded cycles Cy, . .. , Cx—1. We choose
Ci,...,Cg—1 such that

k-1
> " U(C:) is minimized. 1

i=1
LetD=G - V(U::l1 C;). Subject to (1), we choose C}, . .., C—; such that
The length of a longest path in D is maximized. 2)

Let P=z;...z, be alongestpathin D. Let H = Uf;ll C; and |D| = d. Since
|G| > 4k and 02(G) > 6k — 1, we can remove any three vertices from V' (G), and
the graph induced by what remains still contains k£ — 1 disjoint chorded cycles
by induction hypothesis, so d > 3. We may assume that D does not contain a
chorded cycle.

Claim 1. We can properly choose C1, . .., Ci—1 such that D contains at least one
edge.

Proof Otherwise, D is an independent vertex set. Take any pair of u, v € V(D).
Then d(u, H) + d(v,H) > 6k — 1 = 6(k — 1) + 5. This implies that there
exists C; € H such that d(u, C;) + d(v,C;) > 7. By Lemma 2.1 and (1), C; is a
chorded quadrilateral. Without loss of generality, say d(u, C;) = 4 and label C; =
wywowswaw; such that {wy,we, w3} C N(v,C;). Then G[V(C;) U {u,v}]
contains a chorded quadrilateral vw; wowsv, which disjoints from an edge uwq,
contradicting (2). O

Claim 2. We can properly choose Ci,...,Ci—) such that P is a Hamiltonian
pathin D.

Proof Otherwise, suppose p < d. If §(D — P) > 3, by Pésa’ theorem [7], D — P
contains a chorded cycle, a contradiction. Hence, (D — P) < 2. We chose
u € V(D — P) such that d(u, D — P) is minimum. Then d(u, D — P) < 2 and
so d(u, D) < 4.

Furthermore, we may assume that d(u, D) < 3. Otherwise, suppose d(u, D) >
4. This gives d(u, D — P) = 2 and d(u, P) = 2. By the choice of u, we see that
G|V (D — P)] contains a cycle. We choose a maximal cycle in G[V (D — P)), de-
noted by Q. For each pair of z;, z2 € V(Q). Itis easy to see that d(z;, P) < 1 and
d(2;, D — P) = 2 for some i € {1,2}, otherwise, G[V (D)] contains a chorded
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cycle, a contradiction. Without loss of generality, say ¢ = 1, then replace u with
21, we have d(z;, D) < 3,

We claim that z,z, ¢ E(G). Otherwise, assume z,z, € E(G). By the
maximality of P, d(u, P) = 0 and so d(u, D) < 2. As uz; ¢ E(G) and uz, ¢
E(G), it follows that

2d(u, H) + d(z1, H) + d(zp, H) > 2(6k — 1) — 8 = 12(k — 1) + 2.

This implies that there exists C; € H, say Ci, such that 2d(u, C1) + d(z1,C1) +
d(:c,,,Cl) 2 13. Clearly, d(u, Cl) > 3 as d(:cl,Cl) + d(.’l:p,Cl) < 8 If
d(l‘l , Cl) +d($p, 01) < 6, then d(wu, 01) = 4 and so d(z;,Cy) -f-d(.’l?p, Cl) > 5.
By Lemma 2.1 and (1), C) is a chorded quadrilateral. By symmetry, we may
assume d(z),C;) > 3. Label C; = ujupugusu; such that u; € N(z,,Ch).
Then G|V (C1)U{u, z, }] contains a chorded quadrilateral uusuzu u and a longer
path P + u;, which contradicts (2). Hence, we may assume that d(z,,C) +
d(zp,C)) > 7. By Lemma 2.1 and (1) again, C] is a chorded quadrilateral. With-
out loss of generality, say d(z;,C;) = 4 and label C; = wwywswqw, such
that {wy, w2, w3} C N(zp,C1) and wau € E(G). Then G[V(Cy) U {u,z1}]
contains a chorded quadrilateral =, wsw;woz, and a longer path P + wsu, which
contradicts (2).

Now let S = {z;,z,,u}, S is a independent set. It is easy to check that
Y zesd(z) = 3 x (6k — 1). Hence, we obtain

Zd(x,H)zgx(Gk—-l)—729(k—1)+0.5. 3)
€S

It follows from the fact that the sum is an integer that there exists C; € H such that
Yzes d(z,Ci) > 10. By Lemma 2.1 and (1), C; is a chorded quadrilateral. Sup-
pose d(z1, C;) + d(zp, C;) < 6, then d(u, C;) = 4 and d(z4, C;) + d(zp, Ci) =
6. By symmetry, we may assume that z,2 € E(G) with z € V(C;). Then
G|V (C;U P)] contains a chorded quadrilateral C} = C; — z+u. Replace C; with
C!, we obtain a longer path P+ z than P, contradicting (2). Hence, we must have
d(x,,C;) + d(xp, C;) > 7 and d(u, Cy) > 2. By Lemma 2.1 and (1) again, C; is
a chorded quadrilateral. Without loss of generality, say d(z;,C;) = 4 and label
Ci = wywawswaw, such that {wy,we, w3} C N(z,,C;) and wau € E(G).
Then G[V(C;) U {u, z,}] contains a chorded quadrilateral z;w4w)we; and a
longer path P + wsu, which contradicts (2) again. O

Claim 3. d = 3.
Proof By contradiction. Suppose d > 4. By Claim 2, P = z1%5...24 is
a Hamiltonian path in D. We want to show that there exists a subset X =

{z1,w,w’,z4} in this order in P such that ) . d(z,P) < 9. As G[V(P))
contains no chorded cycles, d(z;,P) < 2, d(zq,P) < 2, d(w,P) < 3 and
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d(w’) < 3. Hence, it is sufficient to prove that P contains some vertex w besides
the endpoints satisfying d(w, P) = 2. Otherwise, we assume d(u, P) = 3 for
eachu € P—{z1,z4}. Note that we may assume that d > 5, otherwise, it is easy
to check that G[V (P)] contains a chorded cycle, a contradiction. In particular,
d(z2, P) = d(z3, P) = 3. Say N(z2, P) = {1,%3,2m}, 4 < m < d. Denote
the adjacent vertex of x3 other than x5 and x4 by z;. If | < m, thenx2... 2, %2
Or 1Z3...T,ToT; is a chorded cycle, a contradiction. Thus, ! > m and then we
must have d(x4, P) = 2. For otherwise, denote the neighbor of =4 other than x3
and zs by z,. Clearly, ¢ > [ and then x4z, ... T T2T324 is a cycle with chord
T3z, a contradiction.

Now, we will show that G[X] contains two pair of nonadjacent vertices. If
z1zq € E(G), then z1w' ¢ E(G) and wzy ¢ E(G) since G[X] contains no
chorded cycle. Hence, we may assume that z,z4 ¢ E(G) and so ww' € E(G).
when d > 5, again, we see that z;w’ ¢ E(G) and zqw ¢ E(G). Hence, it
remains the case d = 4. Clearly, exactly one of z1x3 and zaz4 exists. Without
loss of generality, say =123 ¢ E(G) and z2z4 € E(G). Then

2d(z1, H) + d(za, H) + d(z4, H) > 2(6k — 1) — 6 = 12(k — 1) + 4.

Without loss of generality, we may assume that C; € H such that 2d(z;, C1)+
d(z3,C1) + d(z4,C1) = 13. By Lemma 2.1 and (1) again, C is a chorded
quadrilateral. Label Cy = wywowswawn. If d(z1,C1) = 4, without loss of
generality, say wy € N(z3,C1) N N(z4,C1). Then G[V(Cy U P)] contains two
disjoint chorded cycles z,wow3w,x) and T3w)Z4Z223, a contradiction. There-
fore, we may assume d(z;,C;) = 3 and so d(z3, C1) + d(z4,Cy) > 7. Without
loss of generality, say {w;,we,ws} = N(z1,C1). Suppose d(z3,C;) = 4. If
wy € N(z4,Cy), then as above, G[V(C; U P)] contains two disjoint chorded
quadrilaterals, a contradiction. So, we have {w,wa,w3} = N(z4,C)). Since
C, is a chorded quadrilateral, then G[V(C; U P)] contains two disjoint chorded
quadrilaterals Tjwywqw3z, and zaweTaTozs if wyws € E(G), a contradic-
tion. Hence, we may assume that wyws ¢ E(G) and so waws € E(G). Then
G[V(C, U P)] contains two disjoint chorded quadrilaterals z,wowswsz, and
ZT3W)T4ToT3, a contradiction.

Consequently, it follows from the degree condition that

> d(z, H) 2 2(6k—1)-9=12(k—-1) +1.

ze€X

This implies that there exists C; € H such that ) _.x d(z,C;) > 13. By
Lemma 2.1 and (1), C; is a chorded quadrilateral. Denote P, = z;...w and
P, = w' ...z4 Then it follows from Lemma 2.2 that G[V(C; U P, U P,)] con-
tains two disjoint chorded cycles, therefore, G contains k disjoint chorded cycles.
a

420



Now we are in the position to complete the proof. By Claim 3, P = z,z523
must be a hamiltonian path in D. We use the following iteration appeared in [8].
Let

= {chorded cycles D € H|d(y, P) = 3 for some y € D},

and define iteratively

T:41 = {chorded cycles D € H \ (Uj_,T;)ld(y, E) = 4 forsome y € D, E € T}} .
@

Obviously, T; = @ for some % since H contains only finitely many chorded cycles
(Note that 77 may be empty. In this case, we still continue the iteration of F(4)).
Say T; is the last nonempty set obtained from the process above. Define K =

PU(U_T).

Claim 4(Lemma 3 in [8]). If T, # 0, then every chorded cycle D € U 1T; has
exactly 4 vertices. If Ty = @, then D € U1—2T has exactly 4 vertices.

Now define G’ = G — K. Then K contains s < k — 1 disjoint chorded
quadrilaterals and P, so |K| = 4s + 3. It follows that |G| > 4k — (45 + 3) > 1.
This implies that there exists a chorded cycle E € H such thatw € E C G'. By
our construction, d(w, P) < 2 and d(w, D) < 3 foreach D € K — P, otherwise,
w would be in K. Therefore, d(w,Tf) < 3s + 2. Consequently, o2(G') >
6k—1-2(3s+2) >6(k—s—1)+1andsooy(G’' - {w}) > 6(k—s—1)—1.
Note that |G' — {w}]| > 4k — (4s + 3) — 1 = 4(k — s — 1). Therefore, by
the induction hypothesis, G’ — {w} contains k — s — 1 disjoint chorded cycles. It
follows that (G’ — {w})+ (K — P) C G—P—{w} contains k—s—1+s=k—1
disjoint chorded cycles. But w € H, this contradicts the minimality of H, a final
contradiction.

Applying induction, we complete the proof of Theorem 1.6.

5 Concluding Remark

It is natural to consider whether the minimum degree condition can be replaced
by the Ore-type condition. We will show that this is true in [S].

Theorem 5.1 Let 7, s be two nonnegative integers and let G be a graph with
IV(G)| > 3r + 4s and d(z) + d(y) > 4r + 6s — 1 for each pair of nonadjacent
vertices z, y € V(G). Then G contains a collection of v cycles and s chorded
cycles, all vertex disjoint.

Note that the Ore-type degree condition is also sharp in Theorem 5.1. The
proof of Theorem 5.1 heavily depends on the proof of Theorem 1.6.
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