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Abstract

The Tribonacci Zeta functions are defined by ¢r(s) =
> k=1 Ty °. We discuss the partial infinite sum > 5o T;~°
for some positive integer n. We also consider the contin-
ued fraction expansion including Tribonacci numbers.

1 Introduction.

Consider the Tribonacci Zeta functions, defined by
=1
CT(S) = Z ﬁ ’
n=1""
where T, is the n-th Tribonacci number ([6, Ch.46], [8, A000073])
defined by

Tn=Tha+Tho+Th3 (n23), To=0, Th=T,=1.
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In [7] the partial infinite sums of reciprocal Fibonacci num-
bers were studied. In [2, 5] their results were generalized. In this
paper we shall show the following. Here, () denotes the nearest
integer. Namely, (z) = |z + 1/2], where |-] denotes the integer
part.

Theorem 1
oo 1 -1
(((kgnﬁ) )) =Tn—Tn_1 ('H,Zl)

2 Proof of Theorem 1

Let «, 3, and -y be the roots of the equation z3 —z?>—z—1 = 0.
It is known (e.g., see [3]) that for any integer n

3

Tn — clan+l + c2ﬁn+l + Ca’Yn+l
= " + 58" + 7"
where
1 1 1
= , C2 = y 03 =
(o= B)(a—1) B—a)B-1) (v—a)(y-p5)
1 1 1

G

“= e rda—1 cs=—,32+4,3—1’ 06=—72+4'y—1'
Assume that o is the real root of the equation 23 —z2—z—1 =
0, given by ‘
3 1 3 _
o= V19+3V33+ > 19-3v33+1 _ | g30986755.

On the other hands,

_2-(1* v=3)V19 — 3v/33 — (1 ¥ v/=3)V19 + 3v33
6

= —0.4196433776 + 0.6062907292v —1.

B,y



Then, for any positive integer n
T, = (ca@™)) (ca = 0.33622811699).
Precisely speaking, we have the following.
Lemma 1 For any positive integer n
|Tn — cs@™| < crd™,
where ¢; = 0.51998 and d = 0.7373527.

Proof. Put 8 = —a + b (i = v/—1)with a = 0.4196433776 and
b = 0.6062907292. Then

n _ B L v n
e o (R [l vy owpy -

= % (—a—:_*b—_%( + b%)™2(cos 0 + isin 6)"
——a_—azkz-gz-( + b%)"%(cos @ — isin 0)”)
where
cosf = : and sinfd = _b
BT ViR
Thus,
csB" + ce7"

_ (a®+0)"2((a — bi)(a + o + bi)e™ — (a + bi)(a + o — bi)e™™?)
B 2bi(a + o — bi)(a + a + bi)

(a2 + b2)n/2
b((a + @)? + b2)
_ V(a(a+ a) + %) + (ba)?sin(nd — ¢)
B b((a + a)? + b?)

((a(a + @) + b*) sinnf — ba: cos nb)

(a®+ b2)n/2 ’
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where

a(a + @) + b
cos¢ =
V(a(a + @) + )2 + (ba)?
and
sing¢ = ba
Via(a + ) + )2 + (ba)?
We set
V@l + ) + PP+ (aP
= = (0.51998
“ b((a + @)? + 0?) %9
and
d=+Va?+b?=0.7373527.
Put
_Tk—c4a’°_05 B k ce (Y\F _
€ = c4a’° _a(a +C4 (O{) (k_1’2’)’

so that T} = (1 + €x)csa®. Since |8/c| = |a/f],
cs = 0.33622811699
and
¢s,c6 = —0.16811405849 F 0.19832414008v/—1,
we have ¢, — 0 (k — 00). In special, for £ > 1
lex| < &1 = 0.617024232.

Using the expansion formula

1

_ 2
li6—1:[:e+0(«s) (le] < 1),
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we obtain
1 1
Te  coob(l+ )
1
= m(l — e + O(€2)).
Taking the summation,

Z_.

k>n

_1 i_féz(ﬁ)k_ﬁ
= a* czkzn a? c

>
2
a Cs an a2 ,yn a2 ( 6_11. )

Ce
T cor(a—1) Ca*al-f &

Taking its reciprocal,

(z4)

(-2 () -2 ) o)
_ c4a"(: —1)

cs (B\" (@—1)a cs (a )

— =) ——+— + O(ex
x(1+04(a) a?2- g +C4(a) a? (€0)
= 4" — g™ + 8, + O(ae? )
=Th = Tho1 —csf” (B — 1) — ey Yy - 1) + 6, + O(ae;),

where

cs(a— 1) o, cola—1)
Ry A iy 10 (n—oo)
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and |0,| < 8; = 0.07 (n > 1). Notice that

an62 — (05:3n + cﬁ7n)2

and a™e2 < ae? = 0.700251 (n > 1). Therefore, the error term

-0 (n—o00)

—cs8" 1 (B—1) — eV (¥ = 1) + 8 + O(a"é]
is less than 1/2 if n is large enough. A precise argument is that

the absolute value of

cio(a—1) A2
s 1-A4,

O(a™€?) =

is less than 0.002 for any small positive integer n, where

a—-1 e
An=0n - o Z:az’°'"(1+¢sk)'

k>n

In addition,

lesB™ (B = 1) + ey 1y — )| < |esB2 (B — 1) + ce7* (v — 1)]
= 0244129 (n>3).

Therefore, the error term above is less than 1/2 for n > 3. The
cases for n = 1,2 are manually checked.

3 Related results

The following analogous results are similarly obtained as in that
of Theorem 1 .
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Theorem 2

Ao
ol
s

S/
b

) ))=T2n—T2n—2 (’l’lZl) (1)
(1)) mmeoee
k=n -
NS AT TP
(((Z 7 ) ))_( D*(Ta+Th-1) (n22). (3)

-1
)) = (—l)n(T2n + T2n—2) (n 2 1) . (4)

((( = ( l)k) 1)) = (—]‘)n(2 t Ton— ) (n >— 2) (5)
12k—-l . e .
k=n

Proof. We shall sketch the proof by showing that the identities
hold for any large positive integer n. By numerical calculations
or more precise arguments, we can see that they also hold for
smaller positive integers n.

First, we shall prove the identity (1). The identity (2) is similarly
proved.

By Lemma 1

1 1 1

Tu~ aa® 0@ (1 0( - 2k))
SC (&)
2 el())
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By taking the summation,

= c,0®" — 02 + O(d™)
= Ton — Ton—2 + O(d™™).

If n is sufficiently large, the error term O(d?") becomes less than
1/2.

Next, we shall prove the identity (3). The identities (4) and (5)
are similarly proved.
Taking the summation,
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Taking its reciprocal, by Lemma 1

(kzzn %) ~ - (c4(—a)f‘¥(a +1) (1 +0 ((g)n))>-l
skonten o))

= (—=1)"(cs0™ + c40™ 1) + O(—d")
= (=1)"(Tn + Ta-1) + O(d").

If n is sufficiently large, the error term O(d™) becomes less than
1/2. I

4 Continued fraction expansion of Tri-
bonacci Zeta functions

The author studied several continued fraction expansions of some
types of Fibonacci zeta functions and Lucas zeta functions in [4].
A continued fraction expansion of (r(s) is given by

(r(s) =
1
2s
T - I 5
T +T5 - 2

TZ
3+T% — Ty
T 4+ T

5+715 —

Now A, (respectively B,) are defined as the numerator (re-
spectively denominator) convergent of the continued fraction ex-
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pansion given for {r(s):
A, 1

2s
T3

T2s
T2s
T3+T5 - . T2,
T+ Ty

TP+ T35 —

T3+ T3 —

Hence {A,},>0 and { B, },>o satisfy the following recurrence for-
mulas.

A, = (Ts—l +T:)A,,_1 - T381Au—2 (V 2 2), Ap=0, A =1,

B, =(T:_,+T)By.1 —T*B,» (v>2), Bo=1, By=T}
In fact, A, and B, can be expressed explicitly as follows.

Lemma 2 Forn=1,2,...

|
Av=(TT... T, ) 7 Ba=(OT. T
v=1 "V

Proof. By induction we have B, = (T1T3...T3)°. Thus,

A,,=an%; = (Tsz...T,,)SZ%.

y=1 "V y=l "V

5 Another possible approach

There is the possibility to lead Theorem 1 by a different ap-
proach. Such a method is originally used in [7] and developed
in [2].

Theorem 1 is equivalent to

1 =1 1
el >1).
T —Toit1/2 <;Tk <t -r,-iz =Y
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Instead of the approach in the above sections, we would like
to show that for n > 4

1 1 1 1
>+
Tn~Th1—=1/2" Tp, Tapn Ty —Tn —1/2

(6)

and
1 1 1 1
(M

< - .
T Tond 12 T T " Toa - Tom +1/2

For, if the inequality (6) holds for n > 1, then

1
Tp—Tp1—1/2
S S =
Tn Tn+1 Tn+2 - Tn+1 - 1/2
SULIVIS SIS S S ;
Tn Tn+1 Tn+2 Tn+3 Tn+4 - Tn+3 - 1/ 2
1 1 1 1 1 1

>t e—tm—tm—t ot
Tn Tn+l Tn+2 Tn+3 Tn+4 Tn+5

It is similar for (7).
Our attempt is to rewrite (6) as
1 1 1 1

Tt Tos—12 T, " Tom T Tot Toms —1/2

- LA ()
TootTos—1/2 TotTom—1/2° Tort

2Tn 1
& T2t Toa = 1) Gn t Do = )
— Tn +Tn—l - Tn—2 — Tn—3 _1_ (1 + T )
Tzt Tos— D) (Tt Ten = 1)~ T T

< 2>U(n),

where
_ T, 2T 1—1 2T 2—1 Th_3
Un) = (1 + Tn+1) (1 + ST, ) ( T + T,)"
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Similarly, (7) is equivalent to
2< P(n),
where _
P(n) = <1 + Til) (1 + 2T"2'71,n+ 1) (21;‘:;:: Ly ?::i‘) .
However, to prove (6) and/or (7) may not be so easy, because
numerical evidences imply

Un) /~1.999... and P(n)\,2.000...(n — 00).
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