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Abstract. Crossing numbers of graphs are in general very difficult to
compute. There are several known exact results on the crossing numbers
of Cartesian products of paths, cycles or stars with small graphs. In this
paper we study cr(W, », O P,), the crossing number of Cartesian product
Wim O P,, where W, , be the cone graph C,, + K. Klest showed that
cr(W1,30P,) = 2n(Journal of Graph Theory, 6(1994), 605-614), cr(W; 40
P,) = 3n—1 and er(Wp 3 O P,)) = 4n(Discrete Mathematics, 233(2001),
353-359). Huang et al. showed that cr(Wim OFPs) = (n—1)| 2] 1252 +
n + 1 for n < 3(Journal of Natural Science of Hunan Normal University,
28(2005), 14-16). We extend these results and prove cr(Wi, O F,) =
(n=DIZ]1272] +n+1and er(Wo,m O P) = 20| 3 ]| 252 ] + 2.
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1 Introduction

We consider only finite undirected graphs without loops or multiple
edges.

Let G be a graph with vertex set V' and edge set E. We consider
only good drawings of a graph, i.e., a drawing satisfies (i) no edge crosses
itself; (ii) adjacent edges do not cross; (iii) crossing edges do so only once;
(iv) edges do not cross vertices and (v) no more than two edges cross at
a common point. We denote the crossing number of G for the plane by
er(G). If D(G) is a good drawing of G, then v(D(G)) denotes the number
of the crossings in D(G). It is clear that cr(G) < v(D(G)). The Cartesian
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Product G O H of graphs G and H has vertex set V(G) x V(H) and edge
set E(G 0 H) = {{(z1,1), (v2,42)} | 71 = =2 and y1y2 € E(H) or y, =
y2 and z1z2 € E(G)}. (In the references of this paper, the authors also use
G x H to represent the Cartesian Product of graphs G and H.) P, is a
path with length n. The cone graph C, + K; is obtained by adding ! new
independent vertices to the m— cycle Cy, and joining each one of them to
every vertex of C,. We use Wy, to represent the graph Cy, + K;. The
graph W, ,, is known as a wheel W, and W5, is a double cone.

Zarankiewicz!14l studied the crossing number of Ky, » and proved that
er(Kmm) < L)1 2521121252 ). The equality holds for min(m,n) < 66!
and for the the special cases 7 < m < 8, 7 < n < 10112,

Harary et al. conjectured that er(Cr, 0Cp) = (m—2)n, for 3 <m < n.
This has been verified for m < 711). Glebsky and Salazar!1ll also showed
that the conjecture holds for n > m(m + 1) and m > 3.

Beineke et al.l] and Jendrol et al.l®} determined the crossing num-
bers of products of all 4-vertex graphs with cycles. Klezél”) determined
the crossing numbers of products of all 4-vertex graphs with paths and
stars. Klesel® 9 101 showed the crossing numbers of products of all 5-
vertex graphs with paths.

Klesé showed that er(Ws O P,) = 2n [N, cr(W, O P,) = 3n — 119 and
er(WosOP,) = 4n[9], where W3 is isomorphic to K4, Wy and W53 are
isomorphic to the graphs Gj9 and Gy in [9) respectively.

In [13], Huang Yuangiu et al. proved,

Lemma 1.1. For 1 <n <3, er(Win O Pa) = (n—1) | 2] 22 ] +n+1.0
In [15], Yang Yuansheng et al. proved,
Lemma 1.2. cr(Ka,m O Pa) = 2n | 2125 O
In this paper we extend the results of cr(W)» O P,) and prove that
;;(WmDPn) = (n-1)| )| =52 J+n+lend er(WomOP,) = 20| 2| | 254 |+
2 Basic Lemmas
Let
ViWimOP) ={u} |0<j<m+1-1,0<i<n},

EWimDPa) = () {uid |0<j<m—1, m<k<m+1-1}U
i=0

n . . . . - .
('UO {ubu'i: MR} u;n-—2u:n—l) u:n—l’u':)})u
1=
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n . .
(U {uj 10 sm+i-1)).
i=1

Let Vi = {u} |05j5m+l—1},E"={u§u;;|05j5m—1,m5
k<m4l=-1}U{ugui, -, up_oUin_1, Uin_quh}, and W, = (V¥, E¥) for
0<i<n. Let P'={u;7'ul |0<j<m+I-1}for 1 <i<n. Then, we
have

EinE = 0, 0<i<j<m,

Pinpi = @, 1<i<j<m,

E"ﬂPj = 0, OSZSn,lﬁan,
n : n :

EW,.0OPF,) = (‘UOE‘)U('UlPt)'

Let A, B be two disjoint subsets of E(G). In a drawing D, the number
of the crossings between an edge in A and another edge in B is denoted by
vp(A, B). The number of the crossings that involve a pair of edges in A is
denoted by vp(A). So v(D) = vp(E(G)). If an edge is not crossed by any
other edge, we say that it is clean in D; if it is crossed by at least one edge,
we say that it is crossed in D.

Let X be a subset of V(G) or of E(G) for a graph G. Then {X) denotes
the subgraph of G induced by X.

Lemma 2.1. Let A, B, C be mutually disjoint subsets of E(G). Then,

vb(C,AUB) = up(C,4)+vp(C,B),
vp(AUB) = vp(A) + vp(B) + vp(4, B). O

Lemma 2.2. Let A be a subset of E(G). If there exist = crossings on edges
of A in a drawing D and deleting all edges in A results in a new drawing
D>, then v(D) > v(D*) + =. n}

Lemma 2.3. Let V(Wa,,n) = {v0,v1,"** , Um—1,Vm, Um+1}, C = vov1 + - -

Um-1v0, E(Wo,m) = E(C)U {v;v; |0<i<m-1m<j<m+1}. Let
D be a good drawing of W3 p,, in which C is not crossed by any edge not
in B(C). If v, and vy lie in the same region of C, then vp({vsvm, | 0 <
i<m—1}{vivm [0<i<m-1}) > [B] 2. o

Recently Bokal developed an operation on general graph drawings called
“zip product” [4]. Let Ng,(v;) represent the neighborhood of v; in Gj
for i = 1,2. He defined that the zip product G; ®, G2 of the graphs
G, and Gz according o is obtained from the disjoint union of G; - v;
and G2 — vo by adding the edge uo(u) for every u in Ng,(v1), where
v € V(G1), v2 € V(G2), v1 and vp have the same degree, and the zip
funtion o is a bijection o : Ng,(v1) — Ng, (v2).
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Let D; be a drawing of G and D5 be a drawing of Gs. The zip product
Dy ©y Dy of the drawings D, and D; is obtained from D; by adding a
mirrored copy of Dy that has vs on the infinite region disjointly into some
region of D; that contains v;, removing the vertices v; and v, together
with small disks around them from D, and D,, and then joining the edges
according to the function o. -

In the following discussion, we need two notations, G and GG P, de-
noted by Bokal[4].

With 6, Bokal denotes a double suspension of G, that is the graph
obtained from G by adding two vertices v; and v; and the edges v;v for
i=1,2 and each v € V(G).

Let P, = uwpequies...enuy, where ¢; = uj—q1u;,1 < ¢ < n. With
GOP,, he denotes the capped Cartesian product of G and P,, i.e. the
graph, obtained from G O P, by adding two new vertices vp and v, and
connecting vo with all the vertices of GO {ug} and v, with all the vertices
of GO {un}.

Bokal proved the following lemma,

Lemma 2.4 (Bokal [4]). For i = 1,2, let D; be an optimal drawing of
G;, v; € G, v1 and v, have same degree, and o be a zip function of D; and
D, according to v; and vo. Then er(Gi ©0 G2) < cr(G1) + cr(G2). o

One can easily see that a zip product of (n — 1) copies of a drawing
of W;,m yields a drawing D of a capped Cartesian product of W ,OP,_2
with two special vertices v and u, and then a zip product of two copies of
a drawing of Wi ., + K1 with D at the vertices v and u yields a drawing of
Wi, m O P,.. By Lemma 2.4, the sum of crossing numbers of these graphs is
an upper bound to the crossing number of Wiﬁ'!‘ 0O P,, i.e., we have
Corollary 2.5. cr(W; n OP,) < (n-1) ar(Wim) + 2 cr(Wi,m + K1) O

In a graph G, if there is a vertex v € V(G) with N[v] = V(G), then v
is called a domination vertex of G. For a graph with a domination vertex,

Bokal proved,
Lemma 2.6 (Bokal [4]). Let G be a graph with a domination vertex.
Then for n > 0, er(GOP,) = (n+1) cr(G). o

3 The crossing number of W, 0 B,

Lemma 3.1. cr(W,,) = 21252 +1 for m > 3.

Proof. Let V(Wm) = {z1,2,%,%1," " ,Vm}, Bo = {mu; |0 < i <
m—1},E ={z1v: |0<i<m -1}, E; = {zov; | 0 < i <m—1} and
E(W,,) = Eg UEL U B U {vov1, -+ , Um—2Ym—1,Um—1%0} U {UmT1, ¥mT2}.
Let the m-cycle C = vg - - - vp—1v0. Let H = (EQUE UEy), then H = K3 .
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Figure 3.2. C is clean

Figure 3.3. A good drawing of W,,, O P

Figure 3.1 shows a good drawing of Wm. In this drawing, C is crossed
and the corresponding drawing of H is an optimal drawing of K3 ,,. Hence,
this drawing has ¢r(K3s,,) + 1 crossings, so, w(Wm) <er(Ksm)+1=
211251 + 1. We need only to prove cr(Wy,) > (227 + 1.

Let D be an arbitrary drawing of Wy,. If C is not clean in D, then
since H & K3, by Lemma 2.1, (D) 2 er(Kspm) +1 = |_"‘j|_"“1J +
1. If C is clean in D, then C dwxdes the plane into two regions, int C
and ext C. Without loss of generality, we may assume that v,, lies in
ext C, then since both z; and z are adjacent to vy, they have to lie in
ext C(see Figure 3.2). Since (E(C)U Eq U E;) & W, ,,, by Lemma 2.3
vp(Eo, Er) > | 3] ™52 Similarly, we have VD(EO,EQ) > |22
and vp(Ey, E2) > l_"‘_“_"‘"lj Hence for m > 3, v(D) > uD(E'o,El) +
vp(Eo, E») +VD(E1,E'2) > 3|22, ie V(D) 2 lm“.m_lJ +1. O

Lemma 3.2. In a drawing D of W, O P,(n > 2), if there is an E? on
which there are at least | ]| L] + 1 crossings, then v(D) > cr(W,, O
Pa-1) + |Z)125H + 1

Proof. By deletmg all the edges in E?, we get a drawing D*. By Lemma
2.2, v(D) 2 v(D*) + |Z]|®=5) + 1. The graph corresponding to D*
is homeomorphic to W, O P,_;, which implies that »(D) > v(D*) +
2B + 12 er(Win O Paea) + |3 12572 + 1.

Theorem 3.3. cr(W,, OF,) =(n—1) [2]|Z2] +n+1.
Proof. Klesé proved that cr(Ws0P,) = 2n!7) and er(W, OP,) = 3n—-109],

437



We need only to prove the case for m > 5. The proof is by induction on n.
(i) Forn <3, er(W O Pp) = (n—1) | 2] ] +n+1 by Lemma 1.1,
(ii) Suppose that for n = k—1(k > 4), er(Wp, OF,) = (n—-1) | 3] | 25 +
n+1. Consider W,,, 0 P;. Let D be an arbitrary good drawing of W,,, O Px.
Huang!13! showed that cr(W,, O P:) < (k—1) 2] 252 ] +k+1 (see Figure
3.3). We need only prove that er(Wn O Fi) 2 (k—1) | ] (2] +k+1
Case 1. Suppose that there is an E*(0 < i < k) on which there are at least
| 2|1 252] + 1 crossings, then, by Lemma 3.2, »(D) 2 er(Wm O Pe—1) +
B2 +1=(k-1) |31 25 +k+ L

Case 2. Suppose that there exist at most | % ]| ™52 crossings on each E*
in D.

Since W, is a graph with a domination vertex, by Lemma 2.6, er(W,,0
Pi_3) = (k—1) cr(Wp,). By Lemma 3.1, cr(WinGOPi—2) = (k—1) | 3] 125
+k-1.

Let C* = udul - ui,_,ud for 0 < i < k. Let G’ be the graph obtained
by deleting all the edges of C® and C* from Wy, O Pi. Let D’ be the
corresponding drawing of G’ in D. Since G’ is homeomorphic to WD Py—2,
WD') 2 er(WmBPeoz) = (k— 1) | 2)|252] +k—1.

Case 2.1. Suppose that both C° and C* are not clean. If C? is
crossed by C¥, there are even crossings between them. If C? is not crossed
by C¥, then there are at least two more crossings than that in D’. Hence,
v(D)2v(D')+22(k-1) [%‘-J[-"—‘-;—lj +k+1.

Case 2.2. Suppose that at least one of C® and C* is clean. Without
loss of generality, we may assume that C? is clean.

Note that the crossings in vp({u%,u? | 0 < i < m — 1} U P?) are either
self-crossings of edges in the corresponding drawing of WnOPs—2 or they
appear on the edges emanating from the same vertex, then we have

WD) 2 (b=1) |2 ][5 |+~ 14 vp({uda? |0 < < m—1}UPY). (3.1
If up({uu? | 0 <3 < m— 1}, P') > 2, from (3.1) we have
v(D) >v(D') = (k—1) | Z]|Z2] +k+1.

Now assume that vp({udu? | 0 € i < m — 1}, P!) < 1. Consider the
subgraph (E® U P' U {ulu! | 0 < i < m —1}). CO divides the plane
into two regions, int C° and ezt C°. uf, and ul, have to lie in the same
region, say ezt C°. Since (E° U {ul,u! | 0 < i < m -1} U P') contains a
subgraph homeomorphic to Wy m, by Lemma 2.3, we have vp({ud,uf | 0 <
i<m—1}{ulul |0<i<m—1}UPY) > |%]|25). By Lemma 2.1,

|2 )(=2t | < vp({uduf |0<i<m—1}{upul [0Si<m—1H+

up({u0 u? |0Li<m— 1},P1).
m—t
(3.2)
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Similarly, for the subgraph (EOUPIUP2U{u2 u? |0<i<m—-1}),
we have vp({uluf |0 <i<m-1},{udu? |[0<i<m-1}UP'UP?) >
| %)= ). By Lemma 2.1,

2] <vp({udu? |0<i<m -1}, {u2u? |0<i<m—1})+

vp({upef | 0 <4 <m -1} PYy+
vp({udul | 0 < i <m—1},P?)

Since vp({ulu? |0<i<m-1},PY) <1,

121252t -1 <vp({uduf |0Si<m—1},{ulu? |0<i<m—1})+
vp({ulu? |0 <i<m—1},P?).
(3.3)

From (3.2) and (3.3), we have

2121252 — 1< vp({udul | 0<i Sm—1} {ubul [0<i <m—1}+
vp({udu? |0<i<m—1}{u2u? |0<i<m—1})+
vp({ulu? |0<i<m—1},P)+
vp({udud | 0 <i <m~—1},P?).

Hence, for m > 5, there would be at least 2 | 2 || =51 -1 > | 2] | =L )+
1 crossings on E° A contradiction to the assumption that there are at most
2] =52] crossings on each E* in D.

Since for any drawing D, v(D) > (k—1) | 2|25t +k+1, we ha.ve
er(Won O Ps) 2 (k— 1) [B)]252) + K +1.

From (i), (ii), cr(Wim |:|P )2 (n=1) | B2 +n+1forn>1. O

4 The crossing number of W, ,, O F,

For the graph Wa,;m O P, let CF = uhuf ---ul,_juf, Bf = {ufu} |0 <
k<m—1},P‘—{u"1uk|0<k<m—1}a.ndP‘ {ui” uk|m<k<
m+1}for0<i<nandm<j<m+l Then Ef = E(C‘)UE‘ UE:
and P* = P} UP]. For each C*, we define function fp counting the number
of crossings on C"' in D as follows:

fD(z) = VD(E(C.)) + Zk_.o VD(E(C‘)i Ek \E(Ck))+
ka1 YD(E(C?), P*) + Socrpicn vD(E(CF), E(C¥)) /2.

Note that vp(E(C?), E(C*)) is even, so fp(i) is a non negative integer.
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Figure 4.1. A good drawing of Wg,m Figure 4.2. A good drawing of W2 0 P,

Lemma 4.1. cr(Wo,m) = 2| 2] 252] +2 for m > 3.

Proof. Let V(Wam) = {Z1,22,v0,%1,*** yUm+1}, Bo = {vmv; [0 <4 <
m—1}, By = {vmu1% |0<i<m—1}, By = {19 |0<i<m~1}, B3 =
{-"’ZL-’:' |0<i<m=1}, C = vvy -+ Um-1v0, C' = Z1UmT2Vm4171 and
EW,,m) = EQUE,UE;UESUE(C)UE(C'). Let H = (EoUEUE, UE3),
then H = K4 .

Figure 4.1 shows a good drawing of Wz,m. In this drawing, C crosses C'
twice, and the corresponding drawing of H is an optimal drawing of K4 m.
Hence, this drawing has cr(K4 ) +2 crossings, so, W(Wz,m) <er(Kym)+
2=2|2[=5}] + 2. We need only prove er(Wa,m) > 212)125t] + 2

Let D be an arbitrary drawing of Wg,m. Since H & K4 m, vp(E(H)) >
cr(Kam) = 2|21 252 ). If there are at least 2 crossings on C'U C’, then
by Lemma 2.1 v(D) > 2| || 252 ] +2. If there exists at most one crossing
on CUC’, then since vp(C, C’) is even, we can obtain that vp(C,C’) =0
and at least one of C and C’ has to be clean.

If C is clean, then C divides the plane into two regions, int C and
ext C. All vertices of C’ have to lie in the same region, say int C. Since
(E(C)U EyU E,) = Wa 1 and vy, and vy both lie in int C, by Lemma
2.3, we have vp(Eo, 1) > [2]|=5*]. Similarly, we have vp(E;, E;) 2
| 2] 252] for 0 < i < j < 3. Thus, ¥(D) 2 vp(E(H)) 2 ()1 )12 2
212)1252 ) +2 for m > 3.

If C' is clean, then C' divides the plane into two regions, int C' and
ext C'. All vertices of C has to lie in the same region, say int C’. For 0 <
i < j < m—1,since ({viz1, VT2, ViVm, ViVm+1 }U{V;T1, VT2, VjVm, VjUm41 }U
E(C")) & W, 4 and v; and v; both lie in int C’, by Lemma 2.3, vp ({viz1, viz2,
ViV, ViVm+1} {VjT1, VT2, VjVm, VjVm+1}) = 2. Thus v(D) > vp(E(H)) 2
2(7) =m(m—1) > 2[ 2| 25L] +2 form > 3.

Since ¥(D) > 2| 2|25} + 2 for any drawing D of Wg_m, we have




er(Wa,m) > 22 )| =52 |+2. ul

Lemma 4.2. cr(W,, O P,) < 2n ['"_I (25 ] + 2n.

Proof.  Since Wo,, + K & W, by Lemma 3.1, er(Wa,m + K1) =
12 ['"'lj +1. By Corollary 2.5 and Lemma 4.1, we have cr(We,m OP,) <
(n—1) or(Wa,m)+2 cr(Wom+ K1) = 2n [Z][®5L) +2n. Figure 4.2 shows
a drawing of Wa g 00 P> with 28 crossings. This drawing can be extended

to a drawing of Wy, O P, with 2n | 2 || 52| + 2n crossings. O
Lemma 4.3. For a drawing D of Wy, O Py, v(D) 2 2n| % ]| 252 +
21—-0 fD(z)

Proof. By deleting the edges of each C*, we get a subgraph H of W2, 1Py,
such that H = Ky ., 1 P,,. By Lemma 1.2, vp(E(H)) > 2n| 2| 252]. By
Lemma 2.1, we have v(D) = vp(E(H)) + >, fp(é). Hence, »(D) >
2nl%‘Jl"‘T"J + 30 (i) @

Lemma 4.4. In a drawing D of W ,, O P,(n 2 1,m > 4), if there are at
most 2| 2|| 252 | + 1 crossings on E* for all i satisfying 0 < ¢ < n, then
fp(G) 21(0< 5 <n).

Proof. By contradiction. Suppose that there is a j with fp(j) < 1. By
symmetry, we need only consider the cases for j < |%]. Since fp(j) is a
non negative integer, we have fp(j) = 0. Hence, C7 is clean. It divides the
plane into two regions, int C7 and ext C?. Without loss of generality, we

may assume uJ, lies in ént CJ. Since there is a path P R

both 3! and u?, +1 have to lie in int C7. Since the subgraph (E U s 1Y
E(C7)) is homeomorphic to Wa,,, we have vp(EJ,, m+1) > |21
by Lemma 2.3. Similarly, we have vp(EZ,, E3F'UP{*!) > |2 || =51} and
vp(E% 11, EEF' U PJ*1)y > | 2| 51|, Thus for m > 4 there would be at
least 3|_'"J [m‘lj 22{%] [”"IJ + 2 crossings on EY, a contradiction. O

Lemma 4.5. cr(W,,n OP1) =2 | 2] [ 252 +2 for m > 4.

Proof. By Lemma 4.2, we have cr(W2,,, OP,) <2 | 2| 25L) +2. Let D

be an arbitrary drawmg of Wo ., O P1. We need only prove that v(D) >
2 | 2] =] +2. By contradiction, suppose that v(D) < 2 (2122 +1,

then there are at most 2 | 2] 25| + 1 crossings on F* Tor i = 0,1.

By Lemma 44, fp(0) > 1 and fp(l) > 1. By Lemma 4.3, v(D) >

2021125 |+ F(0)+£(1) = 2| 2| =52 |+2, a contradiction. m)

Lemma 4.6. In a drawing D of Wy, O P,(n > 2), if there is an E* on

which there are at least 2| || 252 | + 2 crossings, then ¥(D) > er(Wa,m O
Po1)+212) 1257 +2.

Proof. By deleting all the edges in E* in D, we get a drawing D*. By

Lemma 2.2, we have v(D) > v(D*) + 2| 3| ['"'lj + 2. The graph corre-

sponding to D* is homomorphic to Wa,y, 00 P, or contains Wa ,, O P,
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as a subgraph, which implies that v(D) > v(D*) + 2| %] [ﬂ?‘—lj +2 >
er(Wo,mOPa—1)+2| 3 ) | 252 | +2. =

Lemma 4.7. In a drawing D of Wa ,, O Pp(n > 2,m > 4), if there are at
most 2|2 ]| 252 | + 1 crossings on E* for all ¢ satisfying 0 < ¢ < n, then
fo(@)z22(1<jsn-1).

Proof. By contradiction. Suppose that there isa j (1 < j < n—1)
with fp(j) < 2. By Lemma 4.4, fp(j) > 1. Since fp(j) is an integer,
we have fp(j) = vp(CY) + Xor_o vp(C?, E*¥ \ C*) + Y1, vp(CY, P¥) +
Po<koticn vp(CI,Ck)/2=1. . o
Case 1. Suppose that there exists a C*(i # j) such that vp(C*,C?) > 0.
Since fp(j) = 1 and vp(C*, CY¥) is even, we have vp(C?) = 0 and C7 is not
crossed by any edge in EJ,UE?, | U(EZF'UP{*"). C7 divides the plane into
two regions, int C7 and ext C?. Since there is a path P i1 W
all the vertices uJ,, uf,H_l and w71l have to lie the same region, say int
C4. Since the subgraph (EJ, U E?, +1 U E(C?)) is homeomorphic to W,
by Lemma 2.3, we have vp(EZ,, EZ, ;) > | 2]| 22| Similarly, we have
v(Bl,, B 'UPI™) 2 | 2)| 252 | and vp(BSyy, EAFUPIT) > | 2| 251 ).
Thus, for m > 4, there would be at least 3|2 ]| 251] > 2| B[ =52 + 2
crossings on E7, a contradiction.

Case 2. Suppose that vp(C7,C?) =0 for each ¢, 0 < i # j < n.

Case 2.1.  Suppose that vp(C’) = 0, then C7 divides the plane
into two regions, int C7 and ext C7. Without loss of generality, we may
assume that u, lies in int C7. Then since fp(j) = 1 and there are paths
o ul, ;1 has to lie in int C7.

j—1

Puénui.flu.’;“uf,f‘ i and P‘uznuz;'uo -1

0 +1%m 41 “fu+|_“’:.n+
Hence, ujf! and uf, ! have to lie in int C7. . '

If C7 is not crossed by any edge in Ef, UE?, ., U(Ei UP{T), then by
Lemma 2.3, we have vp(Ef,, By, 1) 2 L5125 ], vo (B, BSF upitly >
2]125L] and vp(Bl,,,, B U PIY) > |2]|251). Thus, for m > 4,
there would be at least 3| 2 || =51] > 2| 3 )| Z52] + 2 crossings on E7, &
contradiction. ‘ ) )

If C7 is crossed by some edge e € EZ, UE],,,,say e € E} .., then §ince
fp(§) =1, C7 is not crossed by any edge in EJ, U (E},,; \ {e}) U (B! U
P{*1)U(E$ T UP]). By Lemma 2.3, since (E(C/)UEL,U(E], ;1\ {€})) con-
tains a subgraph homeomorphic to Wz,m._l, we have ??(Efm El a1 \{e}) >
| =51 | 252, Similarly, we have vp(E3,, E3F' U P{*') > | 2| ™52] and
vp(ES, Ei7Y U Pf) > | 2]|®5L]. For m > 4, there would be at least
VDBl g1, CF)+vp (Bl B,y \{eD)+v (B, BEFUPT ) 4vp (B, B U
P)) 2 1+ 2711252 ] + 2| 31252 | 2 21515+ ] + 2 crossings on EY,
a contradiction.
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If CY is crossed by some edge e € EJ"'1 U P{*!, then since fp(j) = 1,
C’ is not crossed by any edge in EJ, UE 1 U(E"’ UP’ ). By Lemma 2.3,
we have z/D(E';",,,E,’,,_,_1 211252, vo(BL, BT U P) > |2 I.m_lJ
and vp(E +1,E-7‘1 U P’) > |12]125). Thus for m 2 4, there would be
at least vp(E%, EY, ) + vp(Ed,, Bir' U Pf) + vp(EL, ., Ei7* U Pf) >
312 > 2|_"‘J |_”"'1_| + 2 crossings on E7, a contradiction.

Case 2.2. Suppose that vp(C?) > 0, then since fp(j) = 1, C? is only
crossed by itself, i.e., vp(E(C7?), E\ E(C?)) = 0. C7 divides the plane into
three regions. All the vertices ui,,ul +1 and 7! have to lie in the same
region of C7. For m > 4, by an argument mmxlar to the one above, there
would be at least vp(EJ,, B2, ) +vp(Ed,, Bir ' UP]) + vp(EL, ., Ei71U
P]) >3|2]|25L) > 2| 2| =51 + 2 crossings on EY, a contradiction. O

Theorem 4.8. cr(Wy,,, O Po) =2n | 2] 25] + 2n.

Proof. Kles¢ proved that cr(Wa 30O Py,) = 4n9), We need only prove the
case for m > 4. The proof is by induction on n.

(i) For n =1, cr(Wa,m O P,) =2n | 2] =5 | + 2n by Lemma 4.5.

(ii) Suppose that forn = k—1(k > 2), cr(Wz mOP,) =2n | 2] 252 ] +2n.
Consider W, O P By Lemma 4.2, er(Wa,., O P;) < 2k |_’"J I_'"“IJ +2k.
We need only prove that cr(Wa,m O Pr) > 2k | 2] 252] + 2k. Let D be
an arbitrary drawing of W ,, O FPx.

Case 1. Suppose that there is an Ei(0 < i £ k) on which there are at
least 2| || 52| + 2 crossings, then, by Lemma 4.6, (D) > cr(Wa,, O
Py 1)+2[mJ[m-‘J +2=2k | 2| 25] + 2.

Case 2. Suppose that there exist at most 2| 2 || 51| + 1 crossings on
each E* in D.

By Lemma 4.4, fp(0) > 1 and fp(k) > 1. By Lemma 4.7, fp(i) > 2
for 1 <i < k—1. By Lemma 4.3, v(D) > 2k| 2 )| 25| + ¥ o o) >
2k 2 )25 m=1| 4 ok

Since for any drawing D of Wa,m O P, v(D) > 2k| 2] 252 | + 2k, we
have cr(Wa,m O Pr) > 2k| 3] l_"‘“lj + 2k.

From (i), (ii), cr(Wa mElP,,) >2n| 2|2 )+2nforn > 1andm > 4.0

5 Conclusion

Computing the exact crossing number of W, ,, O P, is a very difficult
task.

Huang!!3! proved that cr(WmDPn) = (n—1)| 2|2 |+n+tlforn 5 3.
Klesé showed that er(Wa O P,) = 2n | 7 and er(Wa0OP,) =3n- 191, Kles

showed that er(Wa3 0 P,) = 4nl9. We prove that er(W,, Q P,) = (n -
1)[2]1=52 ) +n+1forn > 4 and that cr(Wo,m OP,) > 20 2] | 252 ] +2n

443



for n > 1 in this paper. Next we will give a general upper bound to
cr(Wim QP,).

Lemma 5.1. cr(W,,, O P,) < (n — 1)Fa(l,m) + 2F, (I, m), where
By(l,m) = | 52|42 (=2 | =2 | — lm + L
and Fy(l,m) = |52 (5] 12113 - L5 + L5
Proof.

Figure 5.1. D(Wss) Figure 5.2. A good drawing of
D(Ws,s + K1)

A drawing D(Ws,s) with F5(5, 5) crossings is exhibited in Figure 5.1. A
drawing D(Ws5 + K1) with Fy (5, 5) crossings can be obtained by deleting
z and all related edges in D(Ws s) (see Figure 5.2). These two drawings
can be extended to produce a drawing D(m,m) with Fy(l,m) crossings and
a drawing D(W, ., + K1) with F} (I, m) crossings. By Corollary 2.5, we have
cr(Wim OP,) < (n—1) Fy(l,m) + 2F (I, m). o

From Lemma 5.1, we have the following conjecture,

Conjecture 5.1. cr(Wi ., O P,) = (n — 1)Fa(l,m) + 2F(l, m), where

F(,m) = 215 282) 124 ) - Im + 1
and  Fy(l,m) = (4] L41L22113) - L41LB) + L452).
By Theorems 3.3 and 4.8, the Conjecture 5.1 holds for the cases ! < 2.
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