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ABSTRACT
For two vertices « and v in a graph G = (V, E), the detour dis-
tance D(u,v) is the length of a longest u~v path in G. A u—v path
of length D(u,v) is called a u—v detour. A set S C V is called a weak
edge detour set if every edge in G has both its ends in S or it lies on
a detour joining a pair of vertices of S. The weak edge detour num-
ber dn.w(G) of G is the minimum order of its weak edge detour sets
and any weak edge detour set of order dn..(G) is a weak edge detour
basis of G. Certain general properties of these concepts are studied.
The weak edge detour numbers of certain classes of graphs are deter-
mined. Its relationship with the detour diameter is discussed and it is
proved that for each triple D, k, p of integers with 3 < k<p—D+1
and D > 3 there is a connected graph G of order p with detour diam-
eter D and dn(G) = k. It is also proved that for any three positive
integers a, b, k with k > 3 and @ < b < 2a, there is a connected graph
G with detour radius a, detour diameter b and dnw(G) = k. Graphs
G with detour diameter D < 4 are characterized for dn.,(G) =p—1
and dn(G) = p— 2 and trees with these numbers are characterized.
A weak edge detour set S, no proper subset of which is a weak edge
detour set, is a minimal weak edge detour set. The upper weak edge
detour number dn}(G) of a graph G is the maximum cardinality of
a minimal weak edge detour set of G. It is shown that for every pair
a, b of integers with 2 < a < b, there is a connected graph G with
dnw(G) = a and dn}(G) =b. ,
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1 Introduction

By a graph G = (V, E) we mean a finite undirected graph without loops
or multiple edges. The order and size of G are denoted by p and ¢ respec-
tively. We consider connected graphs with at least two vertices. For basic
definitions and terminologies we refer to [1, 4].

For vertices u and v in a connected graph G, the distance d(u,v) is the
length of a shortest u—v path in G. A u~v path of length d(u,v) is called
a u—v geodesic. For a vertex v of G, the eccentricity e(v) is the distance
between v and a vertex farthest from v. The minimum eccentricity among
the vertices of G is the radius, TadG and the maximum eccentricity is its
diameter, diamG of G. For vertices u and v in a connected graph G, the
detour distance D(u,v) is the length of a longest u—v path in G. A u—v path
of length D(u,v) is called a u—v detour. It is known that the distance and
the detour distance are metrics on the vertex set V. The detour eccentricity
ep(v) of a vertex in G is the maximum detour distance from v to a vertex
of G. The detour radius, radp G of G is the minimum detour eccentricity
among the vertices of G, while the detour diameter, diamp G of G is the
maximum detour eccentricity among the vertices of G.

A vertex z is said to lie on a u~v detour P if z is a vertex of P including
the vertices u and v. A set § C V is called a detour set if every vertex v
in G lies on a detour joining a pair of vertices of S. The detour number
dn(G) of G is the minimum order of a detour set and any detour set of
order dn(G) is called a detour basis of G. A vertex v that belongs to every
detour basis of G is a detour vertez in G. If G has a unique detour basis
S, then every vertex in S is a detour vertex in G.

Two vertices u and v of G are antipodal if d(u,v) = diamG. A cater-
pillar is a tree for which the removal of all end-vertices leaves a path. A
wounded spider is the graph formed by subdividing at most ¢ — 1 of the
edges of a star K, for t > 0. For a cut-vertex v in a connected graph G
and a component H of G — v, the subgraph H and the vertex v together
with all edges joining v to V(H) is called a branch of G at v. An end-block
of G is a block containing exactly one cut-vertex of G. Thus every end-
block is a branch of G at the cut-vertex v of G. The following theorems are
used in the sequel.

Theorem 1.1 ([3]) Every end-vertex of a non-trivial connected graph
G belongs to every detour set of G. Also if the set S of all end-vertices of

G is a detour set, then S is the unique detour basis for G.

Theorem 1.2 ([3]) IfT is a tree with k end-vertices, then dn(T') = k.
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In general, there are graphs G for which there exist edges which do not
lie on a detour joining any pair of vertices of V. For the graph G given in
Figure 1.1, the edge v, v2 does not lie on a detour joining any pair of vertices
of V. This motivates us to introduce the concept of weak edge detour set
of a graph.

v1 V2
Figure 1.1: G

Throughout this paper G denotes a connected graph with at least two
vertices.

2 Weak Edge Detour Number of a Graph

Definition 2.1 Let G = (V, E) be a connected graph with at least two
vertices. A set S C V is called a weak edge detour set of G if every edge
in G has both its ends in S or it lies on a detour joining a pair of vertices
of S. The weak edge detour number dn,,(G) of G is the minimum order of
its weak edge detour sets and any weak edge detour set of order dn,,(G) is
called a weak edge detour basis of G.

Example 2.2  For the graph G given in Figure 2.1, it is clear that no
two element subset of V is a weak edge detour set of G. The set S =
{v1,v2,vs} is a weak edge detour basis of G so that dn,(G) = 3. The set
81 = {v1,v4,vs5} is another weak edge detour basis of G. Thus there can
be more than one weak edge detour basis for a graph G. Also U = {v1,v2}
is a detour basis of G so that dn(G) = 2 and hence the detour number and
the weak edge detour number of a graph G are different.

1
Vg V3
V4 Vs
Figure 2.1: G
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Example 2.3 For the graph G given in Figure 2.2, S; = {v1,v4}, and
Sy = {vg,va} are weak edge detour bases for G and dn,(G) = 2.

(1 V4

V2 V3

Figure 2.2: G

Theorem 2.4  For any graph G of order p > 2, 2 < dny(G) < p.

Proof. A weak edge detour set needs at least two vertices so that dn,,(G) >
2 and the set of all vertices of G is a weak edge detour set of G so that
dny,(G) < p. Thus 2 < dny(G) < p. [ |

Remark 2.5 The bounds in Theorem 2.4 are sharp. For the complete
graph K», dn,,(K2) = p. The set of two end-vertices of a path P, (n 2 2)
is its unique weak edge detour set so that dn,(P,) = 2. Thus the complete
graph K, has the largest possible weak edge detour number p and the
non-trivial paths have the smallest weak edge detour number 2.

This suggests the following question.
Problem 2.6 Is the upper bound in Theorem 2.4 sharp if p > 27

Definition 2.7 A vertex v in a graph G is a weak edge detour vertex if
v belongs to every weak edge detour basis of G. If G has a unique weak
edge detour basis S, then every vertex in S is a weak edge detour vertex of
G.

Example 2.8 For the graph G given in Figure 2.3, S = {u,v,w} is the
unique weak edge detour basis so that every vertex of S is a weak edge
detour vertex of G.

2e
€
<

Figure 2.3: G

36



Example 2.9  For the graph G given Figure 2.4, S; = {v,v,2}, S5 =
{u,v,y} and S3 = {u,v,w} are the only weak edge detour bases of G so
that « and v are the weak edge detour vertices of G.

T Yy

/N

u s w t v
Figure 2.4: G

Remark 2.10 A cut-vertex may or may not belong to a weak edge
detour basis of a graph G. For the graph G given in Figure 2.5(a), S} =
{u,w,z}, S = {u,w,y}, S5 = {v,w,z} and S; = {v,w,y} are the four
weak edge detour bases. The cut-vertex w belongs to every weak edge
detour basis so that the cut-vertex w is the unique weak edge detour vertex
of G. For the graph G in Figure 2.5(b), $ = {u,v} is a weak edge detour
basis and the cut-vertex w is not a weak edge detour vertex.

u T
w
| >< | Uu & I x \ > vV
w
v @ ¥ (b)

Figure 2.5: G

In the following theorem we show that there are certain vertices in a
non-trivial connected graph G that are weak edge detour vertices of G.

Theorem 2.11  Every end-vertex of a non-trivial connected graph G
belongs to every weak edge detour set of G. Also if the set S of all end-
vertices of G is a weak edge detour set, then S is the unique weak edge
detour basis for G.

Proof. Let v be an end-vertex of G and uv an edge in G incident with
v. Then uv is either an initial edge or the terminal edge of any detour
containing the edge uv. Hence it follows that v belongs to every weak edge
detour set of G. If S is the set of all end-vertices of G, then by the first
part of this theorem dn,,(G) > |S|. If S is a weak edge detour set of G,
then dny,(G) < |S|. Hence dn,(G) = |S| and S is the unique weak edge
detour basis for G. [ |
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Corollary 2.12 IfT is a tree with k end-vertices, then dn(T) = dn.,(T)
=k.

Proof. This follows from Theorems 1.2 and 2.11. | |

Corollary 2.13  Every end-vertex of a connected graph G is a detour
vertex as well as weak edge detour vertex.

Proof. This follows from Theorems 1.1 and 2.11. [ |

Corollary 2.14  For any connected graph G with k end-vertices,
max{2, k} < dny(G) < p.

Proof. This follows from the Theorems 2.4 and 2.11. |

Theorem 2.15 Let G be a connected graph with cut-vertices and S a
weak edge detour set of G. Then for any cut-vertex v of G, every component
of G — v contains an element of S.

Proof. Let v be a cut-vertex of G such that one of the components, say
C of G — v contains no vertex of S. Then by Theorem 2.11, C does not
contain any end-vertex of G. Hence C contains at least one edge, say uw.
Since S is a weak edge detour set, there exist vertices z,y € S such that uw
lies on some z—y detour P: = = ug,U1,...,%W,...,ut =y in G or both
the ends u and w of the edge uw are in S. Suppose that uw lies on the
detour P. Let P; be the z—u subpath of P and P, be the u-y subpath of
P. Since v is a cut-vertex of G, both P, and P, contain v so that P is not
a detour, which is a contradiction. Suppose that v and w are in S. Then
C contains vertices of S, which is a contradiction. Thus every component
of G — v contains an element of S. [ |

Corollary 2.16 Let G be a connected graph with cut-vertices and S a
weak edge detour set of G. Then every branch of G contains an element of
S.

Remark 2.17 By Corollary 2.16, if S is a weak edge detour set of a
connected graph G, then every end-block of G must contain at least one
element of S. However, it is possible that some blocks of G that are not
end-blocks must contain an element of S as well. For example, consider the
graph G of Figure 2.4, where the cycle Cs : z,y,t,w, s, is a block of G
that is not an end-block. By Theorem 2.11, every weak edge detour set of
G must contain % and v. Since the u—v detour does not contain the edges
sw and wt, it follows that {u, v} is not a weak edge detour set. Thus every
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weak edge detour set of G must contain at least one vertex from the block
Cs.

Corollary 2.18 If G is a connected graph with k > 2 end-blocks, then
dny(G) > k.

Corollary 2.19 If G is a connected graph with a cut-vertex v and the
number of components of G — v is r, then dn,(G) > r.

For the graph H and an integer k, we write kH for the union of the k
disjoint copies of H.

Theorem 2.20  Let G = (K,,UKp,U- - -UK,, UkK1)+v be a block graph
of order p > 5 such that r > 2, eachn; > 2 and ny +no+- - +n.+k=p-1.
Then dn.,(G) =r+k+1.

Proof. Let uj,us,...,ur be the end-vertices of G. Let S be any weak
edge detour set of G. Then by Theorem 2.11, u; € §(1 < i < k) and
by Theorem 2.15, S contains a vertex from each component K, (1 < i <
7). Choose exactly one vertex v; from each K, such that v; € S. Then
|S] > 7+ k. Let T = {vy,v9,...,vr,u1,us,... yur}. Since any of the edges
vv; (1 < 4 < ) neither lies on any detour joining a pair of vertices of T
nor has both its ends in T, T is not a weak edge detour set of G. Hence it
follows that dn,(G) > r + k + 1. Now, T U {v} is clearly is a weak edge
detour set of G and so dn,(G) =r + k + 1. |

Remark 2.21 If the blocks of the graph G in Theorem 2.20 are not
complete, then the theorem is not true. For the graph G given in Figure 2.6, .
there are two blocks and {vy, v2,vs,v7} is a weak edge detour basis so that
dn,(G) = 4.

vg
U3 V2
v
vr
Uq Vs Ve
Figure 2.6: G

In the following theorem we give certain graphs G for which dn., (G)=2.
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Theorem 2.22 If G is the complete graph Kp(p > 2) or Ky, —e(p 2
3) or a cycle C, or a non-trivial path P, or a complete bipartite graph
Kmn (m,n > 2), then dn,(G) = 2.

Proof. It is clear that any set of two vertices in K, (p 2 2) or Kjpn (m,n 2
2) is a weak edge detour set. Also it is clear that any set of two adjacent
vertices in C,,, those two vertices of degree p — 2 in K, —e(p = 3) and
the two end-vertices of the non-trivial path P, are weak edge detour sets
in Cn, K, — e and P, respectively. Hence the result follows. |

The following theorems give realization results.

Theorem 2.23  For each pair of integers k and p with 2 < k < p, there
exists a connected graph G of order p with dny(G) = k.

Proof. For 2 < k < p, let P be a path of order p — k + 2. Then the
graph G obtained from P by adding k — 2 new vertices to P and joining

them to any cut-vertex of P is a tree of order p and so by Corollary 2.12,
dn,(G) = k. |

Theorem 2.24  For each positive integer k > 2 there exists a connected
graph G and a vertex v of degree k in G such that v belongs to a weak edge
detour basis of G and dn,(G) = k.

Proof. For k > 2, let G be the graph obtained from the complete graph K3,
where V(K3) = {v1,v2,v3}, by adding k — 2 new vertices uy, ug, ..., uk-2
and joining each u; (1 < i < k — 2) to v;. Then degev, = k. Let S =
{u1,us,...,ur—2}. Then neither S nor SU {v;} (1 < i < 3) is a weak edge
detour set of G. However, S U {v1,v2} is a weak edge detour set of G and
hence by Theorem 2.11, S U {v1,v2} is a weak edge detour basis of G so
that dn.,(G) = k. [ |

3 Weak Edge Detour Number and Detour
Diameter of a Graph

In [3], an upper bound for the detour number of a graph is given in terms
of its order and detour diameter D as follows:

Proposition A([3]) If G is a non-trivial connected graph of order p > 3
and detour diameter D, then dn(G) <p—- D+ 1.

Remark 3.1 In the case of weak edge detour number dn,,(G) of a graph



G, there are graphs for which dn(G) =p—-D +1,dn,(G) <p—D+1
and dn,(G) > p— D + 1. For any cycle C of order p > 3, D = p— 1 and
dny(C) = 2 so that dn,,(C) = p— D+ 1. For the graph G in Figure 3.1(a),
p =06, D =4 and dn,(G) = 2 so that dn,(G) < p— D+1. For the graph G
in Figure 3.1(b), p = 5, D = 4 and dn(G) = 3 so that dn,,(G) > p—D+1.

>

(a) (b)
Figure 3.1: G

In the following we give conditions for the graph G so that dn,,(G) >
p—D+1.

Theorem 3.2 Let G be a graph of orderp > 2. If D = p — 1, then
dny(G)>p—D+1.

Proof. For any graph G, dn.,(G) > 2. Since D = p—1, wehave p—D+1 =
2 and so dn,(G) >p—-D +1. [ |

Remark 3.3  The converse of Theorem 3.2 is not true. For the graph G
given in Figure 3.2, p = 6 and D =4 so that p— D+1 = 3 and dn,,(G) = 4.
Thus dn(G) >p—D+1,but D#p—1.

AN
N

Figure 3.2: G

Theorem 3.4 If G is a non-trivial tree of order p, then dn,, (G)<p-
D+1.

Proof. Let u and v be the vertices of G for which D(u,v) = D and let
P :u =w,vi,...,up_1,vp = v be a u—v detour of length D. Let S =
V(G) — {v1,v2,...,up-1}. Clearly, § is a weak edge detour set of G and
50 dny(G) < |S|=p-D+1. | |
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We give below a characterization theorem for trees.

Theorem 3.5  For every non-trivial tree T of order p, dn,(T) = p—D+1
if only if T is a caterpillar.

Proof. Let T be any non-trivial tree. Let D = D(u,v) and P : u = vy,
v1, ..., UD=1, UD = ¥ be a detour diameteral path. Let k be the number
of end-vertices of T and ! the number of internal vertices of T' other than
v1,v2,...,p-1. Then D—1+1+k = p. By Corollary 2.12, dny(T) =k =
p— D —1+1. Hence dny(T) =p— D +1 if and only if 1 =0, if and only
if all the internal vertices of T lie on the detour diameteral path P, if and
only if T is a caterpillar.

Corollary 3.6  For a wounded spider T of order p, dny(T)=p-D+1
if and only if T is obtained from Ky (t > 1) by subdividing at most two of
its edges.

Proof. It is clear that a wounded spider T is a caterpillar if and only if T
is obtained from K ; (t > 1) by subdividing at most two of its edges. Then
the result follows from Theorem 3.5. |

The following theorems give realization results.

Theorem 3.7 For each triple D, k, p of integers with3 < k< p—-D+1
and D > 3, there exists a connected graph G of order p with detour diameter
D and dn,(G) = k.

Proof. Case 1. When D is even, let G be the graph obtained from
the cycle Cp : u1,uz,...,up,u; of order D by adding k — 1 new vertices
vy, v2,...,Uk-1 and joining each vertex v; (1 <7 < k —1) to u; and adding
p— D — k + 1 new vertices wy,ws,..., Wp—D~k+1 and joining each vertex
w; (1<i<p—-D-—k+1) toboth v, and uz. The graph G is connected
of order p and detour diameter D and is shown in Figure 3.3(a).

Now, we show that dn,(G) = k. Let S = {v1,vs,... ,Vk—1} be the set
of all end-vertices of G. Since no edge of G other than the edges ujv; (1 <
i < k — 1) lies on a detour joining a pair of vertices of S or has both its
ends in 9, S is not a weak edge detour set of G. Let T'=SU {v}, where v
is the antipodal vertex of uy in Cp. Then every edge of G lies on a detour
joining a vertex v; (1 < i< k—1)and vsothat T isa weak edge detour
set of G. Now, it follows from Theorem 2.11 that T is a weak edge detour
basis of G and so dny(G) = k.
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Case 2. When D is odd, let G be the graph obtained from the cycle Cp :

U1, ¥2,...,up,u; of order D by adding k — 2 new vertices vy, vo,...,vp_2
and joining each vertex v; (1 <i < k—2) to u; and addingp— D — k + 2
new vertices wi,ws, ..., Wy—p_k+2 and joining each vertex w; (1 < i <

p— D~ k+2) to both u; and us. The graph G is connected of order p and
detour diameter D and is shown in Figure 3.3(b).

Now, we show that dn,,(G) = k. Let $ = {v1,v2,...,v;_2} be the set of
all end-vertices of G. Asin Case 1, S is not a weak edge detour set of G. Let
S1 = S U {v}, where v is any vertex of G such that v # v; (1<igk-2).
It is easy to see that S is not a weak edge detour set of G. Now, the
set ' = SU {u1,up} is clearly a weak edge detour set of G. Hence it
follows from Theorem 2.11 that T is a weak edge detour basis of G and so
dny(G) = k. [ |

v Vo V-1

Wp—D-k+1

(a)

m V2 Vk—2

Wp—D—k4-2

(b)

Figure 3.3: G
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Chartrand, Escuadro and Zang [2] proved that the detour radius and
detour diameter of a connected graph G satisfy radp G < diamp G <
2radp G. Also they proved that every pair a,b of positive integers can
be realized as the detour radius and detour diameter respectively of some
connected graph provided a < b < 2a. We extend this theorem so that the
weak edge detour number can be prescribed as well when a < b < 2a.

Theorem 3.8 Let R, D,k be three positive integers such that k > 3
and R < D < 2R. Then there exists a connected graph G such that
radp G = R, diamp G = D and dn,(G) = k.

Proof. Case 1. Let R be an odd integer. When R =1, let G = K.
Clearly, radp G = 1, diamp G = 2 and by Corollary 2.12, dn,(G) = k.
When R > 3 and R < D < 2R, we construct a graph G with the desired
properties as follows: Let Cry1 : vo,v1,...,VR, Vo be a cycle of order R+1
and let Pp_g41 : %o, %1,..-,up—R be a path of order D — R+ 1. Let H be
the graph obtained from Cry; and Pp_r41 by identifying vg of Cpry41 with
ug of Pp_py1. The required graph G is obtained from H by adding &k — 2
new vertices wy,ws, ..., w2 to H and joining each w; (1 <i <k — 2) to
the vertex up_g—1 and is shown in Figure 3.4(a). Clearly, G is connected
such that radp G = R and diamp G = D.

Now, we show that dn,(G) = k. Let S = {wy,wa,... ,Wk—2,UD—R} be
the set of all end-vertices of G. Since no edge of G other than the edges
wiup-p-1(1 £ 7 < k —2) and the edge up-pup-r-1 lies on a detour
joining a pair of vertices of S or has both its ends in S, S is not a weak
edge detour set of G. Let T = SU{v}, where v is the antipodal vertex of v
in Cry1. Then T is a weak edge detour set of G and hence it follows from
Theorem 2.11 that T is a weak edge detour basis of G so that dny(G) = k.

Case 2. Let R be an even integer. Construct the graph H as in Case 1.
Then G is obtained from H by adding k — 3 new vertices w;, wa, ..., Wk-3
to H and joining each w; (1 < 4 < k — 3) to the vertex up_g—1 and is
shown in Figure 3.4(b). Clearly G is connected such that radp G = R and
diamp G = D.

Now, we show that dn(G) = k. Let S = {wy,w2,...,wk-3,4p-R}
be the set of all end-vertices of G. As in Case 1, S is not a weak edge
detour set of G. Let S; = S U {v}, where v is any vertex of G such that
v ¢ S. It is easy to see that S; is not a weak edge detour set of G. Now
the set T = S U {v1,ug} is clearly a weak edge detour set of G. Hence it
follows from Theorem 2.11 that T is a weak edge detour basis of G and so
dn,(G) = k. u



U U2 UD-R-1 UD-R
v Vo = Ug e ® N

.. U1 w, /\
'U2 'u)2 . . wk—2

. VR
‘_\ u up up_R-1 up-R
Vg = U - ® - & .

. o—{ wy /\
(%) wy ¢ | . Wi-3

(b)

Figure 3.4: G

Now we proceed to study graphs G for which the weak edge detour
number dn,, of G is either p — 2 or p — 1 when the detour diameter is
known. In the following we characterize graphs G with detour diameter
D < 4 for which dn,,(G) = p— 2 and dn(G) = p — 1. For this purpose we
introduce the collection ¢ of graphs given below.

Figure 3.5: Graphs in family ¢
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Theorem 3.9 Let G be a connected graph of order p > 5 with detour
diameter D < 4. Then dn,,(G) = p — 2 if and only if G is a double star T
orT+eorKip1+e+forGeY.

Proof. It is straightforward to verify that if G is a double star T or T' + ¢
or Kip—1+e+ f or G €¥, then dn,(G) = p — 2. For the converse, let G
be a connected graph of order p > 5, D < 4 and dny(G) =p — 2.

If D < 2, it is clear that there are no graphs G for which dn,(G) =p-2.

Suppose D = 3. If G is a tree, then G is a double star T and the result
follows from Corollary 2.12. Assume that G is not a tree. Let ¢(G) denote
the length of a longest cycle in G. Since D = 3, it follows that (@) < 4.
We consider two cases.

Case 1: Let ¢(G) = 4. Let C : v,v2,v3,v4,v1 be a 4-cycle in G. Since
p > 5 and G is connected, there exists a vertex z not on C such that it
is adjacent to some vertex, say v) of C. Then z,v1,v2,v3,v4 is a path of
length 4 in G so that D > 4, which is a contradiction.

Case 2: Let ¢(G) = 3. We claim that G is a double star. If G contains
two or more triangles, then ¢(G) = 4 or D > 4, which is a contradiction.
Hence G contains a unique triangle C3 : v1,v2,v3,v1. Now, if there are
two or more vertices of C3 having degree 3 or more, then D > 4, which is
contradiction. Thus exactly one vertex in C3 has degree 3 or more. Since
D = 3, it follows that G = K p-1 + € and so dny(K1p-1+€) =p—1,
which is a contradiction. Thus it follows that G is a double star T'.

Suppose D = 4. If G is a tree, then there exists a path of length 4 so
that there are at least 3 internal vertices of G. Hence there are at most
(p— 3) end-vertices of G so that by Corollary 2.12, dn,(G) < p—3, which is
contradiction. So, assume that G is not a tree. Let ¢(G) denote the length
of a longest cycle in G. Since D = 4, it follows that ¢(G) < 5. We consider
three cases.

Case 1: Let ¢(G) = 5. Then, since D = 4, it is clear that G has exactly
five vertices. Now, it is easily verified that the graph G, € ¢ given in
Figure 3.5 is the only graph with dn,(G1) = p—2 among all graphs on five
vertices having a largest cycle of length 5.

Case 2: Let ¢(G) = 4. Suppose that G contains K4 as an induced sub-
graph. Since p > 5, D = 4 and ¢(G) = 4, every vertex not on K, is pendant
and adjacent to exactly one vertex of Ky. Thus the graph reduces to the
graph G2 € ¢ given in Figure 3.5. Also since dny,(G2) = p— 2, G2 is the
only graph in this case satisfying the requirements of the theorem.

Now, suppose that G does not contain K4 as an induced subgraph. We
claim that G contains exactly one 4-cycle Cy4. Suppose that G contains two



or more 4-cycles. If two 4-cycles in G have no edges in common, then it is
clear that D > 5, which is a contradiction. If two 4-cycles in G have exactly
one edge in common, then G must contain the graphs given in Figure 3.6
as subgraphs or induced subgraphs. In any case, D > 5 or ¢(G) > 5, which
is a contradiction.

Gy Ga
Figure 3.6:

If two 4-cycles in G have exactly two edges in common, then G must contain
only the graphs given in Figure 3.7 as subgraphs. It is easily verified that
all other subgraphs having two edges in common will have cycles of length
2 5 so that D > 5, which is a contradiction.

Us Us
Vq V3 V4 v3
n v2 n V2
H 1 H 2
Figure 3.7:

Now, if G is one of these H; (¢ = 1,2), then dn,(G) = p — 3, which is
a contradiction. Assume first that G contains H, as a proper subgraph.
Then there is a vertex z such that z ¢ V(H,) and z is adjacent to at least
one vertex of Hi. If z is adjacent to vy, we get a path z, v1, V2, Vs, V4, Us
of length 5 so that D > 5, which is a contradiction. Hence z cannot be
adjacent to v;. Similarly = cannot be adjacent to vs and vs. Thus z is
adjacent to vy or vy or both. If z is adjacent only to vs, then z must be a
pendant vertex of G, for otherwise, we get a path of length 5 so that D > 5,
which is a contradiction. Thus in this case, the graph G reduces to the one
given in Figure 3.8.
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Uq U3
n Y2
Ve Up
v7
Figure 3.8: G

But for this graph G, {v4,vs,7, .. .,Vp} is a weak edge detour basis so that
dny(G) = p — 4, which is a contradiction. So, in this case there are no
graphs satisfying the requirements of the theorem. If z is adjacent only to
vs, then we get a graph G isomorphic to the one given in Figure 3.8 and
hence in this case also there are no graphs satisfying the requirements of
the theorem. If z is adjacent to both v, and vy, then the graph reduces to
the one given in Figure 3.9.

Vg

V2

Figure 3.9: G

However for this graph, {z, va} is a weak edge detour basis so that dn,(G) =
2 and hence dn,,(G) < p — 4, which is a contradiction. Thus a vertex not
in Hy cannot be adjacent to both v and v4.

Next, if a vertex z not on H; is adjacent only to vz and a vertex y not
on H, is adjacent only to v4, then z and y must be pendant vertices of G,
for otherwise, we get either a path or a cycle of length > 5 so that D > 5,
which is a contradiction. Thus in this case, the graph reduces to the one
given in Figure 3.10. But for this graph the set of all end-vertices is a weak
edge detour basis so that dn,,(G) = p — 5, which is a contradiction.



Figure 3.10: G

So, in this case also there are no graphs satisfying the requirements of the
theorem. Thus we conclude that in this case there are no graphs G with
H, as proper subgraph.

Next, if G contains Hy as a proper subgraph, then as in the case of H. 1
it is easily seen that there are no graphs G with H, as a proper subgraph
satisfying dn,(G) = p — 2. Thus, we conclude that, if G does not contain
K4 as an induced subgraph, then G has a unique 4-cycle. Now we consider
two subcases.

Subcase 1: The unique cycle Cy : v1, V2, V3,4, v; contains exactly one
chord vavy. Since p > 5, D =4 and G is connected, any vertex z not on Cy
is pendant and is adjacent to at least one vertex of C,. The vertex z cannot
be adjacent to both v; and w3, for in this case we get ¢(G) = 5, which is
a contradiction. Suppose that z is adjacent to v; or vs, say v;. Alsoif y
is a vertex such that y # z, vy, vs,v3,v4, then y cannot be adjacent to vy
or v3 or vy, for in each case D > 5, which is a contradiction. Hence y is
a pendant vertex and cannot be adjacent to z or v, or v3 or vg 5o that in
this case the graph G reduces to the one given in Figure 3.11. But for this
graph G, dn,,(G) = p — 3, which is a contradiction.

v3
Vg

Figure 3.11: G
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Similarly, if = is adjacent to vs, we get a contradiction.

Now, if = is adjacent to both ve and vy, we get the graph H given in
Figure 3.12 as a subgraph which is isomorphic to the graph H» given in
Figure 3.7. Then as in the first part of case 2, we see that there are no
graphs which satisfy the requirements of the theorem.

z

V4 v3
(4} U2
Figure 3.12: H

Thus z is adjacent to exactly one of vp or vy, say vo. Also if yis a
vertex such that-y # z, vq,v2,v3, V4, then y cannot be adjacent to z or v
or vs, for in each case D > 5, which is a contradiction. If y is adjacent to
v and vy, then we get the graph H given in Figure 3.13 as a subgraph.
Then exactly as in the first part of case 2 it can be seen that there are no
graphs satisfying the requirements of the theorem.

Y

V4 ) U3

!
v2

Figure 3.13: H

Thus y must be adjacent to vy or vq only. Hence we conclude that in
either case the graph G must reduce to the graph G or G4 € ¢ as given in
Figure 3.5. Similarly, if z is adjacent to v4, then the graph G reduces to the
graph G or G4 € ¢ as given in Figure 3.5. It is clear that dn.(G) =p-2
for these two classes of graphs G. Thus these two classes of graphs satisfy
the requirements of the theorem. It is to be noted that the graph Gs is
nothing but Kj 51 + e+ f where e and f are adjacent edges.

Subcase 2: The unique cycle Cy : v1,v2,v3,v4, 71 has no chord. In this
case we claim that G contains no triangle. Suppose that G contains a
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triangle C3. If C3 has no vertex in common with C, or exactly one vertex
in common with Cy, we get a path of length at least 5 so that D > 5. If
C3 has exactly two vertices in common with Cy, we get a cycle of length
5. Thus, in all cases, we have a contradiction and hence it follows that G
contains a unique chordless cycle C4 with no triangles. Since p > 5, D =4,
¢(G) = 4 and G is connected, any vertex = not on C, is pendant and is
adjacent to exactly one vertex of Cy, say v;. Also if y is a vertex such that
Y # Z, v1,V2, 3,4, then y cannot be adjacent to vy or v, for in this case
D > 5, which is a contradiction. Thus y must be adjacent to v only. Hence
we conclude that in either case G must reduce to the graphs H; or H, as

given in Figure 3.14.
”34

Vg U3 V4

m n

H1 H2
Figure 3.14:

But for these graphs H; and H, in Figure 3.14, dn,(H;) = p — 3 and
dny(Hz) = p— 4. Hence there are no graphs satisfying the requirements of
the theorem. Thus, when D = 4 and ¢(G) = 4, the graphs satisfying the
requirements of the theorem are G, G3 and G4 € ¢ as in Figure 3.5.

Case 3: Let ¢(G) = 3. First we prove that the graph contains at most
two triangles. If G contains more than two triangles, since D = 4, it is
clear that all the triangles must have a vertex v in common. Now, if two
triangles have two vertices in common, then it is clear that ¢(G) > 4. Hence
all triangles must have exactly one vertex in common. Since D = 4, all the
vertices of all the triangles are of degree 2 except v. Thus the graph reduces
to the graphs given in Figure 3.15. By Theorem 2.11, every end-vertex of
G belongs to every weak edge detour set of G. It is easy to see that the
set S consisting of all end-vertices, the cut-vertex v and exactly one vertex
other than v from each of the triangles is a weak edge detour set of G so
that dn,,(H;) < |S|(i = 1,2). Since G contains more than two triangles,
it follows that S| < p — 3 and so dn(H;) < p—3(i = 1,2), which is a
contradiction to the assumption that dn,,(G) = p — 2.
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H1 H2
Figure 3.15:

Thus the graph G contains at most two triangles. Now we consider two
cases.

Case 3a: If G contains exactly one triangle C3 : v;,v2,v3, v1. Since p > 5,
there are vertices not on Cs. If all the vertices of C3 have degree three
or more, then since D = 4, the graph G must reduce to the one given in
Figure 3.16. But in this case dn,(G) = p — 3, which is a contradiction.

Figure 3.16: G

Hence we conclude that at most two vertices of C3 have degree > 3.

Subcase 1: Exactly two vertices of C3 have degree 3 or more. Let
deggvs = 2. Now, since p > 5, D = 4, ¢(G) = 3 and G is connected,
we see that the graph reduces to the graph Gs € ¢ as given in Figure 3.5,
for which dny(G) = p — 2. Thus, in this case the graph G5 € ¢ satisfies
the requirements of the theorem.

Subcase 2: Exactly one vertex v; of C3 has degree 3 or more. Since G is
connected, p > 5, D = 4 and ¢(G) = 3, the graph reduces to the one given
in Figure 3.17.
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Figure 3.17: G

Now, we claim that exactly one neighbor of v; other than v, and vs has
degree > 2. If the claim is not true, then more than one neighbor of v; other
than v, and v3 has degree > 2 and so the set of all end-vertices together
with vy and v3 forms a weak edge detour set of G. Hence dn,,(G) < p -3,
which is a contradiction. Thus in this case the graph reduces to T+ e where
T is a double star, which satisfies the requirements of the theorem.

Case 3b: Suppose that G contains exactly twa triangles. Since G is con-
nected, p > 5, ¢(G) = 3 and D = 4 the two triangles do not have two
vertices in common and the graph reduces to the one given in Figure 3.18.

Vg V2

Us ® Us

Figure 3.18: G

Now, we claim that all neighbors of v, which are not on the two triangles,
are pendant vertices of G. Otherwise, the set of all end-vertices together
with v, v; and vy forms a weak edge detour set of G and so dn,(G) <
p — 3, which is a contradiction. Thus in this case the graph reduces to
Ki1p-1+e+ f where e and f are non adjacent edges. This completes the
proof of the theorem. R

Remark 3.10 For p = 4, the graphs are G = Py, Cy, K; — e and K,
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and dny,(G) = p — 2. For p = 2 and 3, there are no graphs G for which
dny(G) =p—2.

In view of Theorem 3.9 we leave the following problem as an open ques-
tion.

Problem 8.11  Characterize connected graphs G of order p > 5 with
detour diameter D > 5 for which dn,,(G) =p - 2.

Now we characterize the trees T for which dn.(T) =p—2.

Theorem 3.12 For any tree T of order p 2> 5, dny(T) = p — 2 if and
only if T is a double star.

Proof. If T is a double star, then by Corollary 2.12, dn,(T") = p — 2.
Conversely, assume that dn,,(T) = p— 2. If D < 2, then it is proved in
Theorem 3.9 that there are no graphs G for which dn,(G) = p—-2. If
D = 3, then it is proved in Theorem 3.9 that T is a double star. If D > 4,
then there exist at least three internal vertices of T so that there are at
most p — 3 end-vertices of T' so that by Corollary 2.12, dn.(T) < p -3,
which is a contradiction. This completes the proof. | ]

Theorem 3.13 Let G be a connected graph of order p > 3 with detour
diameter D < 4. Then dn,,(G) = p —1 if and only if G = K3 or K, .. or
K 1,p-1te

Proof. It is straightforward to verify that if G = K3 or K1,p—1 or Ky p-1+
e, then dn,(G) = p — 1. For the converse, let G be a connected graph of
order p > 3, D < 4 and dn(G) = p— 1. If p = 3, it is easy to see that
K3 and K are the only two graphs satisfying the requirements of the
theorem. Now, let p > 4.

Suppose D = 2. If G is a tree, then G is the star K -1 and the
result follows from Corollary 2.12. If G is not a tree, let ¢(G) denote the
length of a longest cycle in G. Since D = 2, it follows that ¢(G) = 3. Let
. Cj : v1,v2,vs,v) be a 3-cycle in G. Since p > 4 and G is connected, there
exists a vertex z such that z is adjacent to some vertex of Cs, say v1. Then
there is a path of length > 3 so that D > 3, which is a contradiction. Thus
when D = 2, G = Kj 5 is the only graph satisfying the requirements of
the theorem.

Suppose D = 3. If G is a tree, then G is a double star for which dn,(G) =
p — 2, which is a contradiction. Hence, assume that G is not a tree. Let



¢(G) be the length of a longest cycle in G. Since D = 3, it follows that
¢(G) < 4. We consider two cases.

Case 1. Let ¢(G) = 4. Let Cy : v1,v2,vs,v4,v; be a 4cycle in G. For

= 4, it is easily seen that there are no graphs G in this case for which
dny(G) = p—1. If p > 5, since G is connected, there exists a vertex z
such that z is adjacent to some vertex of Cy, say v;. Then there is a path
z,v1,v2,V3,v4 of length 4 in G so that D > 4, which is a contradiction.
Thus, in this case there are no graphs satisfying the requirements of the
theorem.

Case 2. Let ¢(G) = 3. First, we claim that G contains exactly one triangle.
If G contains two or more triangles, then ¢(G) > 4 or D > 4, which is a
contradiction. Thus G contains a unique triangle Cs : vy, v2, v3, ;. Now,
if there are two or more vertices of C3 having degree > 3, then D > 4,
which is a contradiction. Thus, exactly one vertex in C3 has degree 3 or
more. Since D = 3 and ¢(G) = 3, it follows that G = K ,_; + e, for which
dny(G) =p—1. Thus, when D =3, G = K 51 +e is the only graph with
dny(G) =p—1.

Suppose D = 4. Then we proceed as in the case of Theorem 3.9 and see

that there are no graphs G satisfying dn.,(G) = p ~ 1. This completes the
proof. | |

From the proof of Theorem 3.13, we anticipate that there are no graphs
G with detour diameter D > 4 for which dn,,(G) =p— 1.

Conjecture 3.14  For any connected graph G of order p > 3, dn,(G) =
p—1lifandonly if G=Kz or Kyp_j or K1, 1 +e.

Now we characterize the trees T for which dn,(T) =p— 1.

Theorem 3.15  For any tree T of order p > 3, dny,(T) = p — 1 if and
only if T is the star K, ;_;.

Proof. If T is the star K ,_,, then by Corollary 2.12, dn,(T) = p — 1.
Conversely, assume that dn,,(T) = p—1. If D < 2, then it is proved in
Theorem 3.13 that T is a star. If D > 3, then there exist at least two
internal vertices of T" so that there are at most (p — 2) end-vertices of T
so that by Corollary 2.12, dn,,(T") < p — 2, which is a contradiction. This
completes the proof. [ |

55



4 Minimal Weak Edge Detour Sets in a Graph

Definition 4.1 A weak edge detour set .S in a connected graph G is
called a minimal weak edge detour set of G if no proper subset of S is a
weak edge detour set of G.

Example 4.2 For the graph G given in Figure 4.1, S1 = {u,w,z,2},
Sy = {u,w,y,2}, S3 = {v,w,z,2}, S4 = {v,w,y,2} and S5 = {u,v,z,9,2}
are the minimal weak edge detour sets of G.

u F4 T

Figure 4.1: G

Remark 4.3 Every minimum weak edge detour set is a minimal weak
edge detour set, but the converse is not true. For the graph G given in
Figure 4.1, S5 = {u,v,,y,2} is a minimal weak edge detour set of G but
not a minimum weak edge detour set of G. Moreover, the minimal weak
edge detour set S; = {u,w,z,z} contains the cut-vertex w of G. Thus, a
minimal weak edge detour set of a graph may contain a cut-vertex of G.

Definition 4.4 For a connected graph G, the upper weak edge detour
number dn}(G) of G is defined to be the maximum cardinality of a minimal
weak edge detour set of G.

Example 4.5 For the graph G given in Figure 4.1, clearly dn.,(G) = 4.
On the other hand, § = {u,v,z,v, z} is 2 minimal weak edge detour set of
G. Since |V| = 6, it follows that dn}(G) = 5.

Theorem 4.6  For any connected graph G, dn,,(G) < dn}(G).

Proof. Let S be any weak edge detour basis of G. Then S is also a minimal
weak edge detour set of G and hence the result follows. n

Remark 4.7 The bound in Theorem 4.6 is sharp. For any non-trivial
path P, dny,(P) = dnf(P) = 2. Also for the graph G given in Figure 4.1,
dny,(G) < dni(G).

In the following theorem, we give a class of graphs for which these two
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parameters are equal.

Theorem 4.8  a) If G is the complete graph K, (p > 2) or the complete
bipartite graph K,  (m,n > 2), then dn(G) = dnt(G) = 2.

b) If G is a tree with k end-vertices, then dn,,(G) = dn}(QG) = k.

Proof. a) Since any set of two vertices in Ky(p22)or Kpmp(m,n>2)
is a weak edge detour set, it follows that dn,(G) = dn(G) = 2.

b) By Corollary 2.12, the set of all end-vertices of G is the unique weak
edge detour basis of G and so the result follows. |

Problem 4.9  Characterize graphs G for which dn.,(G) = dn}(G).

With the aid of next two results we prove the following theorem, which
together with Theorem 4.8 gives a partial answer to the Problem 4.9.

Result 1. Let G be an odd cycle of order p > 7. A set S = {u,v} is a
weak edge detour set of G if and only if u and v are adjacent.

Proof. If u and v are adjacent, then every edge e # uv of G lies on the
u~v detour and the ends u and v of the edge uv belong to S. Hence S is a
weak edge detour set of G.

Conversely, assume that S is a weak edge detour set of G. If u and v
are not adjacent, then since G is an odd cycle, the edges of u~v geodesic
do not lie on the u—v detour in G so that S is not a weak edge detour set
of G, which is a contradiction. ||

Result 2. Let G be an even cycle of order p > 6. A set S = {v,v} isa
weak edge detour set of G if and only if u and v are adjacent or u and v
are antipodal.

Proof. If u and v are adjacent, then every edge e # uv of G lies on the
u~v detour and the ends u and v of the edge uv belong to S. If v and v
are antipodal, then every edge e of G lies on a u—v detour in G. Thus S is
a weak edge detour set of G.

Conversely, assume that $ is a weak edge detour set of G. If u and v are
not adjacent and u and v are not antipodal, then the edges of u—v geodesic
do not lie on the u—v detour in G so that S is not a weak edge detour set
of G, which is a contradiction. ]

Theorem 4.10  If G is the cycle Cy, then dn,(G) = 2, dn(G) = 2 for
p=3,4,5and dn}(G) =3 forp > 6.
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Proof. Any set of two adjacent vertices of Cp(p > 3) is clearly a weak
edge detour set of G so that dn,(G) =2. Forp=3,4,5,let S CV be
any set such that |S| > 3. Then there exists a pair of adjacent vertices u, v
in S. Since {u,v} is a weak edge detour set of G, it follows that S is not
a minimal weak edge detour set of G and hence dn}(G) = 2. Let p > 6.
Now, we split into two cases:

Case 1. G is an odd cycle. Let S C V be any set such that |S| > 3. If §
contains two adjacent vertices, then by Result 1, S is not a minimal weak
edge detour set of G. Hence any minimal weak edge detour set S of G with
|S| > 3 must be an independent set. So, let S be any independent subset
of V with |S| = 3. We claim that S is a minimal weak edge detour set of
G. Let S = {u,v,w}. If w lies on the u—v detour, then all the edges of the -
cycle that constitute the u—v detour lie on the u-v detour and the edges on
the u—v geodesic lie either on the w—u detour or w-v detour. Similarly, if
w lies on the u—v geodesic, then all the edges of the cycle that constitute
the u—v detour lie on the u—v detour and the edges on the u-v geodesic lie
either on the w-u detour or w—v detour. Hence it follows from Result 1
that S is a minimal weak edge detour set of G. Thus we have shown that
any independent subset S of V with |S] = 3 is a minimal weak edge detour
set of G and so dn}(G) > 3.

Now, if dn}(G) > 3, let S be a minimal weak edge detour set of G
with |S1] > 4. Since S is an independent subset of V and since any set of
three vertices of S] is a weak edge detour set of G, it follows that S is not
a minimal weak edge detour set of G, which is a contradiction. Therefore,
dnt(G) =3.

Case 2. G is an even cycle. Let S C V be any set such that |[§]| > 3. If S
contains two adjacent vertices or two antipodal vertices, then by Result 2,
S is not a minimal weak edge detour set of G. Hence any minimal weak
edge detour set S of G with |S| > 3 must be an independent set and free
from antipodal vertices. So, let S be any independent subset of V' having
no two antipodal vertices and |S| = 3. Then, as in Case 1, it follows from
Result 2 that S is a minimal weak edge detour set of G and dn}(G) =3. N

Theorem 4.11  For every pair a,b of integers with 2 < a < b, there
exists a connected graph G with dn,,(G) = a and dn}(G) =b.

Proof. Let a = b. Then for any tree T with a end-vertices dn.,(G) =
dn}(G) = a, by Theorem 4.8(b). So, assume that 2 < a < b. Let
C : v1,v2,v3,v4, Vs, Vs, v1 be the cycle of length 6. The graph G is obtained
from C by adding b+ 1 new vertices 21,22,...,2e—1, W, %1, %2, -+ s Tb—a+1
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and joining each 2;(1 < i < a—1) to vz, w to v;,vs and vs and each
z;(1 <i<b-a+1)to both v; and vs. The graph G is shown in Fig-
ure4.2. Let X = {z1,%2,...,%p-a11}, Y = {v1,v2,v3}, W = {vy, v5, v6, w}
and Z = {21,22, e ,za..l}.

n

Figure 4.2: G

First, we show that dn,(G) = a. By Theorem 2.11, every weak edge
detour set of G contains Z. Clearly, Z is not a weak edge detour set of G
and so dny(G) > |Z| 4+ 1 = a. On the other hand, let S = Z U {v} where
v € W. Then, for v € W, D(z;,v) = 6 if v = vs and D(z;,v) = 7
ifv # vs(l <4 < a—1). Since every edge of G lies on some z;—v
(1 £i<a-1,v € W) detour, S is a weak edge detour set of G and
50 dny(G) < |S| = a. Therefore, dn,,(G) = a.

Now, we show that dn}(G) = b. Let S = X U Z. Since D(z,z;) =
71<i<a-11<j<b-a+1) and every edge of G lies on some
zi-z; detour, S is a weak edge detour set of G. We claim that S is a
minimal weak edge detour set of G. Assume, to the contrary, that S is
not a minimal weak edge detour set of G. Then there is a proper subset
T of S such that T is a weak edge detour set of G. Since T is a proper
subset of S, there exists a vertex s € S and s ¢ T. Since every weak
edge detour set contains all end-vertices of G, we must have s = z; for
1<i<b—-a+1,say s=x. Now, let e = z,v;. Since neither both
the ends z; and v, of the edge e are in T nor the edge e lies on any z—y
detour for z,y € T, it follows that T is not a weak edge detour set of G,
which is a contradiction. Thus S is 2 minimal weak edge detour set of G
and s0 dnf(G) > |S| =a—1+b—a+1=b. Assume, to the contrary, that
dn(G) > b. Let M be a minimal weak edge detour set of G with |M| > b.
Then there exists at least one vertex, say v € M such that v ¢ § = X U Z.
Thus v € WUY = {v,v2, 3, v4, vs, v6, w}.

Claim 1. M NW = ¢. Assume, to the contrary, that M N W # ¢. Then
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there exists a vertex v € M and v € W. Clearly, ZU {v} is a proper subset
of M and a weak edge detour set of G by the first part of the proof of the
theorem. This is a contradiction to the fact that M is a minimal weak edge
detour set of G.

Claim 2. X € M. Assume, the contrary, that X C M. Then XU Z
is a proper subset of M and a weak edge detour set of G, which is a
contradiction.

Claim 3. M NX # ¢. Assume, to the contrary, that M N X = ¢.
Then M = ZUT, T CY and T # ¢. Then the edge viz; (or vaz;)
(1 <4 < b—a+ 1) neither lies on an z-y detour for z,y € M nor has both
its ends in M. Hence M is not a weak edge detour set of G, which is a
contradiction. Hence we conclude that M = ZUT U X', where T C Y,
T # ¢ and X' is a proper subset of X. Therefore, there exists a vertex
v € X such that v ¢ M, say v = z;. Then the edge z1v; neither lies on
an z—y detour in G where z,y € M nor has both its ends z; and v; in
M. Hence M is not a weak edge detour set of G, which is a contradiction.
Therefore, dn}(G) =b. ]

Remark 4.12 The graph G in Figure 4.2 contains exactly five minimal
weak edge detour sets namely Z U {v}, where v € {v4, vs,v,w} and XU Z.
Hence this example shows that there is no “Intermediate Value Theorem”
for minimal weak edge detour sets, that is, if k is an integer such that
dny(G) < k < dnt(G), then there need not exist a minimal weak edge
detour set of cardinality k in G.

Using the structure of the graph G constructed in the proof of The-
orem 4.11, we can obtain a graph H, of order n with dn,(G) = 2 and
dn}(G) =n—7 for all n > 9. Thus we have the following theorem.

Theorem 4.13  There is an infinite sequence {Hy} of connected graphs
H, of order n > 9 such that dn,,(H,) =2, lirrgo dﬂ"é‘&l =0 and

n—
lim d—":'fl—Hﬁ =1.

n—oo

Proof. Let n > 9 and C : vy, vs,vs,v4,Vs,0,%1 be the cycle of length
6. Then, the graph H, is obtained from C by adding n — 6 new vertices
2,w,T1,Z2,...,Tn-g and joining z to ve, w to each vy, v3 and vs and each
z;(1 € i < n—8) to both vy and vs. The graph H, is shown in Figure 4.3.
Let X = {:Cl,l‘g,...,m‘n..s}, Y = {'Ul,'vg,'ll;;}, W = {’04,'05,‘06,10} and
Z = {z}. It is clear from the proof of Theorem 4.11 that the graph G
contains exactly five minimal weak edge detour sets namely Z U {v}, where
v € {v4,vs,v,w} and X U Z so that dny(H,) =2 and dnf(Hn) =n 1.
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Figure 4.3: H,

Hence the theorem follows. |
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