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Abstract

The silicates are the largest, the most interesting and the most compli-
cated class of minerals by far. The basic chemical unit of silicates is the
(Si04) tetrahedron. A silicate sheet is a ring of tetrahedrons which are
linked by shared oxygen nodes to other rings in a two dimensional plane
that produces a sheet-like structure. We consider the silicate sheet as a
fixed interconnection parallel architecture and call it a silicate network.
We solve the Minimum Metric Dimension problem which is NP-complete
for general graphs.

Keywords: silicate networks, topological and structural properties of
interconnection networks, mesh-like architectures, N P-complete, minimum
metric dimension.

1 Introduction

Multiprocessor interconnection networks are often required to connect thou-
sands of homogeneously replicated processor-memory pairs, each of which
is called a processing node. Instead of using a shared memory, all synchro-
nization and communication between processing nodes for program execu-
tion is often done via message passing. Design and use of multiprocessor
interconnection networks have recently drawn considerable attention due
to the availability of inexpensive, powerful microprocessors and memory
chips [17]. The homogeneity of processing nodes and the interconnection
network is very important because it allows for cost/performance benefits
from the inexpensive replication of multiprocessor components.

Silicates are obtained by fusing metal oxides or metal carbonates with
sand. Essentially all the silicates contain Si0, tetrahedra. In chemistry,
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Figure 1: Si0O, tetrahedra where the corner vertices represent oxygen ions
and the center vertex the silicon ion ‘
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Figure 2: Different kinds of silicates (a) Orthosilicates (b) Pyrosilicates (c)
Chain Silicates

the corner vertices of 9104 tetrahedran represent oxygen ions and the
center vertex represents the silicon ion. In graph theory, we call the corner
vertices as ozygen nodes and the center vertex as silicon node. See Figure
1.

The minerals are obtained by successively fusing oxygen nodes of two
tetrahedra of different silicates. The different types of silicate structure
arise from the ways in which these tetrahedra are arranged: they may
exist as separate unlinked entities, as linked finite arrays, as 1-dimensional
chains, as 2-dimensional sheets or as 3-dimensional frameworks. Some of
the structural units found in silicates are shown in Figures 2 and 3. They
are termed orthosilicates, pyrosilicates, chain silicates, cyclic silicates and
sheet silicates.

Simple orthosilicates contain discrete Si04 units. When two SiO4
tetrahedra share an oxygen node, pyrosilicates are obtained. While tetra-
hedra are arranged linearly, chain silicates are obtained. See Figure 2.
Cyclic silicates and sheet silicates are shown in Figure 3.

In this paper, we solve the minimum metric dimension problem for
silicate networks. This problem is an N P-Complete problem for general

graphs.

2 Properties of Silicate Networks

A silicate network can be constructed in different ways [13]. We describe
the construction of a silicate network from a honeycomb network. A hon-
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Figure 3: Cyclic and Sheet Silicates

Figure 4: A honeycomb network HC(3)

eycomb network can be built from a hexagon in various ways [15, 16]. The
honeycomb network HC(1) is a hexagon. The honeycomb network HC(2),
is obtained by adding six hexagons to the boundary edges of HC(1). Induc-
tively, honeycomb network HC(n) is obtained from HC(n — 1) by adding
a layer of hexagons around the boundary of HC(n — 1). For instance,
the graph in Figure 4 is HC(3). The parameter n of HC(n) is called the
dimension of HC(n).

Consider a honeycomb network HC(n) of dimension n. Place silicon
ions on all the vertices of HC(n). Subdivide each edge of HC(n) once.
Place oxygen ions on the new vertices. Introduce 6n new pendant edges
one each at the 2-degree silicon ions of HC(n) and place oxygen ions at
the pendent vertices. See Figure 5(a). With every silicon ion associate the
three adjacent oxygen ions and form a tetrahedron as in Figure 5(b). The
resulting network is a silicate network of dimension n, denoted SL(n). The
diameter of SL(n) is 4n. The graph in Figure 5(b) is a silicate network of
dimension two.

The 3-degree oxygen nodes of silicates are called boundary nodes. In
Figure 5(b), ¢1,c¢2, ...,c12 are boundary nodes SL(2).

Theorem 1 [13] The number of nodes in SL(n) is 1502 + 3n and the
number of edges of SL(n) is 36n%. O
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Figure 5: Silicate network construction and boundary nodes

Figure 6: An Oxide Network 0X(2)

3 Addressing Scheme in Silicate Networks

When we delete all the silicon nodes from a silicate network we obtain a
new network which we shall call as an Ozide Network. See Figure 6. An
n-dimensional oxide network is denoted by OX(n). Even though HC(n)
and OX(n) are sub graphs of SL(n), OX(n) plays more important role
in studying the properties of SL(n). We note that the diameter of silicate
network SL(n) is equal to the diameter of the oxide network OX(n) [13].

A coordinate system is proposed that assigns an id to each node of
oxide network. This coordinate system is then extended [13] to silicate
network. The basic idea is due to Stojmenovic [16] and to Nocetti et al. [9]
who proposed a system for a honeycomb network and a hexagonal network
respectively. Three axes, a, 8 and v parallel to three edge directions and at
mutual angle of 120 degrees between any two of them are introduced. The
three coordinate axes are @ = 0, 8 = 0, and v = 0 respectively. We call
lines parallel to the coordinate axes as a-lines, 8-lines and ~y-lines. Here
a = h and a = —k are a-lines on either side of a-axis. A node of 0X(n) is
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Figure 7: Coordinate System in Oxide Networks

assigned a triple (a, b, c) when the node is the intersection of lines a = a,
B = b, and v = c. Each silicon node is at the centroid of three oxygen nodes
of a tetrahedral Si0,. One can assign ids to silicon nodes by applying the
formula of centroid of an equilateral triangle. See Figure 7.

4 Equilateral Triangle Property of Silicate
Sheets and Networks

Three vertices u, v, w of a graph G(V, E) are said to form an equilateral
triangle if d(u,v) = d(v,w) = d(w,u) where d(z,y) denotes the distance
between z and y. There is an interesting equilateral triangular property of
silicate networks.

Theorem 2 Three vertices A(z1,x2,23), B(y1,¥2,y3) and C(z1, 22, 23) of

an infinite silicate sheet form an eguilateral triangle if z, = y1, y2 = 22
and z3 = 3.
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Figure 8: Equilateral triangle property

The proof is similar to the corresponding result for silicate networks
[13].

Consider a triangle ABC formed by some a-line, -line and 7-line. By
the above theorem, AABC is equilateral. Let a3,a2, ...,ar be the nodes on
the B-line between B and C. Let by,bs,...,b, be the nodes on the a-line
between C and A. Let ¢;,¢2,...,cr be the nodes on the v-line between A
and B. See Figure 8. We know that d(A, B) = d(A,C). The interesting
observation is that d(A, B) = d(A, a;) =d(A,C) fori=1,2,...,7.

5 Minimum Metric Dimension of Silicate
Networks

A metric basis for a graph G(V, E) is a subset of vertices W C V such that
for each pair of vertices u and v of V\ W, there is a vertex w € W such that
d(u,w) # d(v,w). A minimum metric basis is a metric basis of minimum
cardinality. The cardinality of a minimum metric basis of G is called
minimum metric dimension and is denoted by S(G); the members of a
minimum metric basis are called landmarks. A minimum metric dimension
(MM D) problem is to find a minimum metric basis.

The problem of finding the metric dimension of a graph was first studied
by Harary and Melter [5). They gave a characterization for the metric
dimension of trees. Melter and Tomescu [8] studied the metric dimension
problem for grid graphs. Khuller et al. (7] have generalized a result of
Melter and Tomescu and proved that the metric dimension of d-dimensional
grids is d.

The problem of finding minimum metric dimension is N P-complete
for general graphs [4]. Manuel et al. [11] have proved that this problem
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remains N P-complete for bipartite graphs.

The concept of metric basis and minimum metric basis has appeared
in the literature under a different name as early as 1975. Slater in [14]
had called metric basis and minimum metric basis as locating sets and
reference sets respectively. Slater called the cardinality of a reference set
as the location number of G. He described the usefulness of these ideas
when working with sonar and loran stations. Chartrand et al. [3] have
called a metric basis and a minimum metric basis as a resolving set and
minimum resolving set. We adopt the terminology of Harary and Melter.

The minimum metric dimension problem has been studied for trees,
multi-dimensional grids [7], Petersen graphs [1], Torus Networks [10], Benes
Networks {11}, Honeycomb Networks [12] and Enhanced Hypercubes [2].
Although the minimum metric dimension problem is a distance based prob-
lem the strategy adopted is different in each case. This paper uses yet
another strategy to solve the problem for silicate networks. The following
result provides a lower bound for the minimum metric dimension of silicate

networks.
Theorem 3 B(SL(n)) > 6n.

Proof. Let u be a boundary node of SL(n). Let v be the silicon node
adjacent to «. Then for any node w in SL(n), we have d(u,w) = d(v, w).

Thus any metric basis will contain either u or v. There are 6n boundary
nodes in SL(n). Hence any metric basis of SL(n) should contain at least
6n nodes of SL(n). O

Theorem 4 B(SL(n)) = 6n.

Proof. We claim that the set of boundary nodes is a metric basis. In
view of symmetry of the network we begin our discussion with respect to
a-lines. A line @ = k is said to be odd or even according as k is odd or
even,

The dotted lines in Figure 9 are even axes and black lines are odd axes.
For any oxygen node (a,b,c), @ = a, B8 = b, and 7 = ¢ are the axis lines
passing through (a,b,¢). Among these three axis lines, two are odd and
one is even. For the oxygen node X in Figure 9, o and S lines are odd axis
lines and +y line is an even axis line. Similarly for node NV, 8 and +y are odd
axis lines and « is an even axis line. Further if we call an edge joining two
oxygen nodes as an oxide edge then each such oxide edge is on some odd
axis line.

Now consider any two oxygen nodes A and B. Let AXBY be the
parallelogram with nodes A and B as corner vertices. Let P(A, B) be
a shortest path between A and B. Since every shortest path between A
and B lies inside the parallelogram AXBY', the path P(A, B) also lies
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Figure 9: Proof cases in Theorem 4

inside parallelogram AXBY. Let P(A, B) be an (A, L)-path followed by
an (L, N)-path followed by an (N, B)-path. Let e be the last edge of
P(A, B) which is incident on node B. This edge e lies on one of the three
odd axis lines. In Figure 9, e lies on an odd S-line. The node B divides this
B-line into two segments one of which does not contain e. Let C denote the
boundary node on this segment. Now consider the parallelogram AXCZ.
Define a path P(A,C) as (4, L)-path followed by an (L, N)-path followed
by an (N,C)-path which is a shortest path between A and C passing
through B. Thus d(A,C) # d(B,C). Using the same argument, other
cases can be proved. O

6 Conclusion

In this paper we have considered a new interconnection network motivated
by the molecular structure of certain chemical compounds. The different
forms of silicates available in nature led to the introduction of the silicate
networks. The minimum metric dimension problem is investigated. This
paper is an eye opener for researchers in the sense that different networks
can be derived using the ores and compounds available in nature.
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