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Abstract

The k-th isoperimetric edge connectivity y:(G) = min{|[U,T]| : U C
V(G),|U| > k,|U| > k}. A graph G with 7x(G) = Bi(G) is said to be
yx-optimal, where Bx(G) = min{|[U,U]| : U c V(G),|U| = k}. Let G
be a connected d-regular graph. Write L(G) and P,(G) the line graph
and the 2-path graph of G, respectively. In this paper, we derive some
sufficient conditions for L(G) and P»(G) to be ~,-optimal.
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1 Introduction

Let G be a connected undirected graph with vertex set V(G) and edge set
E(G). The line graph of G is a graph L(G) with vertex set E(G), and two
vertices ujv1, ugve € V(L(G)) are adjacent in L(G) if and only if they are

adjacent as elements in E(G).

It is well known that for any graph G, the edge connectivity A(G) is no
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greater than the minimum degree 6(G). A graph G with A(G) = §(G) is
said to be A-optimal. By Lemma 3.1 and Lemma 3.2 in 7], we see that the
line graph of a 2-connected regular graph is A-optimal. We will generalize

this result to isoperimetric edge connectivity.

For any vertex set U C V, [U, U] denotes the set of edges with one end
in U and the other end in U = V \ U. For a positive integer k, the k-th
isoperimetric edge connectivity of G, proposed by Hamidoune et al. in [6],
is defined as

1%(G) = min{|[V,T]| : U c V(G),|U| 2 k,[U| > k}.

It is obvious that v, (G) exists for any positive integer k < |V(G)|/2. 11(G)
is exactly A(G). So, isoperimetric edge connectivity can be regarded as a
generalization of the edge connectivity. It also has a close relation with
restricted edge connectivity Ax(G) which plays an important role in mea-
suring the reliability of a network (see for example (3, 8, 9], restricted edge
connectivity is also called extra edge connectivity in [5]). In [10], the author
showed that Ax(G) coincides with vx(G) if G is a regular graph with girth
g 2 k/2. We are interested in maximizing vx(G).

Suppose |V(G)| = 2k. Let
B(G) = min{|[U,T| : U C V(G), U] = k}.

Clearly, 7x(G) < Bk(G). A graph G with vx(G) = Bx(G) is said to be k-
optimal. In this paper, we show that the line graph of a connected d-regular
graph G with either £(G) > 2k or £(G) = d is ~y,-optimal for k < d, where
£(G) is the connectivity of G.

The concept of path graphs were proposed by Broersma and Hoede
as a generalization of line graphs [4]. The r-path graph P.(G) is a graph
with vertex set V,.(G) = {ujua...u, | u1u2...u, is an r-path in G}, and two

vertices in P,.(G) are adjacent if and only if the union of the corresponding



paths in G forms a path or a cycle of length r + 1, in another word, if and
only if one can be obtained from the other by ’shifting’ the corresponding
paths in G.

It is shown by Balbuena and Ferrero [1] that a regular graph G with
A(G) = 4is y2-optimal. We will generalize this result in this paper, showing
that a regular graph G with A(G) = 2k is yx-optimal.

A vertex set U C V is called a ~yi-fragment, if |U| > k,|U| > k and
I[U,U)| = %(G). The cardinality of a minimum ~.-fragment is denoted
by ax(G). It is easy to see that a graph G is «;-optimal if and only if
ai(G) = k. We refer [2] for notation and terminologies not defined here.

2 Isoperimetric edge connectivity in line graph

An edge in E(L(G)) with the form {uv,uw} is called an u-edge. By the

definition of line graphs, the following lemma is obvious.

Lemma 1. Let S = [U, U] be an edge cut of L(G), and let u be a vertez in
V(G). IfU contains s vertices of the form uv, then S contains s(d(u) — s)
u-edges. In particular, if G is a d-regular graph and S contains u-edges,

then S contains at least d — 1 u-edges.

Theorem 1. Let G be a d-regular graph of connectivity k = x(G), and k
a positive integer with k < d. If L(G) is not yx-optimal, then v (L(G)) >
w(d—1).

Proof. Clearly, L(G) is (2d — 2)-regular. Since d > k, L(G) has k-cliques.
So B(L(G)) = k(2d - 2) — k(k - 1).

Let U be a yx-fragment of L(G). Since L(G) is not yx-optimal, we
have |[U| > k + 1. Set S = [U,U]. The theorem follows from the following

assertion and Lemma 1.
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Assertion. There exist  distinct vertices uy, ug, ...,ux € V(G) such that

S contains u;-edges (i = 1,2, ..., k).

By contradiction. Suppose S contains u;, ug, ..., us-edges with ¢t < k—1.
Thent<d-1.

We first show that any vertex in one of U or U, say U, has the form
wiug (i # 734,5 € {1,2,...,t}). In fact, if this is not true, then there are
v,v2 € V(G) \ {u1,u2,...,u;} such that vyw; € U for some w, € V(G),
and vowy € U for some wy € V(G). Let P = zoz;...z; be a (v, ve)-path
in G — {uy,ug,...,us}, where o = v; and z; = vp (note that such a path
exists since t < k). As zg & {u1,u2,...,u¢}, S contains no xo-edges. So, it
follows from zow;, € U that zoz; € U. Similarly, as z; & {u1,u2,...,us},
S contains no z;-edge, and thus z;z2 € U. Proceeding like this, we see
that 2;_1v2 € U. But then {z;_jv2,vow2} is a ve-edge contained in S, a

contradiction.

As a consequence, we have t > 3, since otherwise |U| = 1, contradicting
that U2 k+12>2.

Suppose u; occurs s; times in U. Then s; < |{uiu; | 7 # 4,7 €
t
{1,2,..,t}} =t -1 (i =1,2,..,t). Write f(s1,82,...,8:) = 2 si(d — s3).

1=
Then v (L(G)) = |S| = f(s1, 52, ---, t). In the following, we show that

f(sl) ooy 3&) > ﬁk(L(G))’ (1)

and thus arrive at a contradiction to the assumption that L(G) is not -

optimal.

Since |U| > k + 1, we have

D osi=2\U| 2 2(k+1). 2)

i=1
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So, (1) is equivalent to

S 82 — k(k+1)

h(s1, ..., s¢) & =L : <d (3)
S si—2k
=1
For fixed t, h(sy,...,5;) is maximum when sy = sy = .. =8, =t —1. So

h(s1,...,8¢) < g(t), where

tt—1)2—k(k+1)
9O=""r-p-%

Note that the denominator of G is greater than zero. So, when ¢ satisfies
t(t —1)® < k(k +1), it is obvious that g(t) < d. When ¢(t —1)? > k(k + 1),
g(t) is monotonously increasing, and thus g(t) < g(d —1). If d = 3, then

t < d—1=2, contradicting that ¢ > 3. So, d > 4. In this case, it is easy
to see that g(d — 1) < d (note that k < d). O

As a consequence, we see that

Corollary 1. Let G be a connected d-regular graph, k be an integer with
k <d. If &(G) > (2kd — k — k?)/(d — 1), then L(G) is ~x-optimal.

In particular, we have the following two sufficient conditions for a line

graph to be yx-optimal.

Corollary 2. Let G be a connected regular graph with connectivity k(G) >
2k. Then L(QG) is y-optimal.

Corollary 3. Let G be a connected d-regular graph with k(G) = d. Then
L(G) is yx-optimal for any k= 1,2, ...,d.

3 Isoperimetric edge connectivity in 2-path
graph

An edge in P»(G) with the form (zuv, uvy) is called an uv-edge.
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Lemma 2. Let G be a d-reqular connected graph with d > 2, and S = [U, U}
an edge cut of Py(G). Suppose there are s vertices in U with the form zuv
and t vertices in U with the form uvy, then S has s(d—1-t)+t(d—1—35)

uv-edges. So, if S contains uv-edges, then S contains at least d—1 uv-edges.

Proof. Note that P>(G) has d — 1 vertices with the form zuv and d — 1
vertices with the form uvy. So, U has d — 1 — s vertices with the form zuv
and d — 1 — ¢ vertices with the form uvy. Since every vertex with the form

zuv is adjacent to every vertex with the form uvy, the result follows. O

For an edge set S C E(P»(G)), write S’ = {(u,v) : S contains uv-edges}.

The following lemma is shown in [1].

Lemma 3. Let G be a connected graph with 6(G) > 2, and S = [U,T] an
edge cut of Po(G). If there exists a vertez uvw € U and a vertezuw'v'w' € U
with (u,v) € ' or (v,w) € S’ and (v',v') € S’ or (v',w') €S, then S’ is
an edge cut of G.

Theorem 2. Let G be a d-regular connected graph with 6(G) > 2, and
k a positive integer with k < d — 2. If Py(G) is not ~yx-optimal, then
(P (G)) 2 MG)(d - 1).

Proof. When d = 2, G & P»(G) & C,, which is obviously yx-optimal. So,
suppose d > 3.

Let U be a yx-fragment of P(G). Set S = [U,U], and suppose S’ =
{(us,v;)}t_,. Since P2(G) is not ~x-optimal, we have |U| > k + 1. Suppose
the theorem is not true, then |S$/| =t < A(G) by Lemma 2. So, 8’ is not
an edge cut of G. Then it follows from Lemma 3 that at least one of U
and U, say U, has the following property: for any vertex uvw € U, both
(u,v) € 8’ and (v,w) € §'.
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For each i € {1,...,t}, suppose there are s; vertices in U with the form
zu;v;, and t; vertices in U with the form w;v;y. Then, s; < [{zusv; |
(z,w) € &,(z,uw) # (wi,w)} < t-1, and ; < |{wvsy | (vi,y) €
8, (vi,y) # (ui,v:)}| <t — 1. Furthermore,

D (si+t) = 2U] > 20k + 1), @

i=1

and

t t

IS| = Z[si(d —1-t)+ti(d—1-s;))=(d- I)Z(si +1;) - 223&,-,

=1 i=1 =1
We are to show that
|S| > Br(P2(G)), 5)

and thus arrive at a contradiction. Since Po(G) is (2d — 2)-regular, we have
Be(P2(G)) < k(2d —2) - 2(k — 1). (6)
By (4) and (6), to show inequality (5), it suffices to show that

t
2(2 siti — k + 1)
i=1

: <d-1
S(si+t;) —2k
i=1

The maximum of the left term is realized when s; = t; =t—1(i = 1,2, ..., t).
So, it suffices to show that

(t-12—k+1
tt-1)—k

PO <d-1. ()

Note that g(t) is monotonously increasing. So, g(t) < g(AMG) - 1) <
g(d—1). Since k < d — 2, we have g(d — 1) < d—1. So (7), and thus (5)
is proved. |

Combining Theorem 2 with inequality (6), we see that
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Corollary 4. Let G be a d-regular connected graph (d > 2), and k a positive
integer with k < d—2. If M(G) > 2k — E%k—_-'#, then Po(G) is yx-optimal.
In particular, we have

Corollary 5. Let k be a positive integer, and G a d-regular connected graph
with M(G) 2 2k (d 2 4). Then Pa(G) is ~y,-optimal.

Corollary 6. Let G be a d-regular connected graph with A(G) = d > 2.
Then for any positive integer k < min{(d+1)/2,d—2}, P»(G) is yx-optimal.
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