PEBBLING GRAPH PRODUCTS
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Abstract. A pebbling step on a graph consists of removing two peb-
bles from one vertex and placing one pebble on an adjacent vertex.
We consider all weight functions defined on the vertices of a graph
that satisfy some property P. The P-pebbling number of a graph is
the minimum number of pebbles needed in an arbitrary initial config-
uration so that, for any such weight function, there is a sequence of
pebbling moves at the end of which each vertex has at least as many
pebbles as required by the weight function. Some natural properties
on graph products are induced by properties defined on the factor
graphs. In this paper we give a bound for the P’/-pebbling number
associated with a particular kind of product property P’ in terms
of the P;-pebbling numbers associated with the factor properties P,
and P;. We do this by introducing color pebbling, which may be of
interest in its own right.
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1. Introduction and definitions

The game of pebbling was first suggested by Lagarias and Saks as a tool
for solving a number-theoretical conjecture of Erdés. Chung successfully
used this tool to prove the conjecture and established other results concern-
ing pebbling numbers. In doing so she introduced pebbling to the literature
in 1989 [2]. Since this time, there have been over 50 papers published on
the topic; an initial survey [5] and a recent update [4] provide an overview.
We use the language and notation of [4].

Graph pebbling consists of moving pebbles around the vertices of a con-
nected graph according to certain rules, and asking questions such as under
what conditions a pebble may be moved to any vertex, to all vertices, etc.
A configuration C on the graph G may be thought of as an initial placement
of pebbles on the vertices of G, or equivalently as a function C : V — N,
where for v € V, C(v) indicates the number of pebbles placed at v. The"
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size of C, |C}, is 3 ey C(v). A pebbling step consists of removing two
pebbles from one vertex and placing one pebble on an adjacent vertex. If
it is possible to begin with the configuration C' and, through a sequence
of pebbling moves, place a pebble on vertex v, we say v may be reached
by C. In (regular) pebbling, a target vertex is selected, and the goal is to
reach that target vertex. The pebbling number of G, denoted 7(G), is the
minimum number ¢ such that it is possible to reach any target vertex when
beginning with any configuration of size at least £.

Weighted cover pebbling number is a natural generalization of pebbling.
We define a weight function w : V(G) — N. The weighted cover pebbling
number, ¥, (G), is the minimum number & such that, beginning with any
initial configuration of k pebbles, there is a sequence of pebbling moves at
the end of which each vertex v of G has at least w(v) pebbles on it!. In this
paper we will focus on weight functions that satisfy a specific goal property
P, and we will denote the set of all weight functions (on a particular graph)
having goal property P as Wp. For instance, if Wp consists of all weight
functions w satisfying the property that w(v) is one for one vertex v and
zero for all other vertices, then the context is that of (regular) pebbling.
Similarly, t-cover pebbling results from requiring a weight function that
assigns t to every vertex, while dominance pebbling results from weight
functions that are one for a dominating set of vertices and zero for all
others.

Given a goal property P, we say that the configuration C is solvable for
P if, for every weight function w € Wp, it is possible, through a sequence
of pebbling moves, to move from C to a configuration C’ satisfying C'(v) >
w(v) for all v € V. We define the P-pebbling number of G, vp(G), to be
the minimum number & such that every configuration of size k is solvable
for P. In the case in which P is the property that a weight function in
Wp is one for exactly one vertex of V and zero elsehwere, 7p(G) = n(G).
Similarly, should property P correspond to the (unique) weight function
assigning one to each vertex of G, vp(G) is the cover pebbling number,

(G).

The behavior of pebbling numbers under graph products has been the
focus of much study. Throughout this paper we will assume that graphs
G and H have vertex sets V(G) = {v1,...,v5} and V(H) = {z1,...,zn},
respectively.

1This language and notation corresponds, for example, to (3], [4], and {1]; other
authors refer to “demand” configurations, e.g. [7]
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Definition 1.1. The product of G and H, GOH, is the graph with vertex
set V(G) x V(H) (Cartesian product) and with edge set

E(GOH) ={((v1,21), (v2,22))| v1 = v2 and (z1,x2) € V(H)}
U {((v1,21), (v2,22))| 71 = 22 and (v1,v2) € V(G)}.

The key open problem concerning pebbling numbers under graph prod-
ucts is due to Graham [2].

Graham’s Conjecture. If GOH is the product of G and H, then 7(GOH) <
n(G)mw(H).

In this paper we discuss weight functions satisfying certain properties
on graph products and determine their pebbling numbers. We introduce
colors to “translate” a configuration on a graph product to a configuration
on one of the factors.

Suppose P and Py are goal properties on graphs G and H respectively.
Then there is an induced product goal property Pgoy on GOH where
the weight function w* is said to satisfy Pgoy if and only if there are
weight functions wg and wy satisfying Pg and Py respectively such that
w*(v5,25) = we(vi)wy(z;). Most natural goal properties on a product
graph are in fact product goal properties. For example, regular pebbling on
a product graph may be thought of as a product of goal properties requiring
a weight of one for exactly one vertex of each of the factor graphs (and zero
on all other vertices), and cover pebbling on product graphs results from
factor goal properties requiring a weight of one for all vertices of the factor
graphs. The product property on GOH that we will explore in this paper
is characterized by specifying that each restriction of the property to each
copy of G is identical.

We will prove the following:

Main Theorem. Let Pz be any goal property on G and let Py be the
property on H requiring w(z) = 1 for all vertices z of H. The induced
product goal property on GOH is Pgoy. Then

h
VPoou (GOH) < vp(G) - maz;{)_ 244==)} = yp (G)y(H).

i=1
In other words, to find an upper bound for yp,,, (GOH) it is enough to

Jjust consider initial configurations that place all pebbles on a single copy
of G.
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2. Color Pebbling

Recall that V(GOH) = {(vi,z;)li = 1,...,9; 5 =1,...,h}. Let G; =
G x {z;} be the subgraph with vertex set {(v;,z;)}i = 1,2,...g} and edges
induced from GOH; note that G; is isomorphic to G. We will associate to
each configuration on GOH a certain configuration of colored pebbles on H.
We will call a configuration #-colored if each pebble in the configuration has
been assigned one of t possible colors. A color-respecting pebbling move for
a colored configuration consists of taking two pebbles of the same color from
some vertex and placing one of these pebbles on an adjacent vertex. When
considering colored configurations we allow only color-respecting steps.

To each configuration C on GOH we associate a color configuration C
on H in the following way: use colors ¢;,¢z,...,¢, and assign color ¢; to
each pebble that C places on vertices (v;, z;) (for any j). Collapse GOH to
a single copy of H, which we call H for clarity, by identifying G; in GOH
with vertex X; in H. We place all pebbles from G; on X;.

Lemma 2.1. Let

e Pg be any goal property on G,

e Py be the goal property on H requiring the unique weight function
on V(H) satisfying w(X) = vp,(G) for all X € V(H), and

e Pooy be the product goal property induced by Pg and Py.

Let C be a configuration on GOH and ¢ be its associated g-colored con-
figuration on H. If C is solvable for Pz on H, then C is solvable for Pogy
on GOH.

Proof. By hypothesis, there is a sequence of color-respecting pebbling steps
beginning with C at the end of which there are vp;(G) pebbles on each
vertex of H. Because the steps respect color we could have performed them
in GOH: taking two pebbles of color ¢; from X, discarding one and placing
the other one on X in H corresponds to taking two pebbles from vertex
(vi, z;) and placing one of them on (v;,zx) in GOH. So there is a sequence
of steps on GOH, consisting only of moving pebbles from one copy of G to
another, at the end of which each G; has yp,(G) pebbles. These vp,(G)
pebbles suffice to satisfy property Pg on each copy of G in GOH, so C is
solvable for Popy. O

Within the usual concept of pebbling, we may move approximately half
of the pebbles on one vertex to an adjacent vertex. An analogous statement
holds for colored configurations.
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Lemma 2.2. Suppose a t-colored configuration places m > t pebbles on a
vertex. Given any integer n < m —t, color-respecting steps may be used to
move at least [n/2] pebbles to an adjacent vertex.

Proof. Consider the set T of all pebbles on the given vertex v. If a color
has an odd number of representatives in T, remove from consideration
one pebble of that color. As there are only ¢ colors, at most ¢ pebbles are
removed. Let S be the subset of all remaining pebbles; note |S| > m—t and
|S] is even. As n < |S|, we may then select pairs of same-colored pebbles to
create a subset IV of S, with |[N| = n when n is even and |[N| = n+ 1 when
n is odd. Half of the pebbles in N may be moved to a vertex adjacent to
v — using color-respecting steps — thus achieving our goal of moving [n/2]
pebbles.

0

Main Theorem. Let Pg be any goal property on G and let Py be the
property on H requiring w(z) = 1 for all vertices = of H. Let Pgoy be the
induced product goal property on GOH. Then

h
VPonw (GOH) < 76 (G) - maz;{) | 244320} = yp (G)y(H).

i=1

Proof. Define Pj; as the goal property on H requiring the unique weight
function on V(H) satisfying w(z) = vp,(G) for all z € V(H). Let Pg be
any goal property on G. Recall [V(G)| = g. By Lemma 2.1, establishing
YPooy (GOH) < vpy(G)y(H) may be achieved by showing that every g-
colored configuration on H of size at least yp, (G)y(H) is solvable for Py;.
In other words, it suffices to show that from any g-colored configuration of
size vp; (G)y(H) on H, there is a sequence of pebbling steps at the end of
which every vertex of H has at least vp, (G) pebbles. Note that g < vp,(G)
for all goal properties of positive size. Let Cy be a g-colored configuration
on H of size vp;(G)y(H), and assume that Cy is not solvable for Py.
We model the proof of this result on the proof of the main theorem in [6]
but we need to ascertain that the proof indeed carries over when colored
configurations are considered.

Sjostrand defines the value of a pebble so as to make the total value of a
configuration invariant under pebbling moves [6]: “The value of a pebble...
is the number of pebbles that have gone into it.” In other words, instead
of thinking of a pebbling step as moving one pebble and discarding one,
we will think of a pebbling step as picking up two pebbles, joining them
together by adding their values, and then placing the new, higher-valued
pebble on an adjacent vertex. Thus the total value of the pebbles on the
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graph remains the same throughout any sequence of pebbling moves. As
we only allow color-preserving steps, the total value of pebbles of any given
color is also preserved. Initially, i.e., prior to any pebbles being moved, all
pebbles have a value of one.

Call a vertex in H fat if there are more than vyp,(G) pebbles on it
(regardless of their color), thin if there are fewer than yp,(G) pebbles on
it, and perfect if there are exactly vp;(G) pebbles on it. Let (f,t) be a pair
of a fat and a thin vertex that are a minimum distance from each other
amongst all such pairs, and let p;, p2, ..., pn be the shortest path from f to
t. Note that each vertex p; has exactly vp;(G) pebbles on it. By Lemma
2.2, as g < vp,(G), we can move one pebble from f to p;. Now p, is fat, so
we can move one pebble from p; to ps etc., until finally ¢ has an additional
pebble and each of f,p;,..,pn has one fewer pebble. Then pick a new pair
of a fat and a thin vertex at minimum distance, and repeat the precedure
until - as is guaranteed by the unsolvability of the initial configuration - no
fat vertices are left. This procedure does not result in any new fat vertices,
so each time a pair of one thin and one fat vertex are chosen, all pebbles on
the fat vertex have initial value of 1. So if a pebble is moved in a sequence

of steps from a fat vertex f to a thin vertex t, the final value of the pebble
is 2dt'st(f,t).

Let z; be the fat vertex that survived the above procedure the longest.
Then, if at the end of the algorithm a pebble p is on vertex z;, this pebble
must have come from a fat vertex whose distance from z; is less than
or equal to dist(z;,z;), so value(p) < 2%s4=5%), However, once done
making moves, there are at most yp,(G) pebbles on each vertex of H,
and at least one vertex has strictly fewer than yp,(G) pebbles (as Cy
was assumed to be unsolvable). Therefore the initial number of pebbles
in Cz must have been fewer than yp,(G) - maz;{yr_, 24s4=32)}. As
fnaz; {31, 24t(=5,=)} = 4(H), this contradicts our hypothesis.

O

Finally we note that the result above is the best possible. If Pz and
Py are both the cover pebbling property (i.e., the goal is to place one
pebble on each of the vertices) then it follows from [6] that yp ., (GOH) =
Y(G)(H).

On the other hand, consider G = Cj, the cycle on 3 vertices, and let Pg
be the property that we can place a pebble on any one vertex (i.e., yp(C3) =
n(C3) = 3). Let H = P,, the path on two vertices, and Py be the cover
pebbling property again, so yp, (H) = 3. We have vp,(G)vpy (H) = 9,
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but it is easy to check that every configuration of 8 pebbles on YPson 18
solvable for Peny, i.e., 7p,n, (GOH) < vp. (G)vpy (H).
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