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Abstract

In this paper, the authors discuss the values of a class of generalized

Euler numbers and generalized Bernoulli numbers at rational points.
1. Introduction

We first give some notations. Let Z be the set of integers. Let Ny be
the set of nonnegative integers. For n € Ny, the Euler polynomials E, (u)

and the Bernoulli polynomials B,,(u) are defined by

meum
;{)E() ——m+1 and 1;)3 (u) =T

Obviously, 2"E,(1/2) = E, and B,(0) = B, are the Euler numbers

and Bernoulli numbers, respectively. Euler numbers, Euler polynomials,

Bernoulli numbers, and Bernoulli polynomials have important application
in many subjects, especially in function theory and analytic number the-
ory. The values of Euler polynomials and Bernoulli polynomials at rational
points have been receiving much attention (see [1-2] or [5-8]). For example,
for Euler polynomials E, (u), Fox [2] proved that for a rational number /s,
S™(En(r/s) + (—1)""1E,(0)) € Z for every n > 0, and Sury [6] extended
this result: s™Ey(r/s) € Z if s is even and s™(Ep(r/5)+(—1)""1E,(0)) € Z
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if 5 is odd. For Bernoulli polynomials By (z), Almkvist and Meurman {1]
showed that s™(B,(r/s)— Bn(0)) € Z for every n > 0, and a simple proof of
this was given in [5]. Inspired by the above conclusions, we want to discuss
the values of a class of generalized Euler numbers €,(u) and generalized
Bernoulli numbers 8,,(u) at rational points. For convenience, we introduce

the definition of £,(u) (see[3]). For u € {1,1+ ],
2y aw (1)
n=0
For the application of &,(u), see [3-4]. Similarly, 8n(u) is defined by

(u—1)z
ugelv~? 1 _ Z.@n(u :z:_l @
n=0 n

It is clear that £,(1) = E, and B,(1) = B,. Now we give the generalizations

of £x(u) and B (u), respectively. For each positive integer k, we define

k k:r:
S S g

and

k(u 1)}z z"
a0k

n=0

(

The aim of this paper is to investigate values of e,(u), Bn(u), €n )(u) and

ﬂ,(;k) (u) at rational points.
2. Main Results

We first prove a lemma before we give the main results of this paper.

Lemma: For &,(u) and Bn(u)(n > 0),

: 2" Pe,(u)
()

2u
eo(u) = T enlu) =
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-1
ﬂO(u) 0, ,31(‘”) — a ﬁn(u) —'I.L(u - 1)"’_27), + Z ( )ﬂﬂ(u)

for u€(1,1+5], n>2.

(5)
Proof: It follows from (1) that
2ue” = ( Z + u) Zen(u)
m=0 n=0
Then
z" = z"
2uz;]n| z;(zoep u)( )2n—p)m+uz;)en(u)m. (6)
n= n=i p= n=

Comparing the coefficients of fz—',' on both sides of (6), we have

2u = Ze‘p(u)( )2"-" + uen (u).

p=0
Naturally, (4) holds.

Similarly, from (2) we can prove that (5) holds.  This completes the

proof.

Theorem 1: For any arbitrary rational number r/s with r/s > 1 and

5 > 0, we have for each n that
(i) (r+s)™*en(r/s) is even and (r + s)"*Hle, (r/s) = O(mod (2r));

(i) (r+8)"* (en(r/s)—En) € Z, (r+5)"*(en(r/s)— En) = O(mod (r—
), and (1 + )™ (en(r/s) + En) € Z;

(iii) (r + s)** (en(r/s) — En) and (r + s)*+1(e,(r/s) + En) are even

when r and s are odd.

Proof: We only give the proofs of (i) and (ii) and the proof of (iii) is

omitted.
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(i) Let An = €q(r/s). We prove that (r + s)**1Ay, is even and (r +
s)"*t1A,, = 0(mod (2r)) by induction.

Clearly, Ag = 2r/(r + s), (r + s)Ao = 2r is even, and (r + s)Ag =
O(mod (2r)). Assume that (r + s)"An_; is even and (r + s)"An—1 =
0(mod (2r)) when n > 2. It follows from (4) that

n-1
A, = pA ()A,, n>1.

'r+s T+ sto

Then
n—1 n
(s+7)An+s z n—tQ, (t) = 2r,
t=0

n-—1
(s+r)" A, =2r(s+7)" —s Z 2" ts+ 1)t A4, (T:) (s+r)" L
t=0

Taking into account the fact that 2r(r + s)™ and (r + s)**! A, are even and
(r+s)t+1A, = 0(mod (2r)) when 0 <t < n—1, we see that (s +7)"+1 4,
is even and (s + )"t A, = 0(mod (2r)).

(ii) Let By, = en(r/s) — E,. Evidently, Bo = (r—s)/(r+3s), (r+8)By =

r—s€ Z,and (r+s)Bo = 0(mod (r—s)). Suppose that (r+s)"Bn—1 € Z
and (r 4 8)*Bp—) = 0(mod (r — s)) when n > 2. It follows from (1) that

iB z” 2(r — s)e3®

e T osefT 4 (r+s)e= 41

Then
[= ]

(s 4’z (r+ s) ) )
n=0 n=0 n=0 n=0

Comparing the coefficients of %“r on both sides of (7), we obtain

n—1
2(r +5)Bn +sy_ 22" ( )B, +(r+s) Z gn-t (’:) B,
t=0

t=0
=2(r—-s)x3", n=>1Ll
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Hence

n-1 n—1
(r+s)"B, = —5) 2221y 4 )" B, (") =Y e 4 5) B, (’t‘)

t=0 ¢ t=0
+3%(r — s)(r + s)™.
By assumption (r + s)*+1B, € Z and (r + s)**! B, = 0(mod (r —s)) when
0 <t < n-1, wehave (r+s)"*!'B, € Z and (r+s)"*'B, = 0(mod (r—s)).
Using the same method, we can show that e,(r/s) + E, € Z.  This

completes the proof.

Now, for Theorem 1, we give some special cases of (i-ii). Putting r = 3,

s =2, G, = 5""1¢,(3/2), and H,, = 5""!(e,(3/2) — E,,) we have
Go=6, Gy =6, Gp=—138, Gs=—T14,

n—1
G,=5"x6 -42 10"'1“(’:)@, n> 4.

t=0

Hy=1, H, =6,

n-~1

n—1
H,=15" -4 Z 20m—1-¢ (’t') H, -5 Z 10"-1-‘(7:) H;, n>2.
t=0 t=0

Corollary 1: Let k be a positive integer with k > 1. Then (r +
s)*+%e{(r/s) is even and (r + s)"*+*e{® (r/s) = 0(mod (2r)*).
Proof: Let C,, = (r + s)"+%¢{)(r/s). It follows from (3) that
n _ (2r)k(r+s)kek(r+s)z

>, T
Z Can ? - [362(r+s):r: + ,,.]k

n=0

Noting that

(21‘)k(r+s)kek(r+a)x oo e o x
[se2r+s)e ok Z("'"‘S) + 8,(1)(7'/3)5 ,

n=0
we have that

nl(r + s)1*1e; (r/s) - - (r + s)+e;, (v/s)
G= X il i) —

iy tip=n
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We have shown that (r + s)"*1e,(r/s) is even and (r + s)"*lea(r/s) =
0(mod (2r)). Hence Cy, is even and C,, = 0(mod (2r)*).  This completes
the proof.

We note that Corollary 1 generalizes (i) of Theorem 1.

Theorem 2: For any arbitrary rational number 7/s with /s > 1 and

s > 0, we have for each n that
(i) s"Bn(r/s) < 0;
(ii) (s — r)"s™Ba(r/s) is even when  or s is even;
(iii) (s = 1) Bu(r/5) € Z and (s — r)*s"Ba(r/s) = O(mod (rs)).

Proof: Let D, = s™B,(r/s). It is not difficult to verify that

s

D=0 and D, = <0,

Assume that D,_; < 0(n > 3). Now we show that D, < 0. From (5) we

have

n—1
(s —7)Dy =7s(r —8)* n—s 2 D, (;) "7 n2>2,

p=0

1‘—8":0

n—1
Dp=—rs(r —s)" *n+ 2 Z D, (::) P n>2. (8)

Since D, < 0(0 < p < n-—1) and ;2 > 0, D, < 0. This proves by

r—s

induction on n that D, <0 for all n.

From the above proof, we know that (s — r)"Gnp(n = 0,1) is even.

Assume that (s —7)*~! D, is even when n > 3. By means of (8), we have

n—1
(s =7)"Dp = —(~1)"rs(r — s)z"'2 + (-1)"s Z(r - s)“‘lDp (n) s, (9
p=0 P

Due to (9) and (s — r)PD,(0 < p < n —1) is even, (s — r)" Dy is even.

The proof of (iii) is omitted.  This completes the proof.
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Corollary 2: Let & be a positive integer with & > 1. Then

(i) s"ﬁ,(,k)(r/s) <0if kis odd and s",B,(.k)(r/s) > 0 if k is even;

(ii) (s — r)nsmpP (r/s) is even if r or s is even;

(iii) (s — )5 (r/s) € Z and (s — r)*s" B (r/s) = O(mod (rs)*).

The proof of Corollary 2 is omitted and we leave it to the readers.
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