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ABSTRACT. A complete arc of size g2 — 1 is constructed in the Moul-
ton plane of order g2 for g > 5 odd.
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1. INTRODUCTION

In a finite projective plane =, a k-arc is defined to be a set of k points
no three of which are collinear. If 7 has order g, then a k-arc contains at
most g + 1 or ¢ + 2 points according as g is odd or even. If equality holds
then the arc is called an oval when g is odd and a hyperoval when g is even.
A k-arc is complete if it is not contained in any (k + 1)-arc of =.

Large k-arcs in the Desarguesian plane PG(2,q) have been intensively
investigated also in connection with coding theory, see [7, 8, 12, 13] and
[11, Chapter 13]. In PG(2,q), complete k-arcs different from ovals when ¢
is odd and from hyperovals when ¢ is even have the following properties,
see [2, 3, 5, 6, 9, 10, 15, 19, 20, 21, 22

(1a) k<q-.q+1 if q is even;
(1b) k<q-(,/9/2)+5 if qisodd;
(1c) k < (449/45) + 2 if q is a prime.

In particular, g-arcs in PG(2, q) are not complete; this goes back to Segre
for g odd and Tallini for ¢ even. It has been conjectured that no (g —1)-arc
for ¢ > 13 is complete, but this has been proven so far for ¢ > 73.

The above results on the spectrum of the sizes of large k-arcs of PG(2, g)
do not hold true in non-Desarguesian projective planes. Menichetti [16]
constructed an infinite sequence of complete g-arcs in Hall planes of even
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order. Examples of complete 9-arcs in non-Desarguesian planes of order 9
were given by Denniston [4] and Barlotti [1]. Szdnyi {17] gave constructions
for ovals in André planes, for complete (g — 1)-arcs in the Hall plane of
odd order g > 49 and for complete arcs in André planes of square order
having at least 2¢/3 points. Szényi [18] also showed that the set consisting
of all rational numbers k/q such that there exists a complete k-arc in some
projective plane of order q is dense in the interval [0, 1).

In this paper, we construct an arc of size (¢2 — 1) in the Moulton plane
of odd order g2, and prove its completeness for g > 5.

2. NOTATION AND PRELIMINARIES

The Moulton plane of order g2, with ¢ a power p* of an odd prime
p, is the dual plane of the Hall plane of the same order. The quasifield
coordinatizing the Moulton plane arises from the finite field GF(¢?) by
altering the multiplication in the following manner.

Let (GF(q), +, ) be the subfield of GF(g?) of order g. Then GF(q?) can
be viewed as the quadratic extension of GF(g) with respect to a polynomial
z2 — 7 irreducible over GF(q). Choose i € GF(g?) for which i = 7, and
write each element z € GF(g?) as = = ¢ + in with §,n € GF(g). Then
the norm of z = £ + in in GF(g?) is defined to be ||z| = £ — m¢® and
llz|| = z-z? = (£ + in)?*!. For a non-zero element ¢ € GF(g), a new
“multiplication”o is defined as follows

_foa-b if ||b]l #£1
“°"—{ at-b if [|b] =t

With this multiplication, (GF(g?),+,0) is a quasifield that coordina-
tizes a translation plane which is in turn the affine Hall plane of order q°,
as well as its dual affine plane, called the affine Moulton plane of order ¢2.
Affine Hall planes of the same order are isomorphic, see [14, Chapter X.4],
and this holds true for affine Moulton planes.

The affine Moulton plane has the same points and the same vertical
lines as the Desarguesian plane over GF'(g2), whereas its non-vertical lines
are the graphs of the functions y = m oz + b with m,b € GF(¢?). In
other words, the affine Moulton plane arises from the Desarguesian plane
by altering a few point-line incidences, namely those between points P(z, y)
with ||z|| = ¢ and lines of equation y = mz + b with m € GF(¢?) \ GF(q).

Note that some collineations of the affine Desarguesian plane remain
collineations in the affine Moulton plane. Those we use in this paper are

7 z 7 -z 7 -z
P - Y —y Py - Y y sy PO Y -y

The projective closure of this affine plane is the Moulton plane M (g?)
of order q°.
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3. INHERITED ARCS IN M(¢?)

In this section we describe a procedure for constructing a k-arc in M(g?)
of size k = ¢ — 1. As we will see, such a procedure provides an arc with
either two or zero points at infinity, according as ¢ = 1 (mod 4) or ¢ = 3
(mod 4). The two cases will be investigated simultaneously, although some
differences in the proofs will occur.

Let s be an element of GF(g?) such that s is a square or a non-square
according as ¢ = 1 (mod 4) or ¢ =3 (mod 4). In the Desarguesian plane,
the conic  of equation 22 — sy? = 1 is irreducible, and it has either two or
zero points at infinity, accordingasg= 1 (mod 4) or ¢ = 3 (mod 4). Two
tangents of {2 are vertical, namely the line of equation z = 1 with tangency
point A(1,0) and that of equation £ = —1 with tangency point B(-1,0).

Without loss of generality, we may assume that ¢t = 1.

Lemma 3.1. In the Desarguesian plane, no vertical line of equation z = ¢
with |lc|| = 1 is a secant of .

Proof. Assume on the contrary that a vertical line z = c withc¢# 1,—1 is
a secant of 2. Then the system

22 -~ sy = 1
M {23

has two solutions, namely (c,b) and (¢, —b) with ¢ # 1 and b # 0. Let
¢ = ¢+ i7. Since ¢ # 1, we have 7 # 0.
Now, replacing = = £ + in in the system (1),

@) € + 2%ni + ™ - sy =1
52 _ 7'772 = 1 )

and subtracting the second equation from the first one,
2ni + 2% — sy® =0,

that is
®3) 23 (€ +in) = sy”.
Raising to the [(¢° — 1)/2]-th power,

(2n)( @' -1/2 J@-D/2 g (@-D/2 = G@-1/2 y(a*-1)
Since y7°~! =1 and (2n)9-! = 1, this implies that
(4) i@@-0/2 = geP-1/2
To end the proof it is enough to show that (4) does not hold. Since 7 is a
non-square in GF(qg),

i@ =1/2 = 2@ =1/4 o (pa-D/2)(@+D/2 — (_)(a+D)/2,
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Ifg= 3 (mod 4), then (—1)(¢+1)/2 = 1 whereas s is a non-square in GF(g?)

and hence s(¢°~1)/2 = —1. This contradicts (4).
Similarly, if ¢ = 1 (mod 4), then (—1)@+1/2 = —1 whereas s is a
square in GF(q?) and hence 54" ~1)/2 = 1, again a contradiction. O

A straightforward consequence of Lemma 3.1 is the following result.

Corollary 3.2. The set Q' = Q\ {A, B} is an arc in the Moulton plane
M(g?).

For ¢ = 1 (mod 4), Q is a hyperbola in the affine Desarguesian plane,
one of its infinite point P, is defined by the lines of equations y = oz + b,
the other Qo by those of equations y = —oz + b where 02 = s~1. In the
affine Desarguesian plane, each of this lines meets ' exactly one point,
except for the four lines disjoint from €', these four lines join A or B to
Py or Q. By Lemma 3.1 this holds true in the affine Moulton plane.
This shows that £’ extends to an arc of size g — 1 in the Moulton plane
by adding to it the infinite points P/, and Q.  defined by the parallel lines
of equations y = ooz + b and y = —o o « + b, respectively.

This motivates to consider the point-set in M(g?)

(5) A= Q when ¢ = 3 (mod 4)
T QU{P,,QL} wheng= 1 (mod 4)

From the above results, the following theorem follows.

Theorem 3.3. The point-set A is an arc of size ¢ — 1 in M(q?).

4. THE COMPLETENESS OF THE ARC A IN M(g?) FOR ¢ 2> 5

To show that A is complete for ¢ > 5, we must prove that no point
P(u,v) with |lu]| = 1 can be added to A. For ¢ = 3 (mod 4), we must also
show that this holds true for every point at infinity.

Lemma 4.1. Neither A nor B can be added to A.

Proof. Since ||1]] = 1, every non vertical line r through A has equation
y=moz — m? with m € GF(¢q?). Choose m € GF(q?) \ GF(q) in such
a way that m?2 € GF(q) but m # —m9, and, for ¢ = 1 (mod 4), also
m? # 1/s. The existence of such an element m follows from the hypothesis
that ¢ > 5.

To show that the line r of equation y = mox ~m? is a secant of A, note
that the set of common points of r and A consists of the points P(z,y) of
M (g?) satisfying the system

2 - sy’=1
(©) {y = mozxz—mI
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From this,
) (1-sm2) 2% +2 s m¥*lz — (1 + sm??) = 0.
By hypothesis 1 — sm? # 0. The discriminant d of (7) divided by 4 is
d/4=sm?? — sm® + 1 =1 + 5(m?? — m?)
and it is equal to 1 since m? € GF(q). Therefore, the equation (7), and
also the system (6) have two distinct solutions
z; = (1-sm3t1)/(1 - sm?) T2 (-1 =sma¥)/(1 - sm?)
no= (m-my)/(1-sm?) ' | % ~(m+m?)/(1 - sm?)

By the choice of m, neither y; = 0 nor yo = 0. Hence, both points P;(z;,y;)
and Pa(z2,y2) lie on the line r showing that A cannot be added to A. The
same argument works for the point B. a

Lemma 4.2. No point P(u,0) of M(q?) with ||u| = 1 can be added to A.

Proof. Since A is a (g% — 1)-arc in M(g?), through every point C € A there
are exactly three 1-secants to A. Two of these join C to A and B, the third
being the tangent line £ to the conic Q at C. Let it be C(z1,%1). Then £
has equation

131
= s s n,
and it passes through the point P(u,0) if and only if
q—1 _g-1
Yy s
8 T ———
(8) u 7

Assume that P(u,0) can be added to A. Then (8) holds for every point
C € Q distinct from A and B. But then

-1 -1
T1yy  —zoys =0

for every two points C(z,¥:1) and D(z2,y2) of Q distinct from A and B.
Therefore, the function zy?~! is constant on the points of Q distinct from
A and B. If c is this constant, then the algebraic curve I' of equation
zy?~! = ¢ contains at least g2 — 3 points from 2. On the other hand, since
I’ has degree ¢, the number of common points of I' and § is at most 2q.
Since g2 — 3 > 2¢, this is a contradiction with Bézout’s theorem. 0

Lemma 4.3. No point P(u,v) of M(q?) can be added to A.

Proof. If |lul} # 1, the point P cannot be added since € is an arc in the
Desarguesian plane such that A and B are the only points which can be
added to Q.

Now, consider a point P;(u,v) with |luf] = 1, v # 0. If P, can be
added to A, then the same is true for its images P»(u, —v), Ps(—u,v) and
P4y(—u, ~v) under the collineations quoted in Section 2. Since the line
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joining P, and P; is disjoint from A, we see that Ay = AU {P}, P2} is
an oval, that is an arc of size g2 + 1. Similarly, Agqs = AU {P3, P4} is an
oval. It turns out that the ovals Aj5 and Aaq in M(q?) have ¢ — 1 common
points, but this is not possible for ¢ > 5. O

Lemma 4.4. No point at infinity can be added to A .

Proof. The assertion is certainly true for ¢ = 1 (mod 4) as A has two
infinite points for such values of g. For g = 3 (mod 4), every parallel class
of lines contains at least one secant of 2 that does not pass either through
A or B. This proves the assertion. O

From the above lemmas together with Theorem 3.3, we obtain the fol-
lowing result.

Theorem 4.5. In the Moulton plane M(q?) of order q* with ¢ > 5, there
ezists a complete (g% — 1)-arc.
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