COMPLETE ARCS IN MOULTON PLANES OF ODD ORDER

VITO ABATANGELO AND BAMBINA LARATO

ABSTRACT. A complete arc of size $q^2 - 1$ is constructed in the Moulton plane of order q^2 for $q \ge 5$ odd.

Keywords: Moulton planes, complete arcs, projective spaces, finite fields

Classification: 51A35, 51E15

1. Introduction

In a finite projective plane π , a k-arc is defined to be a set of k points no three of which are collinear. If π has order q, then a k-arc contains at most q+1 or q+2 points according as q is odd or even. If equality holds then the arc is called an oval when q is odd and a hyperoval when q is even. A k-arc is complete if it is not contained in any (k+1)-arc of π .

Large k-arcs in the Desarguesian plane PG(2,q) have been intensively investigated also in connection with coding theory, see [7, 8, 12, 13] and [11, Chapter 13]. In PG(2,q), complete k-arcs different from ovals when q is odd and from hyperovals when q is even have the following properties, see [2, 3, 5, 6, 9, 10, 15, 19, 20, 21, 22]

- (1a) $k \le q \sqrt{q} + 1$ if q is even;
- (1b) $k \le q (\sqrt{q}/2) + 5$ if q is odd;
- (1c) $k \le (44q/45) + 2$ if q is a prime.

In particular, q-arcs in PG(2,q) are not complete; this goes back to Segre for q odd and Tallini for q even. It has been conjectured that no (q-1)-arc for q > 13 is complete, but this has been proven so far for q > 73.

The above results on the spectrum of the sizes of large k-arcs of PG(2,q) do not hold true in non-Desarguesian projective planes. Menichetti [16] constructed an infinite sequence of complete q-arcs in Hall planes of even

THIS RESEARCH WAS SUPPORTED BY GNSAGA OF THE ITALIAN CNR, WITH THE FINANCIAL SUPPORT OF THE ITALIAN MINISTRY MURST: PROJECT "STRUTTURE GEOMETRICHE, COMBINATORIA E LORO APPLICAZIONI", 2005/07

order. Examples of complete 9-arcs in non-Desarguesian planes of order 9 were given by Denniston [4] and Barlotti [1]. Szőnyi [17] gave constructions for ovals in André planes, for complete (q-1)-arcs in the Hall plane of odd order $q \geq 49$ and for complete arcs in André planes of square order having at least 2q/3 points. Szőnyi [18] also showed that the set consisting of all rational numbers k/q such that there exists a complete k-arc in some projective plane of order q is dense in the interval [0,1].

In this paper, we construct an arc of size $(q^2 - 1)$ in the Moulton plane of odd order q^2 , and prove its completeness for $q \ge 5$.

2. NOTATION AND PRELIMINARIES

The Moulton plane of order q^2 , with q a power p^h of an odd prime p, is the dual plane of the Hall plane of the same order. The quasifield coordinatizing the Moulton plane arises from the finite field $GF(q^2)$ by altering the multiplication in the following manner.

Let $(GF(q), +, \cdot)$ be the subfield of $GF(q^2)$ of order q. Then $GF(q^2)$ can be viewed as the quadratic extension of GF(q) with respect to a polynomial $x^2 - \tau$ irreducible over GF(q). Choose $i \in GF(q^2)$ for which $i^2 = \tau$, and write each element $x \in GF(q^2)$ as $x = \xi + i\eta$ with $\xi, \eta \in GF(q)$. Then the norm of $x = \xi + i\eta$ in $GF(q^2)$ is defined to be $||x|| = \xi^2 - \tau \eta^2$ and $||x|| = x \cdot x^q = (\xi + i\eta)^{q+1}$. For a non-zero element $t \in GF(q)$, a new "multiplication" o is defined as follows

$$a \circ b = \left\{ \begin{array}{ll} a \cdot b & \text{if } \|b\| \neq t \\ a^q \cdot b & \text{if } \|b\| = t \end{array} \right. .$$

With this multiplication, $(GF(q^2), +, \circ)$ is a quasifield that coordinatizes a translation plane which is in turn the affine Hall plane of order q^2 , as well as its dual affine plane, called the affine Moulton plane of order q^2 . Affine Hall planes of the same order are isomorphic, see [14, Chapter X.4], and this holds true for affine Moulton planes.

The affine Moulton plane has the same points and the same vertical lines as the Desarguesian plane over $GF(q^2)$, whereas its non-vertical lines are the graphs of the functions $y = m \circ x + b$ with $m, b \in GF(q^2)$. In other words, the affine Moulton plane arises from the Desarguesian plane by altering a few point-line incidences, namely those between points P(x, y) with ||x|| = t and lines of equation y = mx + b with $m \in GF(q^2) \setminus GF(q)$.

Note that some collineations of the affine Desarguesian plane remain collineations in the affine Moulton plane. Those we use in this paper are

$$\varphi_x:\left\{\begin{array}{cccc} x' & = & x \\ y' & = & -y \end{array}\right., \quad \varphi_y:\left\{\begin{array}{cccc} x' & = & -x \\ y' & = & y \end{array}\right., \quad \varphi_O:\left\{\begin{array}{cccc} x' & = & -x \\ y' & = & -y \end{array}\right.$$

The projective closure of this affine plane is the Moulton plane $M(q^2)$ of order q^2 .

3. Inherited arcs in $M(q^2)$

In this section we describe a procedure for constructing a k-arc in $M(q^2)$ of size $k = q^2 - 1$. As we will see, such a procedure provides an arc with either two or zero points at infinity, according as $q \equiv 1 \pmod{4}$ or $q \equiv 3 \pmod{4}$. The two cases will be investigated simultaneously, although some differences in the proofs will occur.

Let s be an element of $GF(q^2)$ such that s is a square or a non-square according as $q \equiv 1 \pmod{4}$ or $q \equiv 3 \pmod{4}$. In the Desarguesian plane, the conic Ω of equation $x^2 - sy^2 = 1$ is irreducible, and it has either two or zero points at infinity, according as $q \equiv 1 \pmod{4}$ or $q \equiv 3 \pmod{4}$. Two tangents of Ω are vertical, namely the line of equation x = 1 with tangency point A(1,0) and that of equation x = -1 with tangency point B(-1,0).

Without loss of generality, we may assume that t = 1.

Lemma 3.1. In the Desarguesian plane, no vertical line of equation x = c with ||c|| = 1 is a secant of Ω .

Proof. Assume on the contrary that a vertical line x=c with $c\neq 1,-1$ is a secant of Ω . Then the system

$$\begin{cases}
x^2 - sy^2 = 1 \\
||x|| = 1
\end{cases}$$

has two solutions, namely (c,b) and (c,-b) with $c \neq 1$ and $b \neq 0$. Let $c = \xi + i\eta$. Since $c \neq 1$, we have $\eta \neq 0$.

Now, replacing $x = \xi + i\eta$ in the system (1),

(2)
$$\begin{cases} \xi^2 + 2\xi\eta i + \tau\eta^2 - sy^2 = 1 \\ \xi^2 - \tau\eta^2 = 1 \end{cases},$$

and subtracting the second equation from the first one,

$$2\xi \eta i + 2i^2 \eta^2 - sy^2 = 0,$$

that is

(3)
$$2\eta i \ (\xi + i\eta) = sy^2.$$

Raising to the $[(q^2-1)/2]$ -th power,

$$(2\eta)^{(q^2-1)/2} \; i^{(q^2-1)/2} \; \|x\|^{(q^2-1)/2} \; = \; s^{(q^2-1)/2} \; y^{(q^2-1)} \; .$$

Since $y^{q^2-1} = 1$ and $(2\eta)^{q-1} = 1$, this implies that

(4)
$$i^{(q^2-1)/2} = s^{(q^2-1)/2}.$$

To end the proof it is enough to show that (4) does not hold. Since τ is a non-square in GF(q),

$$i^{(q^2-1)/2} = \tau^{(q^2-1)/4} = (\tau^{(q-1)/2})^{(q+1)/2} = (-1)^{(q+1)/2}.$$

If $q \equiv 3 \pmod{4}$, then $(-1)^{(q+1)/2} = 1$ whereas s is a non-square in $GF(q^2)$ and hence $s^{(q^2-1)/2} = -1$. This contradicts (4).

Similarly, if $q \equiv 1 \pmod{4}$, then $(-1)^{(q+1)/2} = -1$ whereas s is a square in $GF(q^2)$ and hence $s^{(q^2-1)/2} = 1$, again a contradiction.

A straightforward consequence of Lemma 3.1 is the following result.

Corollary 3.2. The set $\Omega' = \Omega \setminus \{A, B\}$ is an arc in the Moulton plane $M(q^2)$.

For $q \equiv 1 \pmod 4$, Ω is a hyperbola in the affine Desarguesian plane, one of its infinite point P_{∞} is defined by the lines of equations $y = \sigma x + b$, the other Q_{∞} by those of equations $y = -\sigma x + b$ where $\sigma^2 = s^{-1}$. In the affine Desarguesian plane, each of this lines meets Ω' exactly one point, except for the four lines disjoint from Ω' , these four lines join A or B to P_{∞} or Q_{∞} . By Lemma 3.1 this holds true in the affine Moulton plane. This shows that Ω' extends to an arc of size $q^2 - 1$ in the Moulton plane by adding to it the infinite points P'_{∞} and Q'_{∞} defined by the parallel lines of equations $y = \sigma \circ x + b$ and $y = -\sigma \circ x + b$, respectively.

This motivates to consider the point-set in $M(q^2)$

(5)
$$\Delta = \begin{cases} \Omega' & \text{when } q \equiv 3 \pmod{4} \\ \Omega' \cup \{P'_{\infty}, Q'_{\infty}\} & \text{when } q \equiv 1 \pmod{4} \end{cases}$$

From the above results, the following theorem follows.

Theorem 3.3. The point-set Δ is an arc of size $q^2 - 1$ in $M(q^2)$.

4. The completeness of the arc Δ in $M(q^2)$ for $q \geq 5$

To show that Δ is complete for $q \geq 5$, we must prove that no point P(u, v) with ||u|| = 1 can be added to Δ . For $q \equiv 3 \pmod{4}$, we must also show that this holds true for every point at infinity.

Lemma 4.1. Neither A nor B can be added to Δ .

Proof. Since ||1|| = 1, every non vertical line r through A has equation $y = m \circ x - m^q$ with $m \in GF(q^2)$. Choose $m \in GF(q^2) \setminus GF(q)$ in such a way that $m^2 \in GF(q)$ but $m \neq -m^q$, and, for $q \equiv 1 \pmod{4}$, also $m^2 \neq 1/s$. The existence of such an element m follows from the hypothesis that q > 5.

To show that the line r of equation $y = m \circ x - m^q$ is a secant of Δ , note that the set of common points of r and Δ consists of the points P(x, y) of $M(q^2)$ satisfying the system

(6)
$$\begin{cases} x^2 - sy^2 = 1 \\ y = m \circ x - m^q \end{cases}$$

From this,

(7)
$$(1-sm^2) x^2 + 2 s m^{q+1}x - (1+sm^{2q}) = 0.$$

By hypothesis $1 - sm^2 \neq 0$. The discriminant d of (7) divided by 4 is

$$d/4 = sm^{2q} - sm^2 + 1 = 1 + s(m^{2q} - m^2)$$

and it is equal to 1 since $m^2 \in GF(q)$. Therefore, the equation (7), and also the system (6) have two distinct solutions

$$\left\{ \begin{array}{lll} x_1 & = & (1-sm^{q+1})/(1-sm^2) \\ y_1 & = & (m-m^q)/(1-sm^2) \end{array} \right. , \quad \left\{ \begin{array}{lll} x_2 & = & (-1-sm^{q+1})/(1-sm^2) \\ y_2 & = & -(m+m^q)/(1-sm^2) \end{array} \right.$$

By the choice of m, neither $y_1 = 0$ nor $y_2 = 0$. Hence, both points $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ lie on the line r showing that A cannot be added to Δ . The same argument works for the point B.

Lemma 4.2. No point P(u,0) of $M(q^2)$ with ||u|| = 1 can be added to Δ .

Proof. Since Δ is a (q^2-1) -arc in $M(q^2)$, through every point $C \in \Delta$ there are exactly three 1-secants to Δ . Two of these join C to A and B, the third being the tangent line ℓ to the conic Ω at C. Let it be $C(x_1, y_1)$. Then ℓ has equation

$$y = \frac{1}{s} \frac{x_1}{y_1} \circ x - \frac{1}{s} y_1 ,$$

and it passes through the point P(u,0) if and only if

(8)
$$u = \frac{y_1^{q-1}s^{q-1}}{x_1^q}.$$

Assume that P(u,0) can be added to Δ . Then (8) holds for every point $C \in \Omega$ distinct from A and B. But then

$$x_1 y_1^{q-1} - x_2 y_2^{q-1} = 0$$

for every two points $C(x_1, y_1)$ and $D(x_2, y_2)$ of Ω distinct from A and B. Therefore, the function xy^{q-1} is constant on the points of Ω distinct from A and B. If c is this constant, then the algebraic curve Γ of equation $xy^{q-1}=c$ contains at least q^2-3 points from Ω . On the other hand, since Γ has degree q, the number of common points of Γ and Ω is at most 2q. Since $q^2-3>2q$, this is a contradiction with Bézout's theorem. \square

Lemma 4.3. No point P(u,v) of $M(q^2)$ can be added to Δ .

Proof. If $||u|| \neq 1$, the point P cannot be added since Ω' is an arc in the Desarguesian plane such that A and B are the only points which can be added to Ω' .

Now, consider a point $P_1(u,v)$ with ||u|| = 1, $v \neq 0$. If P_1 can be added to Δ , then the same is true for its images $P_2(u,-v)$, $P_3(-u,v)$ and $P_4(-u,-v)$ under the collineations quoted in Section 2. Since the line

joining P_1 and P_2 is disjoint from Δ , we see that $\Delta_{12} = \Delta \cup \{P_1, P_2\}$ is an oval, that is an arc of size $q^2 + 1$. Similarly, $\Delta_{34} = \Delta \cup \{P_3, P_4\}$ is an oval. It turns out that the ovals Δ_{12} and Δ_{34} in $M(q^2)$ have $q^2 - 1$ common points, but this is not possible for $q \geq 5$.

Lemma 4.4. No point at infinity can be added to Δ .

Proof. The assertion is certainly true for $q \equiv 1 \pmod{4}$ as Δ has two infinite points for such values of q. For $q \equiv 3 \pmod{4}$, every parallel class of lines contains at least one secant of Ω that does not pass either through A or B. This proves the assertion.

From the above lemmas together with Theorem 3.3, we obtain the following result.

Theorem 4.5. In the Moulton plane $M(q^2)$ of order q^2 with $q \ge 5$, there exists a complete $(q^2 - 1)$ -arc.

REFERENCES

- A. Barlotti, Un'osservazione intorno ad un teorema di B. Segre sui q-archi, Le Matematiche, 21 (1966), 23-29.
- [2] E. Boros and T. Szönyi, On the sharpness of a theorem of B. Segre, Combinatorica 6 (1986), 261-268.
- [3] A. Cossidente, A new proof of the existence of $(q^2 q + 1)$ -arcs in $PG(2, q^2)$, J. Geom. 53 (1995), 37-40; correction 59 (1997), 32-33.
- [4] R.H.F. Denniston, On arcs in projective planes of order 9, Manuscripta Math., 4 (1971), 61-89.
- [5] G. Ebert, Partitioning projective geometries into caps, Canad. J. Math. 37 (1985), 1163-1175.
- [6] J.C. Fisher, J.W.P. Hirschfeld and J.A. Thas, Complete arcs in planes of square order, Combinatorics '84, North-Holland Math. Stud. 123, North-Holland, Amsterdam, 1986, 243-250.
- [7] J.W.P. Hirschfeld, The main conjecture for MDS codes, Cryptography and Coding, Lecture Notes in Comput. Sci. 1025, Springer, Berlin, 1995, 44-52.
- [8] J.W.P. Hirschfeld, Complete arcs, Discrete Math. 174 (1997), 177-184.
- [9] J.W.P. Hirschfeld and G. Korchmáros, On the embedding of an arc into a conic in a finite plane, Finite Fields Appl. 2 (1996), 274-292.
- [10] J.W.P. Hirschfeld and G. Korchmáros, On the number of rational points on an algebraic curve over a finite field, Bull. Belg. Math. Soc. Simon Stevin 5 (1998), 313-340.
- [11] J.W.P. Hirschfeld, G. Korchmáros and F. Torres, Algebraic curves over a finite field, Princetone University Press, pp. i-xviii, pp. 691.
- [12] J. W. P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite projective spaces, J. Statist. Plann. Inference 72 (1998), 355-380.
- [13] J.W.P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite projective spaces: update 2001, Finite Geometries, Kluwer, Dordrecht, 2001, 201-246.
- [14] D.R. Hughes and F.C. Piper, Projective planes, Springer, Berlin, 1973.
- [15] B. Kestenband, Unital intersections in finite projective planes, Geom. Dedicata 11 (1981), 107-117.

- [16] G. Menichetti, q-archi completi nei piani di Hall di ordine q = 2^k, Rend. Accad. Naz. Lincei, 56 (1974), 518-525.
- [17] T. Szőnyi, Arcs and k-sets with large prime-set in Hall planes, J. Geom., 34 (1989), 187-194.
- [18] T. Szőnyi, Complete arcs in non-Desarguesian planes, Ars Combin., 25, (1988), C , 169-178.
- [19] J.F. Voloch, On the completeness of certain plane arcs, European J. Combin. 8 (1987), 453-456.
- [20] J.F. Voloch, Arcs projective planes over prime fields, J. Geometry, 38 (1990), 198-200.
- [21] J.F. Voloch, On the completeness of certain plane arcs II, European J. Combin. 11 (1990), 491-496.
- [22] J.F. Voloch, Complete arcs in Galois planes of nonsquare order, Advances in Finite Geometries and Designs, Oxford University Press, Oxford, 1991, 401-406.

V. Abatangelo and B. Larato,
Dipartimento di Matematica
Politecnico di Bari,
Via Orabona 4,
I-70125 Bari, Italy.

e-mail:

abatvito@poliba.it larato@poliba.it