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Abstract

In 1968, Vizing conjectured that for any edge chromatic criti-
cal graph G = (V, F) with maximum degree A and independence
number a(G), a(G) < l—l This conjecture is still open. In this
paper, we prove that a(G) < 32|V for A = 11,12 and oC) <
HA=B|V| for 13 < A < 29. This improves the known bounds for
A'e {11,12,.-,20}.
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1 Introduction

Throughout this paper, let G = (V(G), E(G)) be a simple graph with n
vertices and m edges. A k-vertez, (> k)-vertez or (< k)-vertez is a vertex
of degree k, at least k or at most k. We use dg(z) (or d(z) if there is
no confusion) to denote the degree of = for z € V(G). We call k-vertices
adjacent to = k-neighbors of z and define Nj(2) to be the set of k-neighbors
of z and di(x) to be the number of k-neighbors of z. Similarly, we define
(= k)-neighbors, (< k)-neighbors, N>x(z) and N<i(z) , d>k(x) and dgi(z).

Let A(G), 4(G) (or A, &) be the maximum degree and minimum degree of
G, respectively.

An edge coloring of a graph is a function assigning values (colors) to
the edges of the graph in such a way that any two adjacent edges receive
different colors. A graph is edge k-colorable, if there is an edge coloring of
the graph with colors from {1,---,k}. In 1965, Vizing proved a theorem
which states that if G is a graph of maximum degree A, then the edge
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chromatic number x'(G) of G is either A or A+1. A graph G is said to be
of class one if x'(G) = A, and it is said to be of class two if x'(G) = A+1.
G is said to be critical if it is connected, class two and x'(G — e) < x'(G)
for every edge e € E(G). A critical graph G of maximum degree A is called
a A-critical graph. The following conjecture about A-critical graphs was
proposed by Vizing in 1968.

Conjecture 1.1[9] Let G be a A-critical graph with n vertices, then
n
< —.
a(G) < 5

Conjecture 1.1 is still open so far. The following are some results to-
wards this conjecture.

Theorem 1.2[1] Let G be a A-critical graph with n vertices, then

(1) aG) < Gt Wln k= |\/A@G)+1+1}).

2) «G)<Z.
3A-2, f3<A <6,

A9
(3) a(G’)<{ Agn if7<A<10.

In 2004, Griinewald and Steffen[2] verified this conjecture for critical
graphs with many edges and in particular, they verified the conjecture for
overfull critical graphs.

The following two results are due to Luo and Zhao.

Theorem 1.3[5] Let G be a A-critical graph with n vertices and A
then o(G) < 3.

Theorem 1.4[6] Let G be a A-critical graph with n vertices, then

Nl:ﬂ

2=2n f7<ALI,

a(G) < { 5%, if11<ALIO.

In this note, we get the following better bounds for a(G) for A €
{11,12,---,29}.

Theorem 1.5 Let G be a A-critical graph with n vertices, then

3A-2 H
EA—in 1f11$AS12,
a(G) < { HA-50, jf13<A<2.

2 Lemmas
Lemma 2.1(Vizing Adjacency Lemma, or VAL[9]) Let z be a vertex of

a A-critical graph. Then
(@) if di(z) > 1, then da(z) 2 A -k +1;
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(%) da(z) 2 2.

Lemma 2.2(7,10] Let G be a A-critical graph, zy € E(G), and d(z) +
d(y) = A + 2. Then the following hold:

(1) every vertex of N(z,y) \ {z,y} is a A-vertex,

(2) every vertex of N(N(z,y)) \ {z,y} is of degree at least A — 1,

(3) if d(z),d(y) < A, then every vertex of N(N(z,y)) \ {z,y} is a A-
vertex.

Lemma 2.3[4] Let G be a A-critical graph with A > 5 and z be a
3-vertex. Then there are at least two A-vertices in N(z) which are not
adjacent to any (< A — 2)-vertices except z.

Lemma 2.4[4] Let G be a A-critical graph with A > 6 and let z be a
4-vertex.

(1) If z is adjacent to a (A — 2)-vertex, say y, then N(N(z)) \ {z,¥} C
VA:

(2) If z is not adjacent to any (A —2)-vertex and if one of the neighbors
of z is adjacent to three (< A — 2)-vertices, then each of the other three
neighbors of z is adjacent to only one (< A — 2)-vertex, which is z,

(3) If = is adjacent to two (A — 1)-vertices, then each of the two A-
neighbors is adjacent to exactly one (< A — 2)-vertex, which is z.
Lemma 2.5[3] Let z be a 5-vertex in a A-critical graph G and suppose
that = has a (A — 2)-neighbor w.

(1) If w is adjacent to one (< A — 2)-vertex, other than z, then all
the remaining four neighbors of = are all A-vertices and each of them is
adjacent to (> A - 1)-vertices except z,

(2) If wis adjacent to only one (< A —2)-vertex which is z, then there

are three (> A — 1)-neighbors of z including at least two A-neighbors y
satisfying the following situations: if it is a A-vertex, then it is adjacent to
at most two (< A — 2)-vertices; if it is a (A — 1)-vertex, then it is adjacent
to one (< A — 2)-vertex which is z.
Lemma 2.6 Let G be a A-critical graph with A > 9 and let  be a
5-vertex. If z is not adjacent to any (< A — 2)-vertex and if one of the
neighbors of z is adjacent to four (< A — 3)-vertices, then each of the other
four neighbors of z is adjacent to only one (< A — 3)-vertex, which is z.

The proof of Lemma 2.6 is similar to that of Lemma 2.5 in [3]. We
contain it for completeness and put it in Appendix.

3 The independence number of critical graphs

Proof of Theorem 1.5
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Let G be a A-critical graph. Let S C V be an independence set,
and let T =V \ S. For i € {2,3,---,A}, let s; denote the number of i-
vertices in S. Let A = {vwv; € Elv, € T,v, € § with d(vs) < A} and
A; = {ww, € Elv, € T,v, € S with d(vs) = i}. Clearly, |A;| = is;. We
define f(vivs) : A = R with v, € T,v; € S as follows:

(l) if d(vs) ¢ {3’4a 5}a then f(’Ut'Ug) = W'
(ii) if d(v,) = 3, then
f(vews) = § if v, is adjacent to exactly one (< A — 2)-vertices in
S distinct from v,,
f(vv,s) = F=5 otherwise.
(iii) if d(vs) = 4 then
f(vews) = 1 if v, is adjacent to exactly two (< A ~ 2)-vertices in
S distinct from v,,
fluwg) = ﬂAA—‘—_sﬁ if v, is adjacent to exactly one (< A — 2)-vertex
m S distinct from v,
f(vw,) = £=3 if v, is adjacent to no other (< A — 2)-vertices in
S distinct from v;.
(iv) if d(v;s) = 5, then
flogvs) = ;11- if v, is adjacent to exactly three (< A — 3)-vertices
inIS distinct from v;, .
= - ———| if v, is adjacent to
f(thS) m [1 :z:GN‘(VhZU:o)’d(ﬁ)ZG d(x)_ll t !
three (< A — 2)-vertices (in which there is at least one
(A — 2)-vertex) in S distinct from vs, where dg(v;) is
the number of 5-neighbors of v; in S and N~ (v, v,) is
the set of (< A — 2)-vertices in N(v;)[) S\ {vs}, and
it is easy to check that f(v.v;) > 7—-)-%‘_4:,‘ in this case,
fluws) = 5(%‘—_355 if v; is adjacent to exactly two (< A — 2)-vertices
(the two (< A — 2)-vertices are all (< A — 3)-vertices)
in S distinct from vs,
fvews) = ﬂli\.;-ssj if v, is adjacent to exactly two (< A — 2)-vertices
(in which at most one of the two (< A — 2)-vertices is
a (£ A — 3)-vertex) in S distinct from v,

flvgwg) = 'ﬂAA;fz'i if v, is adjacent to exactly one (< A — 2)-vertex
m .S' distinct from v;,

fluws) = 3= 5 if v, is adjacent to no other (< A — 2)-vertex in S
dlstmct from v;.
(Remark It is easy to check that % < 3(%_43) < 3(A 2) < 263— -3 <

w < A_2 whenA>8)
Let v € T such that v is not adjacent to a vertex w in S with 3 <
d(u) < 5, and let d be the minimum degree of a neighbor of v in S. Then
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by VAL, v is incident with at most d — 1 edges in A. Hence we have that

2 flowg) < ZT} =
VU, EA
Let v € T such that v is adjacent to a 3-vertex u in S. By VAL, v

is adjacent to at most one (< A — 1)-vertex in S distinct from u. If v is
not adjacent to any (< A — 1)-vertex in S distinct from u, then by (ii)
Z flvvs) = f(vu) = 222 < 1. If v is adjacent to a (< A — 1)-vertex in

VU4E

S dlstmct from u, call it w. If d(w) ¢ {3, 4, 5}, since d(w) # 2 we have that
> flwvs) = flvu) + flvw) = § + REI)——I < 1. If d(w) = 3, by (ii), we
vv;€EA
have that ) f(vvs) = f(vu) + f(vw) = § + § = 1. If d(w) = 4, by (iii)
vv, €A

we have that  3°  f(vv,) = f(vu) + flvw) =  + 7"3;__325 < 1. If d(w) =5,

VY€

by (iv) we have that Z fvv,) = flvu) + flow) = 3 + 2(A 2) <L

Let v € T such that v is adjacent to a 4-vertex u in S. By VAL, v is
adjacent to at most two (< A — 1)-vertices in S distinct from u. If v is
not adJacent; to any (< A — 2)-vertex in S distinct from u, then by (iii),

f(vu) = 2=%, and we have that Y f(wv,) < =+ S+ x5 =1
v, EA
If v is adjacent to exactly one (< A- 2)-vertex in S distinct from u, call

it w, then ZAf(vvs) < 2(A 2) + 3 7725 +gz5=1or ZAf(vv_.,) <
vv,e UvaE

2(A-25 + Z"_-z tgm<lor ¥ flww,) < ‘2(A"_5_-2 + d(w)—l +as <1

vy, €A
according to wether d(w) = 4 or 5 or > 6. If v is adjacent to exactly
two (< A — 2)-vertices in S distinct from u, call them w, 2, then by (iii)
flovs) S 3 x8=1lor<ix2+ ;53 <10r$-1-+2A:3 <lor
vv%/% ( 3) @3-y HA-2
< -._1;+3(AA—"_2;+ <lor<i +-2—(A—_—_-§5+ <lor<1+42x$} <1according
to if {d(w),d(2)} = {4,4},{4,5},{5,5},{5,i(6 < i < A -3)},{5,5(5 >
A—- 2)}7 or {k(k > 6)’l(l 2 6)}
Let v € T such that v is adjacent to a 5-vertex u in S. By VAL, v is
adjacent to at most three (< A — 1)-vertices in S distinct from u. If v is
not adjacent to any (< A — 2)-vertex in S distinct from u, then by (iv),

fvu) = A 2, and we have that ) f(vv,) < ﬁ S +3x g =1 1If
vv,EA
v is adjacent to exactly one (< A - 2)-vertex m S distinct from wu, call
it w, then flvy) < +7_5+ =1lor flvv,) <
002.4 ( S) 2(A 2) A 2 vv%A ( 3)
A— .
2= +aey=1 T ace < a(azn T athon Tazs = 1 (since iy < o8
when d(w) > 6 and A > 6) according to wether d(w) = 5 or d(w) > 6.
If v is adjacent to exactly two (< A — 2)-vertices in S dlstmct from wu,

call them w, 2, then by (iv), we have Flovg) €8 A3+ L5 =1
(iv) wéA (v0s) <3+ 5625y + a3
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or< 2. 7—7’2‘32 +ti+ gz <lo<2 A5 +55+z5 <lor
< m +2- % + x5 <1 according to if {d(w),d(z)} = {5,5}, {5,i(6 <
i< A- 3)},{5,j(j > A —2)},0r {k(k > 6),l(l > 6)}. If v is adjacent to
three (< A- 3)-vertlces inS dlstmct from u, call them w, y, z, then by (iv),

flou) < L, flow) < L, f(vy) < fend f(v2) < 4,80 Y f(vws) < 1L Ifwis
vY,EA
adjacent to three (< A — 2)-vertices (in which there is at least one (A —2)-

vertex)in S distinct from u, then by (iv), we have that > f(vvs) <
YU, €A

di(ve) - 7851 - =l 1 =1
ST & ‘)[ :eN-(uE;.),d(z)zs o= 1 meN-(vE::,),d(z)as d=)-1
Hence ,
A-1
Tl Y fw) =D fle)=2 > fle)
v€T,vv,€A eEA =2 e€A;
Clearly, for i ¢ {3,4,5,A}, we have that Y f(e) = £. We need to
e€A;
estimate Z f(e) for i € {3,4,5}. First we consider ) f(e). By Lemma
e€Ag

2.3, for each 3-vertex v, € 8, it is adjacent to at least two A-vertices in T'
that are not adjacent to any (< A —2)-vertices except vs. Thus by (ii), each
3-vertex in S is incident with at least two edges e € A3 with f(e) = 2=3
and we have that Y f(e) > %+ —(%—_—321’3’-.
e€EAs3
Now we consider Y. f(e). By Lemma 2.4, for each 4-vertex v; € S,
e€Aq
either it has one neighbor in T that is adjacent to three (< A — 2)-vertices
and each of the other three neighbors is adjacent to only one (< A — 2)-
vertex in S, that is v, or each of its four neighbors is adjacent to at most
two (< A — 2)-vertices in S. Thus by (iii), each 4-vertex in S is either
incident wn:h one edge e € A4 with f(e) = 3 and three edges e 6 A with
f (e') = £=5 or incident with four edges e € A4 with f(e) > 2(—7. Since
P+ 3(A 4) > ;7(2—23 for A > 7, we have that eezA f(e) > %
4
Then we consider Y f(e). For each 5-vertex v, € S, if v, is adjacent
e€As

to a (A — 3)-vertex, then by Lemma 2.2 all the neighbors of v are adjacent
only to A-vertices in S (if any) except vs, by (iv), v, is incident with five
edges e € A5 with f(e) = ﬁ; if v, is adjacent to one (A — 2)-vertex or is
only adjacent to (= A — 1)-vertices, then by Lemma 2, 5 Lemma 2.6 and

(iv) we have that Y f(vsv) > 2_(AA_-_12.). +4. A 5 or > 4541 +ﬁﬂ§

WG

or > 4+4 7_52A—3 or>5: 7—-53A_3 .
when A > 7, it is easy to check that
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. - - -5 A— 3(A—4 -
II;‘Z{&H’QTAA_—%S""L%%’%T%*‘Z*'Z%A 2;’ :11+4'2(AA—53)’ 3(A-3j} =
° easy- A-d
So we have that e) 2 5- 7 =x=ss.
eez;qsf( ) (az3)56
2(A -
AEND NS S I 30 ¥ PO WE WGl L
veT,vv,€EA eEA i=2 e€A;
4(A - 3)34 S(A - 4)85 686 (A - I)SA_I
to@oy taaos Ty Tt A 2)
A
Since G is critical, so [T|A > Y is;. Thus
=2
S A-i
71> Lomis- 30 A2k, 3)
=2 =2

Combining (2) with (3) as (2) + 225(3), we have tha.t
BT > 25151+ 3 + 2 + a4 - o50es + T 2T

For A =11,12, %(nz 4—2 > 0, and 20 12)(;_2) >0whenz>6
So we have that |T| > ;225 |S| Since n = |S| + |T| > gﬁ:ngl, so

|S] < gﬁ gn Hence we have that a(G) < gﬁ‘gn when A =11,12.

Combining (2) with (3) as (2) + m@)’ we have that %%ﬁ:—g?]Tl >

a-1
64 i 6(A—i
5(A—_65|SI + agss + a3s3 + a484 + asss + Z (% - éx—s})si, where ap =
__6A A2 28-3)  _6A A 3 4(A-3 a4,
2-sa—g R a3 =5+ 75 5a-6) 4% = 33=3 7—A HN

a5 = SR8 — 5585 - A58 When A > 12, a; > 0 for i = 2,3,4,5. And

71— S(a=g > 0 when i z 7 and A < 29. So PA=R|T| > 55885]S], then
we have that |S| < H2=32n. That is (G) < 44=30n when 13 < A < 20.

This completes the proof of Theorem 1.11.

4 Appendix

Let the edges of a graph be colored with colors from C = {1,---,k} and let
u € V. If an edge incident with u is colored i, we say u sees i. Otherwise,
we say u misses i. Let 4,5 € {1,---,k}, an i — j edge chain is a chain of
edges colored alternatively ¢ and j. Let L; j(u) denote the maximal i — j
chain starting from u if « misses i or j.
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Let G be a A-critical graph and zy be an edge of G. Consider G—zy that
is edge A-colorable. Let f be an edge coloring of G — zy from E(G) \ {zy}
to {1,2,---,A}.

Then there are the following facts about f.

Fact 1[4] Let u € N(z)\ {y} and the edge zu be colored k. If y misses
k, then u sees every color seen by only one of z, y.

Fact 2[4] Let u # y be a neighbor of « and v # z,y be a neighbor of u.
Assume that uz is colored k and uw is colored I, and that d(z) < A. If k is
missing at y and [ is missing at either z or y, then v sees every color seen
by only one of z, y.

Proof of Lemma 2.6 Let N(z) = {y,2,u,v,w} where d<a_s(w) = 4
We only prove the lemma for d(u) = d(v) = d(w) = d(y) = d(2) =

For other cases, a similar argument can be applied. Assume that NV (y)
{z,y2,y3,"**,ya} and N(w) = {z,ws,ws,--+,wa}. Consider G — zw.
Since G is critical, G — zw has an edge A-coloring. Without loss of gen-
erality, we assume that yy; and ww; are colored %, zy is colored 1, zz is
colored 2, zu is colored 3 and zv is colored 4.

Claim 1. d(w;) <A -3 ,fori=2,3,4.
Proof of Claim 1. Otherwise, without loss of generality, suppose that
d(w3) > A — 2. We consider the following two cases.

Case 1 d(wg)>A-2.

Since d<a—3(w) = 4, there are two vertices wy, wy € N(w) with p,¢ >4
such that d(wp) < A—3 and d{wg) < A-3. By Fact 1(taking w as ¢, and
as y), wp and w, see all the colors in {1,5,- -+, A}. Therefore, wp, wq both
miss colors 2,3,4. Let £ > 5 and k # p, q (such k exists because A > 9). If
Ly, 2(wp) doesn’t end at z, swap colors along Li,2(wp). Then w, misses the
color k& which is seen by w but not by z. It contradicts Fact 1. Therefore,
Li2(wp) ends at . Similarly, Ly 2(w,) also ends at z. It contradicts that
Li,2(wp) and L 2(w,) are either identical or disjoint.

Case 2 d(wp) < A-3.

Then d(w,) < A — 3 for some p > 5. Using an argument similar to the
one in Case 1, one can conclude that d(w,) = A —3 and w, misses colors 2,
3, 4. If wo misses a color k > 5 and k # p, then by our observation at least
one of the paths Lo x(wp), Lg k(w2) doesn’t end at z. If Ly x(w2) doesn’t
end at x, swap colors along L x(w2). Then wws is colored k and ww, is
still colored p. Note that both k and p are not seen by z. We are back to
Case 1. If Lo x(wp) doesn’t end at z, swap colors along Lz x(wp). Then wy
misses k& which is seen by w but not by . It contradicts Fact 1. Thus wq
sees all the colors in {5,6,---,A}\ {p}. Since d(wz) < A—3, wz must miss
oneof 1,p. Let k € {5,6,---, A}\{p}. If wy misses 1, then L, x(w2) doesn’t
pass z. Swap colors along L; (w2). Then wy misses k € {5,6,---,A}\{p},
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a contradiction. Thus wy misses p and sees 1. Since L) ,(w2) passes neither
z nor w, swap colors along L; p(wz). Then w, misses 1, a contradiction.
Thus Claim 1 is true.

Claim 2. If w; misses a color k € {5,6,-+,A} for ¢ = 2,3, 4, then L; j.(w;)
must end at z.
Proof or Claim 2. Otherwise, swap colors along L; x(w;). Then w; misses
i and ww; is colored k which is not seen by z. By Claim 1, d(w;) = A, a
contradiction.

Claim 3. d(y;) > A — 2 for each 7 > 5.

Proof of Claim 3. Otherwise, suppose that d(y;) < A — 3 for some i >
5. Then y; sees all the colors except 2,3,4 by Fact 2, and therefore,
d(y;) = A — 3. If wp misses a color £ € {5,6,---,A} and k # i, then
by Claim 2, Lj(ws) ends at = and thus doesn’t pass y;. Swap col-
ors along Lg x(wz2). Then z sees k but not 2. By Fact 2, y; must see
2, a contradiction. Therefore, wo sees every color in {5,6,---,A} \ {i}.
Moreover wep also sees the color 1, otherwise, swap colors along the path
Ly j(w2)(7 € {5,6,---,A}\{i}), which doesn’t pass . Then w2 misses the
color j, a contradiction. Similarly, we can prove that ws also sees . Thus,
wy only misses 3, 4. It contradicts Claim 1 which claims that d(w;) < A-3.
Therefore, d(y;) > A — 2.

Claim 4. d(y;) > A—-2fori=2,3,4.
Proof of Claim 4. We will prove d(y2) > A — 2. The cases d(y3) > A —2
and d(y4) = A — 2 are similar. By contradiction, suppose d(y2)} < A —3.

Claim 4-1. Every color in {1,2,---,A} is either seen by ws or by ys.

The proof of Claim 4-1 is divided into three steps.

First, we prove that each color in {5,6,---,A} is seen by either y, or
wy. Otherwise, suppose that both ws and y2 miss a color kin {5,6,---,A}.
By Claim 2, La(w;) ends at z and thus doesn’t pass ys. Swap colors
along Ly (wz). Then 2 is not seen by z. By Claim 3, d(y2) > A -2, a
contradiction.

Second, we prove that 1 is seen by either ws or yo. Otherwise the paths
Ly 5(w2) and Ly 5(y2) don’t pass z. Swap colors along Ly s(ws) U Ly 5(y2).
Then neither y2 nor ws sees 5, a contradiction. Therefore, 1 must be seen
by y2 or wa.

Third, we prove that each of 3 and 4 is seen by either ws or yo. Without
loss of generality suppose that neither ws nor y, sees 3. If there is a color
k € {5,6,---,A} not secen by ws, then by Claim 2, Lg x(w3) ends at z and
passes neither ys nor ws. Swap colors along L3 x(w2) U L3 x(y2). Then k&
is not seen hy both y» and ws, a contradiction. Thus w3 sees every color
in {5,6,---,A}. If ws miss 1, then L; 5(w3) doesn’t pass z. Swap colors
along L) s(ws). Then ws doesn’t see 5, a contradiction. Thus w3 sees 1
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and one can conclude that d(ws) > A — 2, a contradiction. This completes
the proof of Claim 4-1.

Since d(wz) < A—3 and wy sees 2, we must miss a color in {1,5,6,---,A}.
Without loss of generality, we assume that wo misses 1. In the following,
we consider two cases:

Case 4-1 There are two colors, say p, g, in {5,6,---,A} such that wy
misses ¢ and y, misses p. Then w, sees p and y sees ¢ by Claim 4-1.

Note that in this case, w and wo both miss 1. We change the color of
wwsy into 1. Then 2 is seen by z but not by w in the new coloring. Then
Lo p(z) ends at w and doesn’t pass wp, y2. Swap colors along Ly p(z). Now
z sees 1, p, 3,4 and w doesn’t see p. Thus Ly ,(wz) doesn’t pass z and w.
Swap colors along Ly q(w2). Then w and wy both miss p. Recolor the edge
wws with p. Note that p,3,4 are seen by both = and w, zy is colored 1,
and yys is colored 2. Hence d(y2) > A — 2 by Claim 3, a contradiction.

Case 4-2 There are no such two colors described in Case 4-1.

If wo misses a color k € {5,6,---,A}, then 2 sees k by Claim 4-1 and in
fact, yo sees every color in {5,6,---,A} since there are no such two colors
described in Case 4-1. Since d(y2) < A — 3, we have d(y2) = A — 3 and
yo misses colors 1, 3, 4. It contradicts Claim 4-1 since wg also misses 1.
Therefore, wo sees every color in {5,6,---,A} and ws misses colors 1, 3,4.
Hence, y» sees 1, 3, 4 and yo must miss at least three colors in {5,6,---,A}
since d(y2) < A — 3. Without loss of generality, assume that y, misses 5, 6
and 7. Note that Lg 4(w2) and Ls 4(y2) are either identical or disjoint. If
they are disjoint, then one of them doesn't end at z. If Lg4(w2) doesn’t
end at , swap colors along it. Then wo misses 5. Note that y also misses
5. It contradicts Claim 4-1. If L 4(y2) doesn’t end at z, swap colors along
it. Then neither ws nor ys sees 4. It contradicts Claim 4-1. If Lg 4(y2) and
Ls 4(w2) are identical, the two ends of the path are y» and we and hence,
it doesn’t pass z. Swap colors along Ls 4(w2). Then ws sees 6 and misses
5 and y» sees 5 and misses 6. Thus, colors 5, 6 become the colors described
in Case 4-1. So we are back to Case 4-1.

In both cases, we obtain a contradiction. This completes the proof of
Claim 4.

Claim 5. Each of z, u, v is adjacent to only one (< A — 3)-vertex.

Proof of Claim 5. Since d(ws) < A — 3, wo misses either 1 or a color
in {5,6,---,A}. If wp misses 1, recolor the edge wws with 1. Using an
argument similar to the one of Claim 4, one can prove that z is adjacent
to only one (< A — 3)-vertex. If wo sees 1, then it misses a color k €
{5,6,---,A}. Then L, (w2) doesn’t pass z. Swap colors along it to obtain
a new edge coloring. In this new coloring, we misses 1 and we are back
to the case that we just discussed. Since d(ws) < A — 3 and d(wq) < A3,
similarly, we can prove that u and v are adjacent to only one (< A — 3)-
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vertex. This completes the proof of Lemma. 2.6.
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