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Abstract

A double-loop network(DLN) G(N;1,s) with 1 < s < N, is a
digraph with the vertex set V = {0,1,...,N — 1} and the edge set
E={u—vlv—u=1,s mod N),u,v€V }. Let D(N;1,s) be the
diameter of G and let us define D(N) = min{D(N;1,s)|1 < s < N}
and Ib(N) = [V3N ] — 2. A given DLN G(N;1,s) is called k-tight
if D(N;1,s) = Ib(N) +k(k > 0). A k-tight DLN is called optimal if
D(N) = b(N) + k(k > 0).

It is known that finding k-tight optimal DLN is a difficult task as
the value k increases. In this work, a practical algorithm is derived for
finding k-tight optimal double-loop networks(k > 0), and it is proved
that the average complexity to judge whether there exists a k-tight
L-shaped tile with N nodes is O(k?). As application examples, we
give some 9-tight optimal DLN and their infinite families.
Keywords: Double-loop network, k-tight optimal, L-shaped tile,
infinite family

1 Introduction

Double-loop digraphs G = G(N; 1, s), with 1 < s < N , have the vertex
set V = {0,1,...,N — 1} and the adjacencies are defined by v — v + 1(
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mod N) and v — v + s( mod N) for v € V. The hops 1 and s between
vertices are called steps. These kinds of digraphs have been widely studied
as architecture for local area networks, known as double-loop networks
(DLN). For surveys about these networks, refer to [3,7].

From the metric point of view, the minimization of the diameter of
G corresponds to a faster transmission of messages in the network. The
diameter of G is denoted by D(N;1,s). As G is vertex symmetric, its
diameter can be computed from the expression max{d(0;%)|i € V'}, where
d(u;v) is the distance from u to v in G. For a fixed integer N > 0, the
optimal value of the diameter is denoted by D(N) = min{D(N;1,s)|1 <
s<N}.

Since the work of Wong and Coppersmith [10], a sharp lower bound is
known for D(N):
D(N) > [V3N ] -2=1b(N)

A given DLN G(N;1,s) is called k-tight if D(N;1,s) = Ib(N) + k(k >
0). A k-tight DLN is called optimal if D(N) = Ib(N) + k(k > 0), where
integer N is called k-tight optimal. The 0-tight DLN are known as tight
ones and they are also optimal.

The metrical properties of G(N;1,s) are fully contained in its related
L-shaped tile L(N;l, h,z,y) where N = lh—zy,l > y and h > z. In Figure
1, we illustrate generic dimensions of an L-shaped tile.

’
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N=Ilh—-=zy

l

Figure 1: Generic dimensions of an L-shaped tile

Let D(L) = D(L(N;l,h,z,y)) =max{i+h—z—-2,l+h—-y - 2}. For
obvious reasons, the value D(L) is called the diameter of the tile L. It is
known that an L-shaped tile L(N;1, h, z,y) can be assigned to a G(N; 1, s)
without any confusion. However, we can not find double-loop network
G(N;1,s) from some L-shaped tiles. When an L-shaped tile L(N;l, h, z,y)
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has diameter Ib(N) + k, we say it is k-tight.

Esqué, Aguilé and Fiol [6] characterized a complete set of families of
0-tight double-loop networks. Xu and Liu [11] gave an infinite family of
4-tight optimal double-loop networks. It is known that finding k-tight
optimal DLN is a difficult task as the value k increases.

For general positive integer N, Aguilé and Fiol [1] gave an algorithm
to search an L-shaped tile with diameter [v3N | — 2 + k in the order
k=0,1,2,.... The first-found L-shaped tile must have minimum diameter.
They estimated the time complexity of this algorithm to be O(k3)O(logN)
for a k-tight L-shaped tile.

In section 3, a simple algorithm is derived for finding k-tight optimal
double-loop networks(k > 0), and it is proved that the average complexity
to judge whether there exists a k-tight L-shaped tile with N nodes is O(k?).
Experiments show that the algorithm is fast and easy to realize. As appli-
cation examples, section 4 presents some k-tight optimal DLN(6 < k < 9)
and their infinite families.

2 Preliminary

We introduce some lemmas, which will be used in the following sections.
The following Lemma 1, 2, 3 and 4 can be found in [6 or 8 or 9].
Lemma 166 9. Let t be a nonnegative integer. We define I (t) = [3t% +
1,3t2+2¢], In(t) = [3t2+2¢+1, 3t +4t+1) and Ia(t) = [3t2+4t+2, 3(t+1)2).
T 3
Then we have (4,372 + 6T + 3] = |J U L(t), where T > 1, and Ib(N) =

t=11i=1

gt+i—2if N € Ii(t) for i =1,2,3.

Lemma 2681, Let L(N;l, h,z,y) be an L-shaped tile, N = lh — zy. Then,
there exists G(V; 1, s) realizing the L-shaped tile iff [ > y , h > z and
ged(h,y) = 1, where s = al — (I — z)( mod N) for some integral values
a and g satisfying ay + B(h - y) = 1.

Lemma 319, Let L(N;l,h,z,y) be an L-shaped tile, N = lh — zy. Then
(a) If L(N;1, h,z,y) is realizable, then |y — z| < VN;
(b) If 2 > 0 and |y — z| < V/N, then

D(L(N;l,h,z,9)) 2 /3N — §(y — 2)* + §ly — 2| - 2;
(c) Let f(z) = /3N — 322+ 1z . Then f(z) is strictly increasing when
0<z<VN.
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Lemma 49, Let N(t) = 3t2 + At + B € I;(t) and L be the L-shaped
tile L(N(t);!, h,z,y), where A and B are integral values; l = 2t +a, h =
2t +b, z = |y — 2|, a,b,z,y are all integral polynomials of variable ¢, and
j =1+ k(k>0). Then L is k-tight iff the following identity holds

(@+b—j)a+b—j+z)—ab+(A+z—2j)t+B=0. )

The following Lemma 5 is the generalization of Theorem 2 in [11}, and
can be found in [12].
Lemma 5. Let H(z,j) = (25 — 2)% = 3[j(j — 2) + (A + z — 2j)t + B), and
the identity (1) be an equation of a and b. A necessary condition for the
equation (1) to have integral solution is that 4H (2, j) = s + 3m?, where s
and m are integers.

It is easy to show that the following Lemma 6 is equivalent to Theorem
1in [11). Lemma 6 can be found in [12].
Lemma 6. Let n, s and m be integers, n = s* + 3m2. If n has a prime
factor p, here p = 2( mod 3), then there exists an even integer ¢, such that
n is divisible by p? , but not divisible by p?*1.

Lemma 7112, Let N = N (t) = 3t% + At + B € I;(t) and L-shaped tile
L(N;1, h,z,y) be k-tight(k > 0) and realizable. Let z = |y — z|. Then the
following hold

Case 1. If A=0or A =2(if i =2) or A =4(if i = 3), and
3N —3(2k+3)2> (3t + 451)% , then 0 < 2 < 2k + 2.

Case2. f A=1or A=3 or A=5, and
3N -3(2k+2)%> (3t + 451)% ,then 0< 2 < 2k + 1.

Case 3. If A=2(if i = 1) or A=4(if i =2) or A =6, and
3N — 32k +1)% > (3t + 451)? , then 0 < 2 < 2k.

3 Analgorithm to find k-tight optimal double-
loop networks

We first introduce the following algorithm.
Algorithm 1. To judge whether N is k-tight(k > 0) optimal. kmaz is
a suitable constant, such as kmaz = 10.

Step 1. Calculate: ¢t = [{/N/3]1-1; A = [(N -3t?)/t] + 1;
B =N — (3t + At) < 0; if(A = 3 and B = —t), then{A = 2 and B = 0};

if(A=5and —t < B< —t+1),then{A=4and B = B+t};

if(A =17), then{A =6 and B = B +t}.
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Step 2. Determine jO: if (A <="2)70=1;if(2< A <= 4)j0=2; if
(A > 4)j0=3.

Determine 20: if(A=1 or A=3 or A=5)20=2; else 20=1.

flag=-1;

Step 3. for(j = j0;j < 50 + kmazx; j++)

for(z = 0; 2 < 2(j — j0)+20; z++)

h=(2j —2)2-3[i(j —2z) + (A+ 2z - 2j)t + B);
if 4h = s? + 3m?2, where s and m are integers,
then {flag=j — jO; break;}
} //The end of loop for .
if(lag>-1)break;
}//The end of loop for j.
Step 4. Let e=flag. If the following holds
3N — 3(2e +20—2)? > (3t + 451)2,
then N is k-tight(k > e) optimal.

From Lemma 7, it is easy to show the validity of Algorithm 1. From
Lemma 1, we know that Step 1 and the determination of jO are correct.

Suppose that N is (e — 1)-tight optimal. Since 3N — 3(2e + 20 — 2)2
> (3¢t + 451)? and Lemma 7, thus 0 < z < 2e + 20 — 2.

From Step 3, 4H(z,3) has no the form of s> + 3m? . By lemma 5, the
equation (1) has no integral solutions of a and b. By lemma 4, there is no
k-tight L-shaped tile L(N(t);l, h,z,y) for 0 < 2 < 2e + 20 — 2. Thisis a
contradiction.

Similarly, we can show that N is not k-tight optimal for 0 < k < (e—1).
Therefore, N is k-tight(k > e) optimal.

Now we come to the complexity of Algorithm 1. Suppose the number
of nodes is less than 10°. From ¢ = [{/N/3 ] — 1, we know ¢ < 57736.

Let kmaz=9. Since h = (2j — 2)2 —3[j(j — 2) + (A+ 2z —2j)t + B] and
|B| < t, so h < 6(30 + kmaz)t, thus h € (0,5000000). We judged whether
that 4h has the form of s2 4 3m? for every integer h € (0,5000000), and
save these results in a file for the algorithm retrieving.

In the Step 3 of Algorithm 1, the number of loop time is at most k(2k +
2) if there exists a k-tight L-shaped tile with N nodes. Therefore, the
complexity of Algorithm 1 for every integer N € (4,10') is less than a
constant O(kmaz?).

For general positive integer N, we know that ¢ = O(N ’:*). Since h =
(2§-2)2-3[§(j—2)+(A+2—27)t+B) and | B| < t, thus h € (0, O(kmazN1)).
At the preparation stage, we judge whether that 4h has the form of s2+3m?,
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thus the running time complexity of the preparation stage is O(kmazN ’1‘) .
O((kmazN#)%) = O(kmaz3 N%). Note that the running time complexity
in the Step 3 of Algorithm 1 to judge n with a k-tight L-shaped tile is O(k?),
thus the average complexity of Algorithm 1 for every integer n € (4, N) is
O(k2) + & - O(kmaz? N) = O(k?).

We remark that although the condition in Step 4 holds for most values of
N, there are also another very small set of integers for which the condition
in Step 4 does not hold.

We have made an experiment on the integers in (4,1500000) with the
algorithm. The following integers have the result: flag=>5,

417289, 464533, 526429, 858157, 1302637, 1368379, 1498333.
All of them (except 464533) are 5-tight optimal.

For 464533, t = 393, A = 4,B = —386,k = 2 < 5, the following does
not hold.

3N - 3(2k +1)% > (3t + 451)2

In fact, 3N —3(2k+1)? = (3¢t+452)? = 1393580.25. When z = 2k+1 =
5, there exists a realizable 2-tight L-shaped tile L(464533; 787, 787, 391, 396).

It must be known that even though flag=e and 3N — 3(2e + 20 — 2)?
> (3t + 12'—1)2, N may not be e-tight optimal, as some e-tight L-shaped
tiles may not be realizable.

4 Some application examples

With Algorithm 1, we found that

7243747 is the smallest integer with 6-tight optimal DLN;
81190689 is the smallest integer with 7-tight optimal DLN;
2530527211 is the smallest integer with 8-tight optimal DLN.

Let N(t) = 3t2 + 6t — 582187. Then N(1500498) is 9-tight optimal.
Let N(t) = 3t2 + 6t — 1496791. Then N(2000174) is 9-tight optimal.
Let N(t) = 3t2 + 6t — 461159. Then N(2500044) is 9-tight optimal.
Let N(t) = 3t + 4¢ — 2222608. Then N(2500139) is 9-tight optimal.

Example 1. We now prove that N(2500139) is 9-tight optimal, and give
an infinite family of 9-tight optimal integers N(t) = 3t + 4t — 2222698,
which including N(2500139) as a starting element.

We first prove that N(t) is not k-tight(0 < k < 8) optimal, where
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t = g X e +2500139(e > 0) and g is a nonnegative integer .

Let A =4,B = —2222698 and k = 8. The following inequality

3N - 3(2k +1)% > (3t + 451)2,
is equivalent to

3(t+ B) > 3(2k +1)% + (451)?,
which is true. Let L-shaped tile L(N(2500139);!,k,z,y) be k-tight(0 <
k < 8) and realizable. Let z = |y — z|. By Lemma 7, 0 < z < 2k.

For 2 < j €£10,0 < 2 < 2(5 — 2),t = 2500139, we have verified that
H(z,5) = (2§ — z)2 = 3[j(j — 2) + (A + z — 2§)t + B] has a prime factor
p(2,7), where p(z,7) = 2( mod 3), with an odd power g(z,j). We only
show the case of H(z,10) in Table 1.

Table 1

z H(z,10) J) power
0 126674866 2 1
1 119174440 5 1
2 111674016 2 5
3 104173594 2 1
4 96673174 2 1
5 89172756 971 1
6 81672340 5 1
7 74171926 2 1
8 66671514 2 1
9 59171104 2 5
10 51670696 2 3
11 44170290 2 1
12 36669886 2 1
13 29169484 17 1
14 21669084 17 1
15 14168686 2 1
16 6668290 2 1

Let g =lem {p(z,5)9®)+1|2 < § £ 10,0 < 2 < 2(j — 2)}, where lem
stands for Lowest Common Multiple.

Let t = g x e +2500139(e > 0). For2<j <10,0<2<2(j—2), it
is easy to show that H(z,j) = (25 — 2)% — 3[j(j — 2) + (A + z — 2§)t + B
has a prime factor p(z,j), here p(z,j) = 2( mod 3), with an odd power
¢(z,j). By Lemma 6, H(z, j) has no the form of s? + 3m? . By Lemma 5,
the equation (1) has no integral solutions of a and b. By Lemma 4, there
is no (j — 2)-tight L-shaped tile L(N(t);, h,z,y) for (z, 7).
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As a conclusion, N(t) is not k-tight(0 < k < 8) optimal, t = g x e +
2500139(e > 0).

Secondly, we prove that N(t) is 9-tight optimal, where t = f(e) +
2500139(e > 0) and f(e) is a polynomial of order 1 or 2.

For z =18, =2+9,A =4, B = —2222698, A+2—2j = 0, the equation
(1) of a and b has a solution (a, b)=(-1035,-671).

From Lemma 4, if the identity (1) holds, then the L-shaped tile L{N(t);
U5, h(f), 2(£), y(f)) is 9-tight. Hence let

I(f) =2t +a =2t — 1035, h(f)=2t+b=2t-6T1,

z(f)=t+a+b—j=t—-1717, y(f) ==z(f) + 2 =t — 1699,

V() =Uf)—=(f)=t—b+j, M(f)=h(f)-y(f)=t-a+j-2z

R(f)=-y(f) = —2a—-b+2j — 22 =2727.

Let t = 2727f + 2500139. Then, h'(f) = 2727 f + 2501167.

Since 1852(2501167)-1698629(2727)=1, thus,
1852((f) — f(h'(f) — y(f))) — 1698629(R'(f) — y(f)) = 1.

That is, (1852 + 1698629)y(f) + (—1852f — 1696777)k/(f) = 1.

Hence, ged(y(f),k'(f)) = L.

From Lemma 2, let s(f) = (1852 f+1698629)!(f)+(1852f+1696777)I'(f).
Then G(N(t);1,s(f)) is a 9-tight optimal double-loop network, where ¢t =
2727g x e + 2500139, f = g x e(e > 0).

Suppose e = 0, then f = 0,t = 2500139, s(0) = 1698629 x 4999243 +
1696777 x 2500821 = 12735194691764. Thus, G(N(2500139);1,s(0)) is a
9-tight optimal double-loop network.

In fact, for z = 18,A + z — 2j = 0, this is a special case. We now
consider a more general case, where A + z — 25 #0.

For 2=2,7=2+9,A=4,B = —2222698,t = 2500139, A+ 2 — 2j =
—16, the equation (1) of a and b has a solution (a, b)=(-6441,-93). Thus
lo = 2t + a = 4993837,hg = 2t + b = 5000185,z = t+a+b—j =
2493594, yo =t + a + b — j + 2 = 2493596. So, hg — 2yo = 12993.

Let a(f) = 16 x 12093f — 6441, b(f) = —32 x 12993f — 93. By
replacing a and b of the equation (1) with a(f) and b(f), we have ¢(f) =
48 x 1299322 4+ 12993 f(3 x 93+ 22 — 2) + 2500139 = 48 x 1299322 + 299 x
12993 f + 2500139.

Let

U(f) = 2t(f) + a(f), h(f)="2t(f)+b(f),

z(f) = ¢(f) + a(f) + b(f) — 4,

y(f) = 2(f) + z = t(f) — 16 x 12993 f — 6543 = 48 x 1299322 -+ 283 x
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12993 f 4 2493596,
V() =U(f) - =(f), R'(f)=h(f)—y(f)
R(f) — y(f) = 12993.

Since 6092(2493596)-1169167(12993)=1, thus,
6092(y(f)— f(A'(f)—y(f))(48 x 12993 f +283)) —1169167(h'(f)—y(f)) = 1.

That is,
[6092f(48 x 12993 f + 283) + 1175259]y(f) + [-6092f(48 x 12993 f +
283) — 1169167)h'(f) = 1.

Hence, ged(y(f), K/ (f)) = 1.

From Lemma 2, let s(f) = [6092 (48 x 12993 f + 283) + 1175259)!( ) +
(60921 (48x 12993 f+283)+1169167]l'(f). Then G(N(t); 1, s(f)) is a 9-tight
optimal double-loop network, where t = 48 x 129932 f2 + 299 x 12993 f +
2500139, f = g x e(e > 0). '

Suppose e = 0, then f = 0,¢t = 2500139, s(0) = 1175259 x 4993837 +
1169167 x 2500243 = 8792253486364. Thus, G(N(2500139);1,s(0)) is a
9-tight optimal double-loop network.

With a similar argument as in the case of N(2500139), we can derive
infinite families of k-tight optimal integers from other starting integers.
Here only the key parameters are shown in Table 2, where N(1553) =
7243747, N(5202) = 81190689, N (29043) = 2530527211.

Table 2

A B t i k z a b

6 -998 1553 9 6 11 13 47

2 -2127 5202 8 7 14 5 45

2 -18422 29043 9 8 16 -125 -18
6 -582187 1500498 12 9 16 -2089 499
6 -1496791 2000174 12 9 17 -2157 1081
6 -461159 2500044 12 9 16 -1685 -977
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