Isoperimetric Edge Connectivity of Line Graphs and Path Graphs *

Zhao Zhang[†] Fengxia Liu
College of Mathematics and System Sciences, Xinjiang University
Urumqi, Xinjiang, 830046, People's Republic of China

Abstract

The k-th isoperimetric edge connectivity $\gamma_k(G) = \min\{|[U,\overline{U}]| : U \subset V(G), |U| \geq k, |\overline{U}| \geq k\}$. A graph G with $\gamma_k(G) = \beta_k(G)$ is said to be γ_k -optimal, where $\beta_k(G) = \min\{|[U,\overline{U}]| : U \subset V(G), |U| = k\}$. Let G be a connected d-regular graph. Write L(G) and $P_2(G)$ the line graph and the 2-path graph of G, respectively. In this paper, we derive some sufficient conditions for L(G) and $P_2(G)$ to be γ_k -optimal.

Keywords: Isoperimetric edge connectivity; Line graph; Path graph.

1 Introduction

Let G be a connected undirected graph with vertex set V(G) and edge set E(G). The line graph of G is a graph L(G) with vertex set E(G), and two vertices u_1v_1 , $u_2v_2 \in V(L(G))$ are adjacent in L(G) if and only if they are adjacent as elements in E(G).

It is well known that for any graph G, the edge connectivity $\lambda(G)$ is no

^{*}This work is supported by NSFC and XJEDU.

[†]Corresponding author: Zhao Zhang, zhzhao@xju.edu.cn

greater than the minimum degree $\delta(G)$. A graph G with $\lambda(G) = \delta(G)$ is said to be λ -optimal. By Lemma 3.1 and Lemma 3.2 in [7], we see that the line graph of a 2-connected regular graph is λ -optimal. We will generalize this result to isoperimetric edge connectivity.

For any vertex set $U \subset V$, $[U, \overline{U}]$ denotes the set of edges with one end in U and the other end in $\overline{U} = V \setminus U$. For a positive integer k, the k-th isoperimetric edge connectivity of G, proposed by Hamidoune et al. in [6], is defined as

$$\gamma_k(G) = \min\{|[U,\overline{U}]| : U \subset V(G), |U| \ge k, |\overline{U}| \ge k\}.$$

It is obvious that $\gamma_k(G)$ exists for any positive integer $k \leq |V(G)|/2$. $\gamma_1(G)$ is exactly $\lambda(G)$. So, isoperimetric edge connectivity can be regarded as a generalization of the edge connectivity. It also has a close relation with restricted edge connectivity $\lambda_k(G)$ which plays an important role in measuring the reliability of a network (see for example [3, 8, 9], restricted edge connectivity is also called extra edge connectivity in [5]). In [10], the author showed that $\lambda_k(G)$ coincides with $\gamma_k(G)$ if G is a regular graph with girth $g \geq k/2$. We are interested in maximizing $\gamma_k(G)$.

Suppose $|V(G)| \geq 2k$. Let

$$\beta_k(G) = \min\{|[U, \overline{U}]| : U \subset V(G), |U| = k\}.$$

Clearly, $\gamma_k(G) \leq \beta_k(G)$. A graph G with $\gamma_k(G) = \beta_k(G)$ is said to be γ_k -optimal. In this paper, we show that the line graph of a connected d-regular graph G with either $\kappa(G) \geq 2k$ or $\kappa(G) = d$ is γ_k -optimal for $k \leq d$, where $\kappa(G)$ is the connectivity of G.

The concept of path graphs were proposed by Broersma and Hoede as a generalization of line graphs [4]. The r-path graph $P_r(G)$ is a graph with vertex set $\mathcal{V}_r(G) = \{u_1u_2...u_r \mid u_1u_2...u_r \text{ is an } r\text{-path in } G\}$, and two vertices in $P_r(G)$ are adjacent if and only if the union of the corresponding

paths in G forms a path or a cycle of length r+1, in another word, if and only if one can be obtained from the other by 'shifting' the corresponding paths in G.

It is shown by Balbuena and Ferrero [1] that a regular graph G with $\lambda(G) \geq 4$ is γ_2 -optimal. We will generalize this result in this paper, showing that a regular graph G with $\lambda(G) \geq 2k$ is γ_k -optimal.

A vertex set $U \subset V$ is called a γ_k -fragment, if $|U| \geq k$, $|\overline{U}| \geq k$ and $|[U,\overline{U}]| = \gamma_k(G)$. The cardinality of a minimum γ_k -fragment is denoted by $\alpha_k(G)$. It is easy to see that a graph G is γ_k -optimal if and only if $\alpha_k(G) = k$. We refer [2] for notation and terminologies not defined here.

2 Isoperimetric edge connectivity in line graph

An edge in E(L(G)) with the form $\{uv, uw\}$ is called an u-edge. By the definition of line graphs, the following lemma is obvious.

Lemma 1. Let $S = [U, \overline{U}]$ be an edge cut of L(G), and let u be a vertex in V(G). If U contains s vertices of the form uv, then S contains s(d(u) - s) u-edges. In particular, if G is a d-regular graph and S contains u-edges, then S contains at least d-1 u-edges.

Theorem 1. Let G be a d-regular graph of connectivity $\kappa = \kappa(G)$, and k a positive integer with $k \leq d$. If L(G) is not γ_k -optimal, then $\gamma_k(L(G)) \geq \kappa(d-1)$.

Proof. Clearly, L(G) is (2d-2)-regular. Since $d \ge k$, L(G) has k-cliques. So $\beta_k(L(G)) = k(2d-2) - k(k-1)$.

Let U be a γ_k -fragment of L(G). Since L(G) is not γ_k -optimal, we have $|U| \geq k + 1$. Set $S = [U, \overline{U}]$. The theorem follows from the following assertion and Lemma 1.

Assertion. There exist κ distinct vertices $u_1, u_2, ..., u_{\kappa} \in V(G)$ such that S contains u_i -edges $(i = 1, 2, ..., \kappa)$.

By contradiction. Suppose S contains $u_1, u_2, ..., u_t$ -edges with $t \le \kappa - 1$. Then $t \le d - 1$.

We first show that any vertex in one of U or \overline{U} , say U, has the form u_iu_j $(i \neq j; i, j \in \{1, 2, ..., t\})$. In fact, if this is not true, then there are $v_1, v_2 \in V(G) \setminus \{u_1, u_2, ..., u_t\}$ such that $v_1w_1 \in U$ for some $w_1 \in V(G)$, and $v_2w_2 \in \overline{U}$ for some $w_2 \in V(G)$. Let $P = x_0x_1...x_l$ be a (v_1, v_2) -path in $G - \{u_1, u_2, ..., u_t\}$, where $x_0 = v_1$ and $x_l = v_2$ (note that such a path exists since $t < \kappa$). As $x_0 \notin \{u_1, u_2, ..., u_t\}$, S contains no x_0 -edges. So, it follows from $x_0w_1 \in U$ that $x_0x_1 \in U$. Similarly, as $x_1 \notin \{u_1, u_2, ..., u_t\}$, S contains no x_1 -edge, and thus $x_1x_2 \in U$. Proceeding like this, we see that $x_{l-1}v_2 \in U$. But then $\{x_{l-1}v_2, v_2w_2\}$ is a v_2 -edge contained in S, a contradiction.

As a consequence, we have $t \geq 3$, since otherwise |U| = 1, contradicting that $|U| \geq k + 1 \geq 2$.

Suppose u_i occurs s_i times in U. Then $s_i \leq |\{u_iu_j \mid j \neq i, j \in \{1, 2, ..., t\}\}| = t - 1$ (i = 1, 2, ..., t). Write $f(s_1, s_2, ..., s_t) = \sum_{i=1}^t s_i(d - s_i)$. Then $\gamma_k(L(G)) = |S| = f(s_1, s_2, ..., s_t)$. In the following, we show that

$$f(s_1, ..., s_t) \ge \beta_k(L(G)), \tag{1}$$

and thus arrive at a contradiction to the assumption that L(G) is not γ_k optimal.

Since $|U| \ge k + 1$, we have

$$\sum_{i=1}^{t} s_i = 2|U| \ge 2(k+1). \tag{2}$$

So, (1) is equivalent to

$$h(s_1, ..., s_t) \stackrel{\triangle}{=} \frac{\sum_{i=1}^t s_i^2 - k(k+1)}{\sum_{i=1}^t s_i - 2k} \le d.$$
 (3)

For fixed t, $h(s_1,...,s_t)$ is maximum when $s_1 = s_2 = ... = s_t = t-1$. So $h(s_1,...,s_t) \leq g(t)$, where

$$g(t) = \frac{t(t-1)^2 - k(k+1)}{t(t-1) - 2k}.$$

Note that the denominator of G is greater than zero. So, when t satisfies $t(t-1)^2 \le k(k+1)$, it is obvious that $g(t) \le d$. When $t(t-1)^2 > k(k+1)$, g(t) is monotonously increasing, and thus $g(t) \le g(d-1)$. If d=3, then $t \le d-1=2$, contradicting that $t \ge 3$. So, $d \ge 4$. In this case, it is easy to see that $g(d-1) \le d$ (note that $k \le d$).

As a consequence, we see that

Corollary 1. Let G be a connected d-regular graph, k be an integer with $k \leq d$. If $\kappa(G) \geq (2kd - k - k^2)/(d-1)$, then L(G) is γ_k -optimal.

In particular, we have the following two sufficient conditions for a line graph to be γ_k -optimal.

Corollary 2. Let G be a connected regular graph with connectivity $\kappa(G) \geq 2k$. Then L(G) is γ_k -optimal.

Corollary 3. Let G be a connected d-regular graph with $\kappa(G) = d$. Then L(G) is γ_k -optimal for any k = 1, 2, ..., d.

3 Isoperimetric edge connectivity in 2-path graph

An edge in $P_2(G)$ with the form (xuv, uvy) is called an uv-edge.

Lemma 2. Let G be a d-regular connected graph with $d \geq 2$, and $S = [U, \overline{U}]$ an edge cut of $P_2(G)$. Suppose there are s vertices in U with the form xuv and t vertices in U with the form uvy, then S has s(d-1-t)+t(d-1-s) uv-edges. So, if S contains uv-edges, then S contains at least d-1 uv-edges.

Proof. Note that $P_2(G)$ has d-1 vertices with the form xuv and d-1 vertices with the form uvy. So, \overline{U} has d-1-s vertices with the form xuv and d-1-t vertices with the form uvy. Since every vertex with the form xuv is adjacent to every vertex with the form uvy, the result follows. \square

For an edge set $S \subset E(P_2(G))$, write $S' = \{(u, v) : S \text{ contains } uv\text{-edges}\}$. The following lemma is shown in [1].

Lemma 3. Let G be a connected graph with $\delta(G) \geq 2$, and $S = [U, \overline{U}]$ an edge cut of $P_2(G)$. If there exists a vertex $uvw \in U$ and a vertex $u'v'w' \in \overline{U}$ with $(u, v) \notin S'$ or $(v, w) \notin S'$ and $(u', v') \notin S'$ or $(v', w') \notin S'$, then S' is an edge cut of G.

Theorem 2. Let G be a d-regular connected graph with $\delta(G) \geq 2$, and k a positive integer with $k \leq d-2$. If $P_2(G)$ is not γ_k -optimal, then $\gamma_k(P_2(G)) \geq \lambda(G)(d-1)$.

Proof. When d=2, $G\cong P_2(G)\cong C_n$, which is obviously γ_k -optimal. So, suppose $d\geq 3$.

Let U be a γ_k -fragment of $P_2(G)$. Set $S = [U, \overline{U}]$, and suppose $S' = \{(u_i, v_i)\}_{i=1}^t$. Since $P_2(G)$ is not γ_k -optimal, we have $|U| \geq k+1$. Suppose the theorem is not true, then $|S'| = t < \lambda(G)$ by Lemma 2. So, S' is not an edge cut of G. Then it follows from Lemma 3 that at least one of U and \overline{U} , say U, has the following property: for any vertex $uvw \in U$, both $(u, v) \in S'$ and $(v, w) \in S'$.

For each $i \in \{1, ..., t\}$, suppose there are s_i vertices in U with the form xu_iv_i , and t_i vertices in U with the form u_iv_iy . Then, $s_i \leq |\{xu_iv_i \mid (x, u_i) \in S', (x, u_i) \neq (u_i, v_i)\}| \leq t - 1$, and $t_i \leq |\{u_iv_iy \mid (v_i, y) \in S', (v_i, y) \neq (u_i, v_i)\}| \leq t - 1$. Furthermore,

$$\sum_{i=1}^{t} (s_i + t_i) = 2|U| \ge 2(k+1), \tag{4}$$

and

$$|S| = \sum_{i=1}^{t} [s_i(d-1-t_i) + t_i(d-1-s_i)] = (d-1)\sum_{i=1}^{t} (s_i + t_i) - 2\sum_{i=1}^{t} s_i t_i.$$

We are to show that

$$|S| \ge \beta_k(P_2(G)),\tag{5}$$

and thus arrive at a contradiction. Since $P_2(G)$ is (2d-2)-regular, we have

$$\beta_k(P_2(G)) \le k(2d-2) - 2(k-1). \tag{6}$$

By (4) and (6), to show inequality (5), it suffices to show that

$$\frac{2(\sum_{i=1}^{t} s_i t_i - k + 1)}{\sum_{i=1}^{t} (s_i + t_i) - 2k} \le d - 1.$$

The maximum of the left term is realized when $s_i = t_i = t-1$ (i = 1, 2, ..., t). So, it suffices to show that

$$g(t) \stackrel{\triangle}{=} \frac{t(t-1)^2 - k + 1}{t(t-1) - k} \le d - 1. \tag{7}$$

Note that g(t) is monotonously increasing. So, $g(t) \leq g(\lambda(G) - 1) \leq g(d-1)$. Since $k \leq d-2$, we have $g(d-1) \leq d-1$. So (7), and thus (5) is proved.

Combining Theorem 2 with inequality (6), we see that

Corollary 4. Let G be a d-regular connected graph $(d \ge 2)$, and k a positive integer with $k \le d-2$. If $\lambda(G) \ge 2k - \frac{2(k-1)}{d-1}$, then $P_2(G)$ is γ_k -optimal.

In particular, we have

Corollary 5. Let k be a positive integer, and G a d-regular connected graph with $\lambda(G) \geq 2k$ $(d \geq 4)$. Then $P_2(G)$ is γ_k -optimal.

Corollary 6. Let G be a d-regular connected graph with $\lambda(G) = d \geq 2$. Then for any positive integer $k \leq \min\{(d+1)/2, d-2\}$, $P_2(G)$ is γ_k -optimal.

References

- C. Balbuena and D. Ferrero, Edge-connectivity and super edgeconnectivity of P₂-path graphs, Discrete Math., 269 (2003) 13-20.
- [2] J.A. Bondy and U.S.R. Murty, Graph theory with applications, The Macmillan Press LTD, London and Basingstoke, (1976) 47-49.
- [3] P. Bonsma, N. Ueffing and L. Volkmanns, Edge-cuts leaving components of order at least three, Discrete Math., 256 (2002) 431-439.
- [4] H.J. Broersma and C. Hoede, Path graphs, J. Graph Theory, 13 (1989) 427-444.
- [5] J. Fàbrega and M. A. Foil, On the extraconnectivity of graphs. Discrete Math., 155 (1996) 49-57.
- [6] Y.O. Hamidoune, A.S. Lladó, O. Serra and R. Tindell, On isoperimetric connectivity in vertex-transitive graphs, SIAM J. Discrete Math., 13 (2000) 139-144.
- [7] J.X. Meng, Superconnectivity and super edge connectivity of line graphs, Graph Theory Notes of New York, XL (2001) 12-14.

- [8] M. Wang and Q. Li, Conditional edge connectivity properties, reliability comparisons and transitivity of graphs, *Discrete Math.*, 258 (2002) 205-214.
- [9] Z. Zhang and J.X. Meng, On optimally- $\lambda^{(3)}$ transitive graphs, Discrete Appl. Math., 154-6 (2006) 1011-1018.
- [10] Z. Zhang, Extra edge connectivity and isoperimetric edge connectivity, submitted.