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Abstract: The vertex Padmakar-Ivan (PI,) index of a graph G is defined as the sum-
mation of the sums of [meu(e|G) + meu(e|G)] over all edges e = uv of a connected
graph G, where m.y(e|G) is the number of vertices of G lying closer to « than to v, and
Mev(e|G) is the number of vertices of G lying closer to v than to u. In this paper, we
give the explicit expressions of the vertex PI indices of some sums of graphs.
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1 Introduction

Molecular structure descriptors, frequently called topological indices,
are used in theoretical chemistry for the design of chemistry compounds
with given physico-chemical properties or given pharmacologic and bio-
logical activities. There are several topological indices have been defined
and many of them have found applications as means for modeling chem-
ical, pharmaceutical and other properties of molecules, while the Wiener
index [1, 2, 3, 4, 5] is the oldest and most thoroughly examined. The
Szeged index [6, 7, 8, 9] is closely related to the Wiener index and is a
vertex-multiplicative type that takes into account how the vertices of a
given molecular graph are distributed and coincides with the Wiener in-
dex on trees. It has been considered from many points of view. Since the
Szeged index takes into account how the vertices are distributed, it is natu-
ral to introduce an index that takes into account the distribution of edges.
The Padmakar-Ivan (PI) index [10, 11, 12, 13] is an additive index that
takes into account the distribution of edges and, therefore, complements
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the Szeged index in a certain sense. It is useful to mention that the PI
index is a unique topological index related to parallelism of edges. All the
indices mentioned have many chemical applications and it was shown that
the PI index correlates well with the Wiener and Szeged indices and that
they all correlate with the physico-chemical properties and biological activ-
ities of a large number of diverse and complex compounds. Very recently,
a new topological index, the vertex PI index, was introduced [11, 12] and
some of its properties were derived [14, 15, 16, 17, 18]. Its definition is
similar to that of the (edge) PI index, in that it is additive, but now the
distances of vertices (instead of edges) from edges is considered.

In [3], four new sums of graphs and their Wiener indices have been
studied. In this paper we give the explicit expressions of the vertex PI
indices of the four sums of graphs.

2 Preliminaries

We first recall some operations on graphs.
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Fig.1: A graph G and S(G),R(G),Q(G),T(G)

Definition 2.1. For a connected graph G, define four related graphs as
follows (see Fig.1):

(a) S(G) is the graph obtained by inserting an additional vertex in each
edge of G. Equivalently, each edge of G is replaced by a path of length 2.

(b) R(G) is the graph obtained from G by adding a new vertex corre-
sponding to each edge of G, and then joining each new vertex to the end
vertices of the corresponding edge.

(c) Q(Q) is the graph obtained from G by inserting a new vertex into
each edge of G, and then joining with edges those pairs of new vertices on
adjacent edge of G.



(d) T(G) has as its vertices the edges and vertices of G. Adjacency in
T(G) is defined as adjacency or incidence for the corresponding elements
of G.

The graphs S(G) and T(G) are also called the subdivision and total
graph of G, respectively. For more details on these operations we refer the
reader to [19].

Let G1 and G, be two connected graphs. For convenience, in what

follows we denote V(G;) and E(G;) by V; and E;, i = 1,2, respectively.
Next we make further operations on these graphs.
Definition 2.2. Let F' be one of the symbols S, R, Q or T. We denote by
G1 +F G2 the F-sum of Gy and Gy for which the set of vertices V(Gy +r
Gz) = (ViU E1) x Vo and two vertices (u1,uz) and (v1,v2) of Gy +r Ga
are adjacent if and only if u; = v; € V] and ugve € E5 or us = vs and
v € E(F(Gl))

Note that G +p G2 has |V,| copies of the graph F(G;), and we may
label these copies by vertices of Go. The vertices in each copy have two
situations: The vertices in V; (we refer to these vertices as black vertices)
and the vertices in E, (we refer to these vertices as white vertices). Now
we join only black vertices with the same name in F(G;) in which their
corresponding labels are adjacent in Gs.

Let e = uv be an edge of a graph G, denote by m.,,(e|G) (or mey(€|G))
the number of vertices lying closer to the vertex u (or v) than to v (or
u). The vertez PI indez of G, PI,, is defined as the summation of the
sums of My (€e|G) + mey(€|G) over all edges e of G. Note that in these
definitions the vertices equidistant from both ends of the edge e are not
counted. This implies that we can write PI, = D ee E(G) me(G), where
Me(G) = Mey(€|G) + me,(€|G) is the number of vertices of G that are not
equidistant from both ends of the edge e.

The following three lemmas are from [3] and will be used repeatedly in
the proof of our main results.

Lemma 2.3. Let G, and G2 be two connected graphs and v = (vy,vs) be
a vertex of Gy +p Ga. Then:

(a) If vi ¢ Ey (that is v is a black vertez), then for all u = (uj,up) €
V(G1 +F G2) we have d(u,v|Gy +F G2) = d(u1,v1|F(G1)) + d(uz, 12|G3).
(b) If vi € E,, then for all u = (uy,u2) € V(G1 +r G2), with uy #
v, u = ulv] € B and ul,v} € V) (that is v and u are white vertices in
different copies of F(G,)), we have d(u,v|G1 +F G2) = 1 + d(uz,v2|G2) +
min{d(ui, v1|F(G1)), d(v}, 1 |F(G1))}-

(c) If vi € En, then for allu = (u1,ug) € V(G +F G2), where uz = vy and
uy € E)(that is v and u are white vertices in the same copy of F(G1)), we
have d(u,v|G1 +F Gg) = d(ul,'vllF(Gl)) +d('LL2,’l)2|G2) = d(ul,v1|F(G1)).
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Lemma 2.4. Let G4 and Go be two connected graphs, uy,v1 € E, ug,v2 €
Vs and F = S or R. Then for u = (u1,u2) and v = (v1,v2) in G +F G,
with ug # v, we have

2 + d(ug, v2|G2) fug =
d(u,v|Gy +r G2) = ’ ; !

(i 0lCh +r o) {d(ul,vllF(Gl)) +d(ug, va|Ga) if ur £ 1.
Lemma 2.5. Let G, and G be two connected graphs, uy,v, € Ey, uz,v2 €
Vo and F = Q or T. Then for u = (uj,u2) and v = (v1,v2) in G1 +r Go,
with us # vo, we have

2 + d(u2,v2|G2) if u=w,
d G =
(u,9|G1 +F G2) {1 + d(u1,01|F(G1)) + d(us, v2|Ga)  if :;:z;

3 Main results

For convenience, we introduce the following notations.

A=Y {me(G1+F Gs) : e =uv,u = (u1,u2),v = (v1,v2) € Vi x Va},

B := Y {m(G1 +r G2) : e = wv,u = (uj,uz) € V1 X Vo,v = (v1,v2) €
E1 X Vz},

C = Y {me(G1 +F G2) : e = wv,u = (u1,u2),v = (v1,v2) € E1 x Vo}.

Let e = uv be an edge of a graph G. We denote by N(, ,)(G) the set
of all vertices u of G satisfying d(u,u’) = d(v,u’), and by n(.)(G) the

cardinality of Ny .)(G) and let n(G) = % nu)(G).
w€EE(G)

Theorem 3.1. Let Gy and G2 be two connected graphs. Then PI,(Gi +s
Gs) = (Wl + [BL)(IVAIIV2l| B2l — [ViIn(Ge) + 2IV|*| EAl).

Proof. (1) Suppose that e = uv is an edge of G1 +s G2, where u =
(u1,up),v = (v1,v2) € Vi x V3. Then, by the definition of S, we know
u; = v; and ugvy € E(Ga). For any w = (wy,w2) € V(G1 +s Gz), by
Lemma 2.3 (a), we have d(w, u|G1+5G2) = d(w1,u1|S(G1))+d(we2, u2|Ga),
d(w,v|Gy +s G2) = d(w,v1|S(G1)) + d(wa, v2|G2) = d(w1,1|S(C1)) +
d(‘w2,'02|02). While d(’u)2,U2|G2) = d(’wz,'vzlag) if d(w, u|G1 +s Gz) =
d(w,v|G1 +s G2). Therefore, me=uw(G1 +s G2) = (V1| + |E1)(}V2| -
T(uz,va)(G2)). This implies that A = [Vi|(IVi] + |E1])(1E2||V2| — n(G32))-
(2) Suppose that e = uv is an edge of Gy +s G2, where u = (u1,u2) €
Vi x Va, v = (v1,v2) € E; x V. Then by the definition of S, we have
ug = vy and u; is an end of v;. For any w = (w3, w2) € V(G1 +5 Ga), we
consider two cases:

(i) Suppose that w € V) x Vo; by Lemma 2.3(a), as in the proof of (1),
we have d(w;,u1|S(G1)) = d(wy,v1|S(G1)). It is clear that there exist no
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vertex satisfying the above equation.
(ii) Suppose that w € E; x V; by Lemma 2.4, we have

2 + d(ws, 'UQIGQ) if v; = wy,
d(vy, w1|S(G1)) + d(ve, wa|G2) if vy # wy.

If v; = wy, for d(w, u|Gy +5G2) = d(w, |Gy +5 G2), d(wy,w,|S(G})) =
2. By the definition of S, there exist no vertex such that the above equation.
If v1 # wy, by (i), there exist no vertex satisfying the above equation.
Therefore, B = |V3|([Vi| + | Ex[) - 2| Ex||V2| = 2| B4 ||V2 2 (|Vi| + | B4 ).
(3) By the definition of S, we have C = 0. Using the above result we can
compute the vertex Padmakar-Ivan index (PI,) of G; +s Ga.
PI,(G1+sG2)=A+B+C
= [Vil(IVi] + |Ea) (|1 B2l Va| — n(G2)) + [Val*(IVa| + | Erl) - 2| Ey|

= (il + |Ea ) (IV1]|Ve| | B2| - [VaIn(G2) + 2|Va?| B4 ). o
Theorem 3.2. Let Gy and G, be two connected graphs. Then PI,(Gy +g
G2) = (il + |EL (V1] V2l| B2 | = Vi |n(G2 + 3|V | B )] — V2 *n(R(G1)).-

Proof. (1)We break down the values A into two sums A = A, + Ay, where
A1 = 3 {me(G1 +r G2) s € = uv,u = (u1,u2),v = (v1,v2) € Vi x V,u; =

d(w,v|G1 +5 Ga) = {

'Ul}
Az =) {me(G1+Rr G2) : e = wv,u = (u1,u2),v = (v1,v2) € V) x Vo,up =
'Uz}.

As in the proof of Theorem 3.1 (1), A1 = |Vi|(|V4]| + |E1])(|1E||V2| —

V’U.,'U € ‘/l X 1/'21'“2 = Vg, Vw = (w1$w2) € V(Gl +R G2)7 by Lemma
2.3(a), we have
d(w, uIG’l +r Gg) = d(wl,ul IR(GI)) + d(‘W2, u2|G2),
d(w,v|G1 +r G2) = d(wy,v1|R(G1)) + d(w2, v2|G2).
Thus d(wl,ullR(Gl)) = d('wl, 'vl|R(G1))lf d('w, 'U.|G1 +r Gz) = d(w, ‘UIG] +
RG2). Therefore, me=yy(G1+RrG2) = [Va|(IVil+|E1|) = |Valn(u, ) (R(G1)).
This implies that
Az = |E1|[V22(IVA] + |E1)) - |Val? > N(z,49)(R(G1)). So,
(x,y)EE’(R(G;)),w,erl
A = (V| + |EA)[(IVA||V2l| E2| = [VaIn(G2) + |Va[? | Ex ]
- IV2I2 2 N(z,y) (R(Gh))
(z,¥)€E(R(G1)),z,yeV
(2) Suppose that e = uv is an edge of Gy +g Ga, where u = (u;,u3) €
Vi xVa, v = (v1,v3) € Ey x V5. Then by the definition of R, we have ug = v,
and u; is an end of vy in G;. For any w = (wy, w2) € V(G) +r G2), we
consider the following two cases:
(i) Suppose that w € V; x V5; by Lemma 2.3(a), similar to the proof of
Theorem 3.1 (2) (i), we have d(uy, w;|R(G1)) = d(vi, w1|R(G1)).
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(ii) Suppose that w € F; x Va; by Lemma 2.4, we have

2+ d(‘UJQ,'U2|G2) if w; =,
d(wl,'v1|R(Gl)) + d(’wz,‘vzng) if wy # vy,

If w; = vy, by the equality d(w,u|G1 +r G2) = d(w,v|G1 +r G2), we
have d(wy,u1|R(G1)) = 2. According to the definition of R, there does not
exist such vertex satisfying the equation.

If wy # vy, as in the proof of Theorem 3.2(1), we have d(w, u1|R(G1)) =
d(wy,v1|R(G1)). Hence,

Meman(G1 +& Ga) = [Val(IVal + |Br]) = [Valngu, uy(R(G1)), Which implies
that B = 2[E1[|Va2(IVal + |B1]) = V2P Y mag)(R(C1))-

(z.v)€B(R(G)))
z€Vy,y€EE

(3) By the definition of R, we have C = 0. Using the above results we
can obtain: PI,(G1 +r G2) = A+ B+ C = (V| + |E1))([Val|V2l|E2| -
[Vi|n(G2) + 3|V2l?| B1]) — |VaPr(R(G1))- o

Recall that the Padmakar-Ivan (PI) indez of a graph G, PI(G), is the
summation of the sums of ey (€|G) + nev(€|G) over all the edges e = uv of
G, where ncyu(€|G) (or ney(e|G)) is the number of edges lying closer to the
vertex u (or v) than the vertex v (or ). In this definition, edges equidistant
from both ends of the edge e = uv are not counted. One of the oldest graph
invariants is the first Zagreb indez, which was introduced by Gutman and
Trinajstié [20], and it is defined as M1(G) = 3 ,ev(q) deg(v)? for a graph
G. The graphs with a fixed number of edges and vertices, with smallest
Zagreb index are completely characterized in [21]. For more details and
related results see [22, 23, 24]. Now we compute the PI, index of G1+FrGa,
where F=Q or T'.

Theorem 3.3. Let G, and Go be two connected graphs. Then PI,(G1+q

G2) = (Vil + |E1)[VallVall E2| — Valn(G2) + Val*(3M1(Gh) + |Enl)] —

2|E1|[Va|(IVal-1)(|E1| = 1)~ [Va|2(PI,(G1) - 2| Ex|) +(|Val? ~ V2| ) PI(G1) —

[Va|? 2 N5y (Q(G1)) — 2V2l(|V2| = 1)(3M1(G1) — | Ea).
zYyEE(Q(Gh)), = yEE,

Proof. (1)As in the proof of Theorem 3.1(1), we have A = \ALAES

E1)(1E2l[Val - n(Ga))-

(2) Suppose that e = uv is an edge of G1 +q G2, where u = (uy,ug) €

Vi xVa, v = (v,v2) € E1xVa. Then by the definition of @, we have ug = v

and u; is an end of v, in G;. For any w = (wy,we) € V(G1 +q Gz2), we

consider two cases:

(i) Suppose that w € V; x V3; by Lemma 2.3 (), as in the proof of Theorem

3.1 (2) (i), we have d(w,u1|Q(G1)) = d(w1,%|Q(G1)). Suppose that

vy = (ul,u'l), by the definition of @, w; is a vertex lying closer to the

vertex #; than to the vertex ull in Gy, but w; # u;.

(i) Suppose that w € E; x V2; by Lemma 2.5, we have

d(w,v|G1 +r G2) = {
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2 + d(wa,v2|G2) if wy =,
1+ d(w1,v1|Q(G1)) + d(wz,v2|Ga)  if wvy # vy.

Ifw) = vy, for d(w, u|G1+¢G2) = d(w, v|G1+¢G2), d(w1,u1|Q(G1)) =
2. There does not exist such vertex satisfying the equation.

If wy = vy, for d(w,u|G1+qG2) = d(w,v|G1+q¢G2), d(w1,11|Q(G1)) =
d(wy,v1|Q(G1)). Suppose that v; = (u;,u;), by the definition of Q, w; is
an edge lying closer to the vertex u; than to the vertex u'1 in Gy.

If w1 # v1 and wy # vg , for d(w,u|G) +q G2) = d(w,v|G) +¢q G2),
we have d(wy,u1|Q(G1)) = 1+ d(w1,%|Q(G1)). This implies that B =
21E (Vo P(VA] + |Eu]) — 2AB:IVal(Val — D(Ex] - 1) — [Va(PL,(Gy) —
2|Er]) + (IVal? — [Va|)PI(G)).

(3) Suppose that e = uv is an edge of Gy +¢q G2, where u = (uj,up),v =
(v1,v2) € Ey x Va. Then by the definition of Q, we have uy = vs.
(1)Suppose that w = (wy,wz) € Vi x Vz, we have d(w,u|G;1 +¢ G2) =
d(wr, 11|Q(G1)) + d(wz, u|G2), d(w,v|G1 +q G2) = d(w1,n1|Q(G1)) +
d(wz,v2|G2). and d(w,u|G1 +q Ga2) = d(w,v|G1 +¢ Ga), if and only if
d(wy,1|Q(G1)) = d(w1,v1]|Q(Gh)).

(ii)Suppose that w = (wy,ws) € E; x Vo, if w; = u;, by Lemma 2.5,
we have d(w,u|Gy +q G2) = 2 + d(ws,u2|G?), d(w,v|G) +q G2) = 1 +
d('wl,'vl|Q(G’1)) +d(‘UJ2,112|G2), and d(w, uIG’1 +q Gz) = d(w,lel +¢ Gz)
if and only if d(v;,w;|Q(G1)) = 1, which is obvious.

Ifv) = wy, d(v,w|G1+q G2) = 2+d(ve, w2|G2), d(u, w|G1+G2) = 1+
d(ul, wllQ(Gl))+d(ug,w2IGg). Thus d(ul,wllQ(Gl)) =1if d(u,le’l +qQ
G2) = d(v,w|G) +q G2). It is obvious that d(u;, w1 |Q(G,)) = 1.

Ifv) # wy and u; # w,, we have d(u, w|G1+oG2) = 1+d(u1, w1|Q(G1))
+ d('u.g,w2|G’2), d(v,w|Gl +q Gz) =1+ d(vl,wllQ(G‘l)) + d('vg,'w2|G'2),
and if d(u,w|G; +g G2) = d(v,w|G1 +g G2), then d(u;,w|Q(G1)) =
d(v1, w1|Q(G1)). So, My,4)(G1+¢q G2) = [Va[(IVi| + |EL|) — 2(]V2] - 1) -
V2| (u;,0,)(@(G1)). This implies that:

¢ = > IV2l(IVa| + | Er]) — 2(|V2| — 1)]
wvEE(G1+9G2),u,ve€E xV2

|V2|2 Z n(::,y)(Q(Gl))
zy€ E(Q(G1)),z,y€E1
= |Val(3M1(G1) = [E1)[[Val(IA] + | E1) - 2(|Ve] = 1))
- [Va? > Nz (Q(G1))-
zy€B(Q(C1)) =, yeEn
By using the above results, we obtain the desired expression: PI,(G1+¢q
G2) = A+B+C = (V3| +|E1)[V1|Val|E2| = [Va[n(Ga) + Val*(3M1(C) +
1ED] = 2AELIVa|(Val ~ DB - 1) ~ [Val*(PLy(Gy) ~ 2|Bnl) + (Vaf? —
VaDPI(GL) = V22 30 n(e)(Q(Gh)) = 2|Val([Val - 1)(3M1(Gh) -

ZVEE(Q(G1))
z,YyEE

d(w,v|Gy +¢q G2) = {

|Er)). o
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Theorem 3.4. Let G; and G» be two connected graphs. Then

PIL,(G: +1 G2)
= ([Vi[+ B D IVAlIVall B2l — Vi [n(G2) +Va |2 (3 M1 (G1)+| Ex ) 43| V2 | Ex || -
2|y [[Val(|Val - 1) (| E1 | — 1) - |VaP (P,(G1) = 2| E1 )+ (|Val* ~ V2| ) PI(G1) —
D> ) N(z,4)(T(G1)) — 2{Val([Val - 1)(3M1(G1) — | En]).

zYE€EE(T (G,
z,yEE orV)

Proof. (1)As in the proof of the Theorem 3.2(1), we have
A=A+ A= (V| +|E)(VillVallE2| = [Va|n(G2) + V2P| Exl]
= 3 nEy)(TGi)

(=, w)EE(T(G1))
z,y€V)

(2) As in the proof of Theorem 3.3 (2), we have
B = 2\E||Val(IVi| + |E1l) — 2|E1|[Val(1V2] — 1)(|En| - 1)
—|ValX(PI,(G1) — 2|EAl) + ([V2f? = [V2)PI(Gh).
(3)As in the proof of Theorem 3.3 (3), we have

C= ¥ [vnHE)D-2Mal+2d-ValP 2 nEy)(T(G)
uwv€E(C)1+7G2) zy€ B(T(G1))
u,vEE X Vy =, yEE)

= [Val(3M:1(G1) — |Ea])[[Val(|Va] + |E1]) — 2(|Va| — 1))
- IV2I2 2 n(z,y)(T(Gl))'
-"’vii('e"gfl))

By using the above results, we obtain the desired expression of the
vertex Padmakar-Ivan index (PI,) of G1 +7 G2. PI,(Gy+7Gs) = A+
B +C = (IVi| + |[EA)[VallVal|E2| — Valn(Ga) + Ve (3M1(Gh) + | Erl) +
3|V )2\ Bu[] - 2/ B ||Vl ([Va] — (| Ex| 1) — |Va*(P1o(G1) — 21 Ex ) + (|Val* -
[V))PI(Gy) = V2”2 . (23 (T(G1)) — 2Va|(|Ve| = 1)(3M1(G1) -

zy€B(T(CGy
z,yEE  orV)

| Erl). o

References

(1] H. Wiener, Structural determination of paraffin boiling points, J. Amer.
Chem. Soc. 69 (1947) 17-20.

[2] I. Gutman,S. Klavzar, B. Mohar (Eds.), Fifty years of the Wiener
indez, MATCH Commun. Math. Chem. 35 (1997) 1-259.

[3] M. Eliasi, B. Taeri, Four new sums of graphs and their Wiener indices,
J. Disc. Appl. Math. (2008), preprint.

[4] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: The-
ory and applications, Acta Appl. Math. 66 (2001) 211-249.

[5) T. Mansour and M. Schork, Wiener, hyper-Wiener, detour and hyper-
detour indices of bridge and chain graphs, J. Math. Chem. 47 (2010)
72-98.

70



(6] S. Klavzar, A. Rajapakse, I. Gutman, The Szeged and the Wiener
inder of graphs, Appl. Math. Lett. 9 (1996) 45-49.

[7] L. Gutman, A formula for the Wiener number of trees and its extension
to graphs containing cycles, Graph Theory Notes N.Y. 27 (1994) 9-15.

(8] 1. Gutman, A. A. Dobrynin, The Szeged indez - a success story, Graph
Theory Notes N. Y. 34 (1998) 37-44.

(9] P.V.Khadikar, N. V. Deshpande, P. P. Kale, A. Dobrynin, I. Gutman,
The Szeged index and an analogy with the Wiener indez, J. Chem. Inf.
Comput. Sci. 35 (1995) 547-550.

[10] T. Mansour, M. Schork, The vertex PI indezx and Szeged indez of bridge
graphs, J. Disc. Appl. Math. 157: 7 (2009) 1600-1606.

(11] P. V. Khadikar, On a novel structural descriptor PI, Natl. Acad. Sci.
Lett. 23 (2000) 113-118.

[12] P. V. Khadikar, S. Karmarkar, V. K. Agrawal, Relationships and rel-
ative correlation potential of the Wiener, Szeged and PI indices, Natl.
Acad. Sci. Lett. 23 (2000) 165-170.

[13] T.Mansour and M. Schork, The PI index of polyomino chains of 4k-
cycles, Acta Applicandae Mathematicae. 109 (2010) 671-681.

(14] A. R. Ashrafi, A. Loghman, PI inder of zig-zag polyher nanotubes,
MATCH Commun. Math. Comput. Chem. 55: 2 (2006) 447-452.

[15] A.R. Ashrafi, A. Loghman, Padmakar-Tvan indez of TUC4C8(S) nan-
otubes, J. Comput. Theor. Nanosci. 3: 3 (2006) 378-381.

[16] A. R. Ashrafi, A. Loghman, PI index of armchair polyher nanotubes,
Ars Combin. 80 (2006) 193-199.

(17} A. R. Ashrafi, B. Manoochehrian, H. Yousefi-Azari, PI polynomial of
a graph, Utilitas Math. 71 (2006) 97-108.

(18] A. R. Ashrafi, F. REzaei, PI index of polyhex nanotori, MATCH Com-
mun. Math. Comput. Chem. 57: 1 (2007) 243-250.

[19] D. M. Cvetkocic, M. Doob, H. Sachs, Spectra of graphs theory and
application, Academic Press, New York, 1980.

[20] I. Gutman, N. Trinajstié, Graph theory and molecular orbitals, Total
II electron energy of alternant hydrocarbons , Chem. Phys. Lett. 17
(1972) 535-538.

[21] I. Gutman, Graphs with smallest sum of squares of vertex degrees,
Kragujevac J. Math. 25 (2003) 51-54.

[22] Ch. Das Kinkar, Mazimizing the sum of the squres of the degrees of a
graph, Discrete Math. 285 (2004) 57-66.

[28] D. de Caen, An upper bound on the sum of squares of degrees in a
graph, Discrete Math. 185 (1998) 245-248.

[24] V. Nikiforov, The sum of the squares of degrees: Sharp asymptotics,
Discrete Math. 307 (2007) 3187-3193.

71



