On the Maximum Number of Disjoint Chorded Cycles in Graphs*

Yunshu Gao[†] Guojun Li[‡]

Abstract

Let k be a positive integer and let G = (V(G), E(G)) be a graph with $|V(G)| \ge 4k$. In this paper it is proved that if the minimum degree sum is at least 6k - 1 for each pair of nonadjacent vertices in V(G), then G contains k vertex disjoint chorded cycles. This result generalizes the main Theorem of Finkel. Moreover, the degree condition is sharp in general.

Key words: Cycles with chords; Ore-type; Quadrilateral.

AMS subject classification: 05C35, 05C38.

1 Terminology and Introduction

In this paper, we consider only finite undirected graphs without loops or multiple edges and we use Bondy and Murty [2] for terminology and notation not defined here. Let G = (V, E) be a graph, the order of G is |G| = |V| and its size is e(G) = |E|. A set of subgraphs is said to be vertex-disjoint or independent if no two of them have any common vertex in G, and we use disjoint or independent to stand for vertex-disjoint throughout this paper. Let G_1 and G_2 be two subgraphs of G or subsets of V(G). If G_1 and G_2 have no any common vertex in G, we define $E(G_1, G_2)$ to be the set of edges of G between G_1 and G_2 , and let $e(G_1, G_2) = |E(G_1, G_2)|$. Let G be a subgraph of G and it is the set of neighbors of G contained in G. We define G is the degree of G in G and we write G to replace G and the informal degree of G will be denoted by G and the informal degree of G of with its vertex set G in G and G induced by G induced in G induced in

^{*}This work is supported by research grants from Ningxia University under grant number: (E)ndzr09-1 and Scientific research project in Xinjiang under grant number: XJEDU2009S101.

[†]School of Mathematics and Computer Science, Ningxia University, Yinchuan 750021, P. R. China, E-mail: gysh2004@mail.sdu.edu.cn.

[‡]School of Mathematics, Shandong University, Jinan, 250100, People's Republic of China

U and write $d_H(U) = \sum_{x \in U} d_H(x)$ for a subgraph H of G. Let G be a cycle. We use l(G) to denote the length of G, then l(G) = |G|. A Hamiltonian cycle of G is a cycle which contains all vertices of G, and a Hamiltonian path of G is a path of G which contains every vertex in G. A cycle of length 4 is called a quadrilateral. A chorded cycle in G is a cycle with at least one chord. For a graph G, we define

$$\sigma_2(G) = \min\{d(x) + d(y) | xy \notin E(G), x \neq y \text{ and } x, y \in V(G)\}.$$

When G is a complete graph, we define $\sigma_2(G) = \infty$.

One of the basic results on paths and cycles is Dirac's theorem [4] that every graph of order $n \geq 3$ and minimum degree $\geq n/2$ is Hamiltonian. In 1963, Corrádi and Hajnal [3] proved Erdös's conjecture in the early 1960s which concerns independent cycles in a graph.

Theorem 1.1 (Corrádi and Hajnal [3]) Suppose $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

Enomoto and Wang proved a stronger result than Theorem 1.1, independently.

Theorem 1.2 (Enomoto [6]; Wang [9]) Suppose $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Theorem 1.1 is in a sense a natural generalization of the well know fact that every graph G with $\delta(G) \geq 2$ contains a cycle. Pósa posed the same question for chorded cycles [10] and he proved that any graph G with $\delta(G) \geq 3$ contains a chorded cycle. In view of this, Bialostocki et al [1] propose the following natural common generalization of the previous result.

Conjecture 1.3 Let r, s be two nonnegative integers and let G be a graph with $|V(G)| \geq 3r + 4s$ and minimum degree $\delta(G) \geq 2r + 3s$. Then G contains a collection of r cycles and s chorded cycles, all vertex disjoint.

Note that the complete bipartite graph $K_{2r+3s-1,n-2r-3s+1}$ shows that the minimum degree is sharp if $n \ge 4r + 6s - 2$. With respect to Conjecture 1.3, Bialostocki et al verified the case for r = 0, s = 2 and for s = 1. Finkel [8] proved that this conjecture is true if r = 0 (only chorded cycles).

Theorem 1.4 Let G be a graph with $|V(G)| \ge 4k$ and $\delta(G) \ge 3k$. Then G contains k disjoint chorded cycles.

Very recently, we prove that Conjecture 1.3 is true for any nonnegative integers r and s. In this paper, we consider a similar generalization likewise Theorem 1.1 to Theorem 1.2. Our main result is as follows.

Theorem 1.5 Let G be a graph with $|V(G)| \ge 4$ and $\sigma_2(G) \ge 5$. Then G contains a chorded cycle.

Theorem 1.6 Let G be a graph with $|V(G)| \ge 4k$ and $\sigma_2(G) \ge 6k - 1$. Then G contains k disjoint chorded cycles.

Note that the degree conditions in Theorems 1.5 and 1.6 are also sharp by previous example. Theorem 1.6 generalizes Theorem 1.4.

2 Lemmas

In the following, G is a graph of order $n \geq 3$.

Lemma 2.1 [8] Let C be a chorded cycle and w be a vertex not on C. Suppose $l(C) \geq 5$ and $d(w,C) \geq 4$. Then there is a chorded cycle C' on a subset of $V(C) \cup \{w\}$ with l(C') < l(C).

Lemma 2.2 Let $P_1 = x_1 x_2 \dots x_p$ and $P_2 = w_1 w_2 \dots w_l$ be two paths and C a quadrilateral in G such that they are disjoint. Suppose $e(\{x_1, x_p, w_1, w_l\}, C) \ge 13$, then $G[v(P_1 \cup P_2 \cup C]]$ contains two disjoint chorded cycles.

Proof Label $C=y_1y_2y_3y_4y_1$. By symmetry, we may assume that $e(\{x_1,x_p\},C)\geq e(\{w_1,w_l\},C)$. As $e(P,C)\geq 13$, then $e(\{x_1,x_p\},C)\geq 7$ and $e(\{w_1,w_l\},C)\geq 5$. Without loss of generality, say $e(\{w_1,w_l\},y_3y_4)\geq 3$. Then $G[V(P_2)\cup y_3y_4]$ contains a chorded cycle C', which disjoints from the chorded cycle C'' in $G[V(P_1)\cup y_1y_2]$. This proves the lemma. \square

3 Proof of Theorem 1.5

Proof By contradiction. Suppose that G does not contain a chorded cycle. Now, we choose a maximal path P in G. Clearly, $|V(P)| \geq 3$. Label $P = u_1u_2u_3\ldots u_l$. We may assume that $u_1u_l\in E(G)$. Otherwise, $u_1u_l\notin E(G)$. Since $d(u_1,P)+d(u_l,P)\geq 5$, by the maximality of P, it is easy to see that G[V(P)] contains a chorded cycle, a contradiction.

Since $u_1u_l \in E(G)$, V(P) contains a cycle $u_1u_2 \dots u_lu_1$. Furthermore, there is no vertex of P may have a neighbor outside V(P), else the maximality of P will be violated. We can assume that there exists a pair of nonadjacent vertices z and $w \in V(P)$, otherwise, we immediately have a chorded cycle. However, note that $d(z,P)+d(w,P) \geq 5$, without loss of generality, say $d(z,P) \geq 3$. Then it is easy to see that G[V(P)] contains a chorded cycle, a contradiction. \square

4 Proof of Theorem 1.6

Proof. By induction on k. For k=1, Theorem 1.5 gives the required result. Hence, we may assume that $k\geq 2$. Suppose the theorem is true for all $s\leq k-1$, and take a graph G with $|V(G)|\geq 4k$ and $\sigma_2(G)\geq 6k-1$. By induction on k we obtain that G contains k-1 disjoint chorded cycles C_1,\ldots,C_{k-1} . We choose C_1,\ldots,C_{k-1} such that

$$\sum_{i=1}^{k-1} l(C_i) \text{ is minimized.} \tag{1}$$

Let $D = G - V(\bigcup_{i=1}^{k-1} C_i)$. Subject to (1), we choose C_1, \ldots, C_{k-1} such that

The length of a longest path in
$$D$$
 is maximized. (2)

Let $P=x_1\dots x_p$ be a longest path in D. Let $H=\bigcup_{i=1}^{k-1}C_i$ and |D|=d. Since $|G|\geq 4k$ and $\sigma_2(G)\geq 6k-1$, we can remove any three vertices from V(G), and the graph induced by what remains still contains k-1 disjoint chorded cycles by induction hypothesis, so $d\geq 3$. We may assume that D does not contain a chorded cycle.

Claim 1. We can properly choose C_1, \ldots, C_{k-1} such that D contains at least one edge.

Proof Otherwise, D is an independent vertex set. Take any pair of $u,v \in V(D)$. Then $d(u,H)+d(v,H)\geq 6k-1=6(k-1)+5$. This implies that there exists $C_i\in H$ such that $d(u,C_i)+d(v,C_i)\geq 7$. By Lemma 2.1 and (1), C_i is a chorded quadrilateral. Without loss of generality, say $d(u,C_i)=4$ and label $C_i=w_1w_2w_3w_4w_1$ such that $\{w_1,w_2,w_3\}\subseteq N(v,C_i)$. Then $G[V(C_i)\cup \{u,v\}]$ contains a chorded quadrilateral $vw_1w_2w_3v$, which disjoints from an edge uw_4 , contradicting (2). \square

Claim 2. We can properly choose C_1, \ldots, C_{k-1} such that P is a Hamiltonian path in D.

Proof Otherwise, suppose p < d. If $\delta(D-P) \ge 3$, by Pósa' theorem [7], D-P contains a chorded cycle, a contradiction. Hence, $\delta(D-P) \le 2$. We chose $u \in V(D-P)$ such that d(u,D-P) is minimum. Then $d(u,D-P) \le 2$ and so $d(u,D) \le 4$.

Furthermore, we may assume that $d(u,D) \leq 3$. Otherwise, suppose $d(u,D) \geq 4$. This gives d(u,D-P)=2 and d(u,P)=2. By the choice of u, we see that G[V(D-P)] contains a cycle. We choose a maximal cycle in G[V(D-P)], denoted by Q. For each pair of $z_1, z_2 \in V(Q)$. It is easy to see that $d(z_i,P) \leq 1$ and $d(z_i,D-P)=2$ for some $i \in \{1,2\}$, otherwise, G[V(D)] contains a chorded

cycle, a contradiction. Without loss of generality, say i = 1, then replace u with z_1 , we have $d(z_1, D) \le 3$.

We claim that $x_1x_p \notin E(G)$. Otherwise, assume $x_1x_p \in E(G)$. By the maximality of P, d(u, P) = 0 and so $d(u, D) \leq 2$. As $ux_1 \notin E(G)$ and $ux_p \notin E(G)$, it follows that

$$2d(u,H)+d(x_1,H)+d(x_p,H)\geq 2(6k-1)-8=12(k-1)+2.$$

This implies that there exists $C_i \in H$, say C_1 , such that $2d(u,C_1)+d(x_1,C_1)+d(x_p,C_1) \geq 13$. Clearly, $d(u,C_1) \geq 3$ as $d(x_1,C_1)+d(x_p,C_1) \leq 8$. If $d(x_1,C_1)+d(x_p,C_1) \leq 6$, then $d(u,C_1)=4$ and so $d(x_1,C_1)+d(x_p,C_1) \geq 5$. By Lemma 2.1 and (1), C_1 is a chorded quadrilateral. By symmetry, we may assume $d(x_1,C_1) \geq 3$. Label $C_1=u_1u_2u_3u_4u_1$ such that $u_1 \in N(x_1,C_1)$. Then $G[V(C_1)\cup\{u,x_1\}]$ contains a chorded quadrilateral $uu_2u_3u_4u$ and a longer path $P+u_1$, which contradicts (2). Hence, we may assume that $d(x_1,C_1)+d(x_p,C_1) \geq 7$. By Lemma 2.1 and (1) again, C_1 is a chorded quadrilateral. Without loss of generality, say $d(x_1,C_1)=4$ and label $C_1=w_1w_2w_3w_4w_1$ such that $\{w_1,w_2,w_3\}\subseteq N(x_p,C_1)$ and $w_3u\in E(G)$. Then $G[V(C_1)\cup\{u,x_1\}]$ contains a chorded quadrilateral $x_1w_4w_1w_2x_1$ and a longer path $P+w_3u$, which contradicts (2).

Now let $S=\{x_1,x_p,u\}$, S is a independent set. It is easy to check that $\sum_{x\in S}d(x)\geq \frac{3}{2}\times (6k-1)$. Hence, we obtain

$$\sum_{x \in S} d(x, H) \ge \frac{3}{2} \times (6k - 1) - 7 \ge 9(k - 1) + 0.5. \tag{3}$$

It follows from the fact that the sum is an integer that there exists $C_i \in H$ such that $\sum_{x \in S} d(x, C_i) \geq 10$. By Lemma 2.1 and (1), C_i is a chorded quadrilateral. Suppose $d(x_1, C_i) + d(x_p, C_i) \leq 6$, then $d(u, C_i) = 4$ and $d(x_1, C_i) + d(x_p, C_i) = 6$. By symmetry, we may assume that $x_1z \in E(G)$ with $z \in V(C_i)$. Then $G[V(C_i \cup P)]$ contains a chorded quadrilateral $C_i' = C_i - z + u$. Replace C_i with C_i' , we obtain a longer path P + z than P, contradicting (2). Hence, we must have $d(x_1, C_i) + d(x_p, C_i) \geq 7$ and $d(u, C_1) \geq 2$. By Lemma 2.1 and (1) again, C_i is a chorded quadrilateral. Without loss of generality, say $d(x_1, C_i) = 4$ and label $C_i = w_1 w_2 w_3 w_4 w_1$ such that $\{w_1, w_2, w_3\} \subseteq N(x_p, C_i)$ and $w_3 u \in E(G)$. Then $G[V(C_i) \cup \{u, x_1\}]$ contains a chorded quadrilateral $x_1 w_4 w_1 w_2 x_1$ and a longer path $P + w_3 u$, which contradicts (2) again. \square

Claim 3. d = 3.

Proof By contradiction. Suppose $d \geq 4$. By Claim 2, $P = x_1x_2 \dots x_d$ is a Hamiltonian path in D. We want to show that there exists a subset $X = \{x_1, w, w', x_d\}$ in this order in P such that $\sum_{x \in X} d(x, P) \leq 9$. As G[V(P)] contains no chorded cycles, $d(x_1, P) \leq 2$, $d(x_d, P) \leq 2$, $d(w, P) \leq 3$ and

 $d(w') \leq 3$. Hence, it is sufficient to prove that P contains some vertex w besides the endpoints satisfying d(w,P)=2. Otherwise, we assume d(u,P)=3 for each $u \in P-\{x_1,x_d\}$. Note that we may assume that $d \geq 5$, otherwise, it is easy to check that G[V(P)] contains a chorded cycle, a contradiction. In particular, $d(x_2,P)=d(x_3,P)=3$. Say $N(x_2,P)=\{x_1,x_3,x_m\}, 4\leq m\leq d$. Denote the adjacent vertex of x_3 other than x_2 and x_4 by x_l . If $l\leq m$, then $x_2\ldots x_mx_2$ or $x_1x_3\ldots x_mx_2x_1$ is a chorded cycle, a contradiction. Thus, l>m and then we must have $d(x_4,P)=2$. For otherwise, denote the neighbor of x_4 other than x_3 and x_5 by x_q . Clearly, $q\geq l$ and then $x_4x_q\ldots x_mx_2x_3x_4$ is a cycle with chord x_3x_l , a contradiction.

Now, we will show that G[X] contains two pair of nonadjacent vertices. If $x_1x_d \in E(G)$, then $x_1w' \notin E(G)$ and $wx_d \notin E(G)$ since G[X] contains no chorded cycle. Hence, we may assume that $x_1x_d \notin E(G)$ and so $ww' \in E(G)$. when $d \geq 5$, again, we see that $x_1w' \notin E(G)$ and $x_dw \notin E(G)$. Hence, it remains the case d = 4. Clearly, exactly one of x_1x_3 and x_2x_4 exists. Without loss of generality, say $x_1x_3 \notin E(G)$ and $x_2x_4 \in E(G)$. Then

$$2d(x_1, H) + d(x_3, H) + d(x_4, H) \ge 2(6k - 1) - 6 = 12(k - 1) + 4.$$

Without loss of generality, we may assume that $C_1 \in H$ such that $2d(x_1,C_1)+d(x_3,C_1)+d(x_4,C_1)\geq 13$. By Lemma 2.1 and (1) again, C_1 is a chorded quadrilateral. Label $C_1=w_1w_2w_3w_4w_1$. If $d(x_1,C_1)=4$, without loss of generality, say $w_1\in N(x_3,C_1)\cap N(x_4,C_1)$. Then $G[V(C_1\cup P)]$ contains two disjoint chorded cycles $x_1w_2w_3w_4x_1$ and $x_3w_1x_4x_2x_3$, a contradiction. Therefore, we may assume $d(x_1,C_1)=3$ and so $d(x_3,C_1)+d(x_4,C_1)\geq 7$. Without loss of generality, say $\{w_1,w_2,w_3\}=N(x_1,C_1)$. Suppose $d(x_3,C_1)=4$. If $w_4\in N(x_4,C_1)$, then as above, $G[V(C_1\cup P)]$ contains two disjoint chorded quadrilaterals, a contradiction. So, we have $\{w_1,w_2,w_3\}=N(x_4,C_1)$. Since C_1 is a chorded quadrilateral, then $G[V(C_1\cup P)]$ contains two disjoint chorded quadrilaterals $x_1w_1w_4w_3x_1$ and $x_3w_2x_4x_2x_3$ if $w_1w_3\in E(G)$, a contradiction. Hence, we may assume that $w_1w_3\notin E(G)$ and so $w_2w_4\in E(G)$. Then $G[V(C_1\cup P)]$ contains two disjoint chorded quadrilaterals $x_1w_2w_4w_3x_1$ and $x_3w_1x_4x_2x_3$, a contradiction.

Consequently, it follows from the degree condition that

$$\sum_{x \in X} d(x, H) \ge 2(6k - 1) - 9 = 12(k - 1) + 1.$$

This implies that there exists $C_i \in H$ such that $\sum_{x \in X} d(x, C_i) \geq 13$. By Lemma 2.1 and (1), C_i is a chorded quadrilateral. Denote $P_1 = x_1 \dots w$ and $P_2 = w' \dots x_d$. Then it follows from Lemma 2.2 that $G[V(C_i \cup P_1 \cup P_2)]$ contains two disjoint chorded cycles, therefore, G contains K disjoint chorded cycles. \Box

Now we are in the position to complete the proof. By Claim 3, $P = x_1x_2x_3$ must be a hamiltonian path in D. We use the following iteration appeared in [8]. Let

$$T_1 = \{ \text{chorded cycles } D \in H | d(y, P) = 3 \text{ for some } y \in D \},$$

and define iteratively

$$T_{i+1} = \left\{ \text{chorded cycles } D \in H \setminus (\cup_{j=1}^{i} T_j) | d(y, E) = 4 \text{ for some } y \in D, E \in T_i \right\}. \tag{4}$$

Obviously, $T_i = \emptyset$ for some i since H contains only finitely many chorded cycles (Note that T_1 may be empty. In this case, we still continue the iteration of (4)). Say T_l is the last nonempty set obtained from the process above. Define $\overline{K} = P \cup (\bigcup_{i=1}^{l} T_i)$.

Claim 4(Lemma 3 in [8]). If $T_1 \neq \emptyset$, then every chorded cycle $D \in \bigcup_{i=1}^l T_i$ has exactly 4 vertices. If $T_1 = \emptyset$, then $D \in \bigcup_{i=2}^{l-1} T_i$ has exactly 4 vertices.

Now define $G'=G-\overline{K}$. Then \overline{K} contains $s\leq k-1$ disjoint chorded quadrilaterals and P, so $|\overline{K}|=4s+3$. It follows that $|G'|\geq 4k-(4s+3)\geq 1$. This implies that there exists a chorded cycle $E\in H$ such that $w\in E\subset G'$. By our construction, $d(w,P)\leq 2$ and $d(w,D)\leq 3$ for each $D\in \overline{K}-P$, otherwise, w would be in \overline{K} . Therefore, $d(w,\overline{K})\leq 3s+2$. Consequently, $\sigma_2(G')\geq 6k-1-2(3s+2)\geq 6(k-s-1)+1$ and so $\sigma_2(G'-\{w\})\geq 6(k-s-1)-1$. Note that $|G'-\{w\}|\geq 4k-(4s+3)-1=4(k-s-1)$. Therefore, by the induction hypothesis, $G'-\{w\}$ contains k-s-1 disjoint chorded cycles. It follows that $(G'-\{w\})+(\overline{K}-P)\subset G-P-\{w\}$ contains k-s-1+s=k-1 disjoint chorded cycles. But $w\in H$, this contradicts the minimality of H, a final contradiction.

Applying induction, we complete the proof of Theorem 1.6.

5 Concluding Remark

It is natural to consider whether the minimum degree condition can be replaced by the Ore-type condition. We will show that this is true in [5].

Theorem 5.1 Let r, s be two nonnegative integers and let G be a graph with $|V(G)| \ge 3r + 4s$ and $d(x) + d(y) \ge 4r + 6s - 1$ for each pair of nonadjacent vertices x, $y \in V(G)$. Then G contains a collection of r cycles and s chorded cycles, all vertex disjoint.

Note that the Ore-type degree condition is also sharp in Theorem 5.1. The proof of Theorem 5.1 heavily depends on the proof of Theorem 1.6.

Acknowledgments

We sincerely thank the anonymous reviewer whose useful and critical comments have significantly enhanced the content, organization and presentation of this paper.

References

- [1] A. Bialostocki, D. Finkel and A. Gyárfás, Disjoint chorded cycles in graphs, Discrete Math. 308 (2008) 5886–5890.
- [2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, North-Holland, Amsterdam 1976.
- [3] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math Acad Sci Hungar 14 (1963) 423–439.
- [4] G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69–81.
- [5] Y. Gao and G. Li, Ore-type Condition for Disjoint cycles and Chorded cycles in graphs, manuscript.
- [6] H. Enomoto, On the existence of disjoint cycles in a graph, Combinatorica 18 (1998) 487–492.
- [7] Erdös and Pósa, On the maximal number of disjoint circuits of a graph, Publ. Math. Debrecen 9 (1962), 3-12.
- [8] D. Finkel, On the number of independent chorded cycles in a graph, Discrete Math. 308 (2008) 5265-5268.
- [9] H. Wang, On the maximum number of independent cycles in a graph, Discrete Math. 205 (1999) 183-190.
- [10] L. Pósa, On the circuits of finite graphs, Magyar Tud. Akad. Mat. Kut. Int. Közl. 8 (1964) 355–361.