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Abstract

In this paper, we study the matrices related to the idempotent num-
ber and the number of planted forests with k components on the vertex
set [n]. As a result, the factorizations of these two matrices are obtained.
Furthermore, the discussion goes to the generalized case. Some identities
and recurrences involving these two special sequences are also derived
from the corresponding matrix representations,
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1. Introduction

Recently, the Pascal matrix and several generalized Pascal matrices have
catalyzed many investigations (see, e.g., [1, 2, 3, 8, 13, 14]). On the other
hand, the Stirling matrices of the first kind and of the second kind as well
as the Lah matrix are also received wide concern [4, 5, 12]. In the papers
referred to above, we can see not only various properties satisfied by the
corresponding matrices, especially the factorizations of them, but also some
interesting and useful identities.

By the impetus of these works, in this paper, we will study the matrix
related to the idempotent number I(n,k) [6, Section 3.3] as well as the
matrix related to the number J(n, k) of planted forests with k components
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on the vertex set [n] (cf., [11, Section 5.3]), where

I(n,k) = (:)k""‘, J(n,k) = (Z:Dnﬂ-k.

It seems that the numbers J(n, k) are more interesting for their explicit
combinatorial meanings. Besides what we have just mentioned, J(n, k) is
also known as the number of labeled trees on n + 1 nodes with maximal
node degree k (see [10]).

Let’s define IP, and J, to be the n x n matrices related to these two
sequences:;

(IPn)i,j = I('L)J)’ (']ﬂ)‘i,j = J(Z,]), fOI' 7".7 = 1)2)”' s

For example,

1 0 00 1 0 0 0
2 1 0 0 2 1 0 0
1P = . Ja=
3 6 1 0 9 6 1 0
4 24 12 1 64 48 12 1

As shown in {10}, some well known combinatorial sequences, such as
the number of labeled rooted trees with n nodes (n"~!) and the number
of labeled trees on n nodes (n"~2), are all closely related to the matrix
Ja. The readers are referred to [10] for more such sequences as well as the
corresponding references.

In preparation for the study, we will first demonstrate the relationship
between I(n,k) and J(n,k) (see [6, p. 164]), which is given by the lemma
below.

Lemma 1.1. We have

ZI(Z, l)- (—l)l_j'](l’j) =0, (1.1)
=3
where 8; ; is the Kronecker delta (§;; = 1,6;; = 0,1 # j). As a conse-
quence, o
UP )i = (1)) (1.2)

Proof. (1.1) is equivalent to the following identity:

> ()G =a.

l=j
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To verify it, we need only consider the case when i > j. In fact, by appealing
to the identity [7, p. 2, equation (1.13)]: 3¢ _o(—1)¥(})k? =0for 0 < j <

n, we have

Zi: @ (; - 1) (-1 = ;2(; _ i) (;:1)(—1)"%"-7’

i=j
(i—1) z‘—j) =g pimim1
=i[ . V(1)
(J‘I)Z;(l—J =D
—i(:7t f I -1y + Gy
=y-1 k J
k=0
i=1\ " & =51\ iy (L fi—j
() B () (B ()
‘7_1 =0 ! k=0 k
which completes the proof. 0

In Section 2, the factorizations of I P, will be given, and by making use
of (1.2), J, will also be factorized. Sections 3 is devoted to the generalized
matrices of I P, and J,. Finally, in Section 4, some interesting identities
as well as recurrence relations related to I(n,k) and J(n, k) are obtained
with the method of matrix representation.

2. Factorizations of IP, and J,

Lemma 2.1. The idempotent numbers I(n, k) have the following generating
Sfunctions:

O(t,u) = Z I(n, k)—u = exp(ute’), (2.1)
n,k>0
&)=Y I(n, k) %(te‘)". 2.2)
n>k n! )

Proof. By virtue of the explicit value of I(n, k), we have

o(t,u)= ) (k)kn-kt Z kmt"“ u¥

n,k>0 k>0
ktk kt
= Z = exp(utet).
k>0
And (2.2) is a direct consequence of (2.1). O
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Lemma 2.2. The idempotent numbers I(n, k) satisfy the following recur-
rence relation:

I(n,k) = mgk:l(n m)( )I( mk—1).

Proof. Equate the coefficients of " ~!/(n—1)! in the first and last member
of

t"" tI' :
> In k) s — = (1+t)e'Dp_y(¢)
n>0
= /n A
=1+t (z ( )I(m,k—l)) =,
n20 \m=0 m n
and we will get the result. 0

Now, defining A, to be the n x n matrix by
. i—1 .
(An)i,,-=(z—j+1)<;._1), fori,j=1,2,--+,n

and using the notation @ for the direct sum of two matrices, we can obtain
the factorization of the matrix I P, from Lemma 2.2.

Theorem 2.3. The matriz IP, related to the idempotent numbers can be
factorized as

IP, = Ap((1] ® IPao1). (2.3)
For example, if n = 4, we have
IPy =
1 0 0 0 1) o o o 1000
2 1 00 20 1)) o o 0100
36 10| [3) 20 1) o 0210
424012 1) \4f) 3Q) 20 10/ \0 361

Analogous to [2, 4, 13, 14}, if we define the n x n matrix A by

- I'n—k o
Ak = )
0O A

we can further factorize the matrix IP,. It is obvious that A, = A,, and
A; is the identity matrix I,.
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Theorem 2.4. The matriz IP, can be factorized by the matrices Ay ’s:

IP, = AnA, 1+ Ax4. (2.4)
For example,
IP, =
1 0 0 0 1000 1000 1000
2 1 0 0 2100 0100 0100
36 1 0/[|3 410 0210 0010
4 24 12 1 4 9 6 1 0 3 41 00 21

Additionally, we can factorize the matrix J,,. In order to do it, the next
lemma is required.

Lemma 2.5. We have
Sn * L’Il = An ) (2.5)

where Sy, is a n X n matriz defined by
1, ifj=1,
(Sn),',j= 'I:—]., lf]=?,—1,
0, celse,

and L,, is the general n x n Pascal matriz (Ln)ij = i ]) Moreover, the
inverse matrices of S, and A,, are given by:

-1y, . _ _l‘:jliy_l!, lf1.>_.7:
(Sn )'l.? - (J )
0, else,

i— )
=0 () o

Proof. By means of the definition of the matrix product, we can easily
verify (2.5) as well as the values of the elements of S;!. And in light of the
well known fact that (L“), 4 = (=1)77(5Z1), we can also deduce (A;!);;
fori,7=1,2,- a

With Lemma 2.5, we can prove a recurrence relation satisfied by J(n, k).
Actually, equation (2.3) implies that

IP7Y = (1)@ IP,-1) 1A
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And in view of (1.2), we have
J@E,5) =) JGE-11-1) , (2.6)
" ,Z; ’ ( ) Z k)'

Thus, according to this recurrence, the factorizations of the matrix Jn can
be deduced.

Theorem 2.6. The matriz J, can be factorized as
In = ([1] ® J, ..1)Bn = Bléz oo Bn_an , (2,7)

where the n X n matriz B, is defined by
i— ) L
(Bn)z,g ( )Z ( .;;' ) fOl’ ,7= 1,2,-.. ,n

_ L.y O _ .
and B = ( Ok B ), with the special cases By, = By, and B, = I,.
k

For example,

{1 0 00 1000 1 0 00
J4=2100=0100 2 1 00
9 6 1 0 0210 5 4 10
k6448121 09 61 16 15 6 1
(1000 1000 0 00
0100 0100 1 00
“loo1o 0210] 10
\0 0 2 1 0541 16 15 6 1

3. Generalized numbers and matrices

It is obvious that an inverse relation can be obtained from Lemma 1.1.
That is, for two sequences {an} and {bn},

An = i (Z) kn—kbk )

k=0

88



if and only if
— - _qyn—k (T 1 n—k
b, = k§=o( 1) (k _ 1)11, ak .

This inverse relation as well as some generalizations can be found in [9,
Chapter 3]. And in the present paper, we will consider one of these gener-
alizations: for two sequences {a,} and {b,},

n

an = Z (:) (z + k)" kb,

k=0

if and only if

b, = Eﬂ:(—l)”"c (Z) (x+k)(z+n)"F1g.

k=0
Naturally, we will regard I(z;n,k) = (})(z + k)*~* and J(z;n, k) =
(2)(@+k)(z+n)""F1 as the generalizations of I(n, k) and J(n, k), respec-

tively. And the corresponding n x n matrices IP,[z] and J, [z], which are
defined as follows:

(IP‘"[x])i.j = I(.’L’;'i,j) ) (Jnlxl)i,j = J(:B;i,j) s
fori,j=1,2,:-+,n,

can also be viewed as the generalizations of IP, and J,, respectively. For
instance,

1 0 0 0
IPyfe] = 2(z +1) 1 0 0 ’
z+1) 3(z+2) 1 0
4z+1)P° 6(z+2)2 4(x+3) 1
1 0 0 0
B 2(z +1) 1 0 0
Jalel = 3(z + 1)(z + 3) 3(z +2) 1 0
Hz+1)(x+4)? 6(z+2)(z+4) 4(x+3) 1

In this section, we will give the factorizations of these two matrices.
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Lemma 3.1. The generalized idempotent numbers I(x;n,k) have the fol-
lowing generating functions:

O(z; t,u) = Z I(z;n,k) t—Tu" = e exp(ute'), (3.1)
n,k>0 n
Bp(z;t) = Y I(z;n k) t" (z+k)t (3.2)
n>k

Proof. In fact, we have

> (Z) (z + k)"-kguk

n,k>0
u*tFH (z + k)’ (z + k)‘t‘ uFtke(z+h)t
= Z A1 = Z ] Z Z Kl
k120 k>0 120 k>0
uktkekt
= e®t Z T = e* exp(ute’),

from which (3.1) holds. And by identifying the coefficients of u* in (3.1),
we can obtain the vertical generating function (3.2). a

Lemma 3.2. The generalized idempotent numbers I(x; n, k) satisfy the fol-
lowing recurrence relations:

1- S)I(:L‘; n, k) = (k+z)I(z;n — 1,k), (3.3)
k o1
—I(zin, k) _"Zk:_l( o )I(z,m,k— 1). (3.4)

Proof. (3.3) can be verified directly. For (3.4), we differentiate (3.2) with
respect to ¢ first:

Zl(z, k) G o - = a@?a(f ) _ ety (z,2) + (k + 2)Pi(a, 1)

And then, by equating the coefficients of t*~!/(n—1)! in the formula above,
we have

n~-1

n-1
I(z;n,k) = Z ( m )I(m;m,k -1+ (k+2)(x;n - 1,k),
m=0
which leads us at once to the result in light of (3.3). O



Corollary 3.3. We have

k = /-1
=I(n,k)= Y ( )I(m, k—1). (3.5)
n m=k-1 m

Proof. This is a direct consequence by letting z = 0 in (3.4). ]

If we define the n x n matrix ff’n by (ﬁ’n)i,j = jI(i,7)/¢, we can get
its factorizations immediately from (3.5):

IP, = L((1] @ IPacy) = LpAn_y - AzA4; . (3.6)

Moreover, according to (2.3) and (2.5), we have IPy = SpLn([1] ® IPa-1),
which yields the relationship between IP, and IP,:

IP, =SIP,. 3.7)

In order to get the factorizations of IP,[z] and Jy,[z], we should define
some new matrices, which will be shown below. For ¢, =1,2,--- ,n,

~ i i-1 if 4
(IPn['T])i,j = %I(.’E;i,j), (Ln[l'})i,j = { (m gj__ll)i:l , :i; 7=é 1:

TNz +4), ifj<i,

(Sn[l‘])i’j = 1 y lf] =‘i,
0, if§>i.

The inverse matrices of L,[z] and S,[z] can be easily found.

—1)i=i(izh), if j#£1,
(L)) = { _ii—ll)_i_ (gi)li)—l ’ ifj i ;’

1 T 4 ), i<,
(52 le))is = 1, if j =1,
0, ifj>i.
Thus, from (3.4), we get the relationship between IP,[z] and IP,[z]:
TPy [z] = Lafz)([1] ® IPn_[]). (3.8)
On the other hand, analogous to (3.7), we obtain another one:
IP,[z] = S7)IPy,[z]. (3.9)

Making use of (3.8) and (3.9), the factorization of IP,[z] can be finally
achieved.
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Theorem 3.4. The matriz IP,[z] related to the generalized idempotent
numbers can be factorized as

IP,[z] = Sal2)Ln([z]((1] ® IPp-1lz]) -

For example, we have

1 0 0 0 1 0 00
IPyfe] = z+1 1 0 0 z+1 1 0 0
z(z+1) z+2 1 0 (z+1)2% 2 1 0
2z +1) z(z+2) z+3 1 (z+1)® 3 3 1
1 0 0 0
0 1 0 0
0 2z+1) 10
0 3@+1)? 3z+2) 1

By defining the n x n matrix Ay[z] = Sp[z]Ln[z], we can obtain the
factorization of J,[z].

Theorem 3.5. The matriz Ju[z] can be factorized as
Jnlz} = (1] ® Jn-1[e]) Bale],

where the n X n matriz By[z] is defined by (Balz))i; = (—1)*7 A(z;4,5)
fori,j=1,2,--+,n, and A(z;i,3) is the (i, §)-entry of An[z].

4. Identities and recurrence relations

According to the matrix representations obtained in Section 2 and Sec-
tion 3, a number of interesting identities and recurrence relations related
to the numbers I(n, k) and J(n,k) can be achieved.

Theorem 4.1. We have

i(—l)""l(n, DJl-1,k-1) =(n—k+1) (: ~ 1) , (4.1)

1=k 1
n
k(" k _ 1\l=k—1m—-i-1 _ uj_l >
ZE( 1) (l_k)(l 1) [ =D fork>2, (4.2)
and

n

Z(n —-1+1) (T;:]I:) (k=1)"%=nk" %1 fork>1. (4.3)
=k



Proof. (4 1) and (4.2) are direct consequences of the fact that IP,([1] ®
IP,_1)~! = An. And (4.3) is a equivalent form of (2.3). O

Theorem 4.2. We have

n

?:;( D (n-1,1-1)J(,k) = (k 1)2 z)" (4.4)

n

Z(_l)n-—l (7;__:) (- l)n—lll—-k = E ((:::];))' , (4.5)

I=k

and

z":(—n'-"(z —k+ 1)(11:11) Jm,)=J(n—-1,k-1), (4.6)

Z;( )R-k +1) (n :) k-1 -1)""*1 forn>2.
(4.7

Proof. (4.4) and (4.5) follow from ([1] ® Ja—1)~1J, = By; while (4.6) and
(4.7) follow from J,B;! = ([1] ® Ju-1). O

Equation (3.6) 1B, = Ln([1) ® IP,-1) will lead us at once to the next
three theorems.
Theorem 4.3. We have
“\fl-1 k
Z(k_l)J(n—l,l—l)—;J(n,k), (4.8)

=k

Xn:(z -1) (" k) (n=-1)"""t=kn" %1 forn>2, (4.9)

=k !

and

3 (" - ’“) (k — 1)F = gn—k (4.10)
l—k
l=k
Proof. We can get (4.8) and (4.9) from the factorization IP P = (1] &
IP, 1)"'L;!, and get (4.10) from (3.6). O
Theorem 4.4. We have
Iy +
Z( ~) T = I+ 1,1+ 1)J (k) = (4.11)
1=k

93



i(_l)l-k (7:”:) (l + l)n—lll—k—l —

=k

, fork>1, (4.12)

ol W

and

Z( 1)t- k’““ n )J0+ 1,k +1) = (= 1)"-’=(k), (4.13)

l-—k
k+1 —kn— n—

Z( 1) kl-l—l(l )(z+1)' k=t = (—1)F, (4.14)
Proof. These four identities follow from IPn([1] ® IP,-1)~! = L, and
(1] ® IP._1)IP, g L;1, respectively. |
Theorem 4.5. We have

-Z( 1)"-‘( )I(l K)=In-1,k-1), (4.15)
l-—k
Z(—l)”” (” - ") Kk = (k- 1)k (4.16)
1=k L=k
and
—E( 1)!- ’°( )J(n,l):J(n—l,k—l), (4.17)
I=k
Z( -1)"- "(n :)l ==l = (k- 1)(n-1)""F1 forn>2.
I=k
(4.18)

Proof. These four identities follow from L;!TP, = ([1] ® IPa—1) and
~ 1
IP, Ly, = (1) ® IP.-1)7}, respectively. a

Finally, by appealing instead to (3.7) IP, = S;1IP,, we will achieve
the following theorems.

Theorem 4.6. We have

n—Ii-1
I(n, k) = 'kz( 1) Eriwh, (4.19)

n—1 n-l—1
—(n— k)lz((ll)k)ll 1o (n—k- 1)2( 1) k).l (4.20)

=k



and

Jnk+1) = (i- - %)J(n, k). (4.21)
Proof. They follow from IP, = S;IP, and IP, Yo P18, respec-
tively. O
Theorem 4.7. We have
I(n—1,k)= (l - —)I(n, k), (4.22)
and
J(n, k) = k Z 1)'J(n A, (4.23)
erwil

=(n—k-1) Z l)’n‘ =(n-— k)z l), . (4.24)

l—k+1

Proof. They follow from $,IP, = IP, and IP, 1.S'; 1 = IP!, respec-
tively. Moreover, we can see that (4.22) is just a special case of (3.3). O

Theorem 4.8. We have

l 1)nte(n — 1)
g( 1)'=*=I(n, (1, k) = (—)(T-%T'_) (4.25)
(1) (T EYimek = (ayrk(n - gy, (4.26)
,2,; ( k) "o
and
n k 1, ifn=k,
Z(—-l)“’“-l—I(n,l)J(l,k)= k, ifn=k+1, (4.27)
=k 0, else,
n 1 ifn=k:
2fn k(R k2 ) T ke
k ("),};;( 1) (l-k)l { 15: flse. +1, (4.28)

Proof. These four identities follow from TP, JP! = -1 and IP, TP, ' =
S,, respectively. 0

Remark. The identities in this section are all verified by the method of
matrix representation. However, we should notice that some of them can
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also be obtained by means of inverse relations. For instance, (4.16) can also
be deduced from (4.10) according to the famous inverse relation:

n = znj (:)bk, by = i(—n"-k (:) ax -

k=0 k=0
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