## Grinberg's Criterion Applied to Some Non-Planar Graphs

G.L. Chia<sup>a</sup> and Carsten Thomassen<sup>b</sup>

<sup>a</sup>Institute of Mathematical Sciences, University Malaya, 50603 Kuala Lumpur, Malaysia <sup>b</sup>Department of Mathematics, Technical University of Denmark, DK-2800, Lyngby, Denmark

## Abstract

Robertson ([5]) and independently, Bondy ([1]) proved that the generalized Petersen graph P(n,2) is non-hamiltonian if  $n \equiv 5$  (mod 6), while Thomason [7] proved that it has precisely 3 hamiltonian cycles if  $n \equiv 3 \pmod{6}$ . The hamiltonian cycles in the remaining generalized Petersen graphs were enumerated by Schwenk [6]. In this note we give a short unified proof of these results using Grinberg's theorem.

A celebrated result of Grinberg (see [4]) concerning planar hamiltonian graphs states that if a planar graph G has a hamiltonian cycle C which partitions its  $f_i$  faces of degree i into  $f'_i$  (respectively  $f''_i$ ) faces of degree i in the interior (respectively exterior) of C, then

$$\sum_{i \ge 3} (i-2)(f_i^{'} - f_i^{''}) = 0.$$

If there is precisely one natural number i not congruent to  $2 \pmod{3}$  such that  $f_i > 0$ , then Grinberg's equation cannot be satisfied, and hence the graph is non-hamiltonian. But even if the equation can be satisfied, it is still possible, in special cases, to use the criterion to prove that a graph is non-hamiltonian. Thus Thomassen [8] used the criterion to describe an infinite class of cubic planar hypohamiltonian graphs (all of which have a face partition that satisfies Grinberg's equation), and also the Tutte graph can be shown to be non-hamiltonian using the Grinberg criterion, see for example, [2] p.166 and [3] Chapter 6. In this note we apply the criterion to a class of non-hamiltonian graphs, namely some generalized Petersen graphs.

Suppose n and k are two integers such that  $1 \le k \le n-1$  and  $n \ge 5$ . The generalized Petersen graph P(n,k) is defined to have vertex-set  $\{u_i, v_i : i = 0, 1, \ldots, n-1\}$  and edge-set  $\{u_i u_{i+1}, u_i v_i, v_i v_{i+k} : i = 0, 1, \ldots, n-1\}$  with subscripts reduced modulo n.

Let  $F_m$  denote the m-th Fibonacci number defined by  $F_1 = F_2 = 1$ , and  $F_m = F_{m-1} + F_{m-2}$  for m > 2. It is easy to prove, by induction on n, that the number of matchings (including the empty matching) of the path with n vertices is  $F_{n+1}$ . Hence the number of matchings of the cycle with n vertices is  $F_{n+1} + F_{n-1}$ .

**Theorem 1** Let n be a natural number,  $n \geq 5$ . Then

- (i) ([1], [5]) P(n,2) is non-hamiltonian if  $n \equiv 5 \pmod{6}$ ,
- (ii) ([7]) P(n,2) has precisely three hamiltonian cycles if  $n \equiv 3 \pmod{6}$ , and
  - (iii) ([6]) the number of hamiltonian cycles in P(n,2) is

$$\begin{cases} n & \text{if } n \equiv 1 \pmod{6} \\ 2(F_{\frac{n}{2}+1} + F_{\frac{n}{2}-1} - 1) & \text{if } n \equiv 0, 2 \pmod{6} \\ \\ n + 2(F_{\frac{n}{2}+1} + F_{\frac{n}{2}-1} - 1) & \text{if } n \equiv 4 \pmod{6} \end{cases}$$

**Proof:** Assume first that  $n \equiv 3, 5 \pmod{6}$  and  $n \ge 5$ .

If the two edges  $u_0u_1$  and  $v_0v_2$  are deleted from P(n,2), the result is a planar graph whose face-degree sequence is  $(5,\ldots,5,\frac{n+5}{2},\frac{n+7}{2})$  (see Figure 1) and hence is non-hamiltonian by Grinberg's criterion because when  $n\equiv 3\pmod 6$ ,  $\frac{n+5}{2}$  and  $\frac{n+7}{2}$  are 1,2 (mod 3) respectively while when  $n\equiv 5\pmod 6$ ,  $\frac{n+5}{2}$  and  $\frac{n+7}{2}$  are 2,0 (mod 3) respectively.

This means that

(\*) if P(n,2) has a hamiltonian cycle C, then C must contain at least one of the edges  $u_0u_1$ ,  $v_0v_2$ .

Assume now that C is a hamiltonian cycle of P(n,2). Since C cannot contain all the edges of the inner cycle  $v_0v_2v_4\cdots v_{n-2}v_0$ , we may assume that  $v_0v_2$  is not an edge in C. But then this implies that the paths  $v_{n-2}v_0u_0$  and  $u_2v_2v_4$  must be part of C.

Since  $v_0v_2$  is not an edge in C, the observation (\*) implies that  $u_0u_1$  is an edge in C. By symmetry,  $u_1u_2$  is also an edge in C. This follows because there is an automorphism (the reflection fixing  $u_1, v_1$ ) of P(n, 2) which interchanges between the edges  $u_1u_0$ ,  $u_2u_1$  and keeps  $v_0v_2$  fixed. ("Reflection" here refers to the standard drawing of P(n, k) where the vertices  $u_0, u_1, \ldots$  and also the vertices  $v_0, v_1, \ldots$  form convex n-gons.) Hence C contains the



Figure 1: P(n, 2) with  $u_0u_1$  and  $v_0v_2$  deleted,  $n \equiv 3, 5 \pmod{6}$ 

path  $v_{n-2}v_0u_0u_1u_2v_2v_4$ . So C also contains the path  $v_{n-1}v_1v_3u_3u_4$  and therefore C does not contain the edge  $v_3v_5$ . Summarizing, we have proved that if a hamiltonian cycle C does not contain the edge  $v_0v_2$ , then C does not contain the edge  $v_3v_5$  either. By repeating this argument with  $v_3v_5$  instead of  $v_0v_2$ , we conclude that C does not contain the edge  $v_6v_8$  either. In fact C does not contain any of the edges  $v_0v_2$ ,  $v_3v_5$ ,  $v_6v_8$ ,  $v_9v_{11}$ , .... Since C must contain some edge of the inner cycle  $v_0v_2v_4\cdots v_{n-2}v_0$ , we conclude that  $n \equiv 0 \pmod{3}$ . Hence P(n,2) has no hamiltonian cycle if  $n \equiv 5 \pmod{6}$ . In the case that  $n \equiv 3 \pmod{6}$ , the argument eventually leads to a unique hamiltonian cycle which can be rotated to yield precisely three hamiltonian cycles.

Assume next that  $n \equiv 1 \pmod{6}$ . Then Grinberg's equation is satisfied but only if the two faces of degrees  $\frac{n+5}{2}$  and  $\frac{n+7}{2}$  are both in the interior (or exterior) of the hamiltonian cycle on the resulting graph of Fig. 1. This is possible only if the edge  $v_1v_{n-1}$  is not contained in the hamiltonian cycle. Assume that C' is such a hamiltonian cycle. Then it is easy to see (from Fig. 1) that the paths  $v_{n-3}v_{n-1}u_{n-1}u_0v_0v_{n-2}u_{n-2}u_{n-3}$  and  $v_4v_2u_2u_1v_1v_3u_3u_4$  must be part of C'. There is a unique hamiltonian cycle containing these paths which can be rotated to yield n hamiltonian cycles. If it is not possible to obtain a hamiltonian cycle by deleting a pair  $u_iu_{i+1}$ ,  $v_iv_{i+2}$ , then we get a contradiction as in the case when  $n \equiv 5 \pmod{6}$ .

When  $n \geq 6$  is even, P(n,2) is a planar graph. Again, the above method can be applied. Note that (\*) cannot be satisfied for each pair  $u_iu_{i+1}$ ,  $v_iv_{i+2}$  and also for each pair  $u_iu_{i-1}$ ,  $v_iv_{i-2}$  because the argument in the case  $n \equiv 3,5 \pmod 6$  would lead to a 2-factor consisting of two

cycles rather than a hamiltonian cycle. So there exists some pair of edges  $u_i u_{i+1}, v_i v_{i+2}$  (or some pair  $u_i u_{i-1}, v_i v_{i-2}$ ), say  $u_0 u_1, v_0 v_2$ , which is avoided by some hamiltonian cycle.

Draw P(n,2) in the plane such that the  $\frac{n}{2}$ -cycle  $v_1v_3\ldots v_{n-1}v_1$  is the outer face boundary. In this case, the face-degree sequence of the resulting graph (after deleting the edges  $u_0u_1$  and  $v_0v_2$ ) is  $(5,\ldots,5,\frac{n}{2},\frac{n}{2}+6)$  and Grinberg's equation is satisfied. For this to be possible, any hamiltonian cycle must contain the edge  $v_1v_{n-1}$  (which is common to both the  $\frac{n}{2}$ -face and the  $(\frac{n}{2}+6)$ -face) unless  $n\equiv 4\pmod{6}$ .

Assume first that  $n \equiv 0, 2 \pmod 6$ . Then for any even integer  $0 \le i \le \frac{n}{2}$ , whenever the pair of edges  $v_i v_{i+2}$ ,  $u_i u_{i+1}$  is deleted, then the paths  $u_{i-1} u_i v_i v_{i-2}$ ,  $v_{i-1} v_{i+1} u_{i+1} u_{i+2} v_{i+2} v_{i+4}$  and  $u_{i+4} u_{i+3} v_{i+3} v_{i+5}$  must be part of the hamiltonian cycle. We now follow the hamiltonian cycle along the path  $v_{i+2} v_{i+4} \dots$  If we never use an edge  $v_j u_j$  there is a unique way to continue the hamiltonian cycle. On the other hand, the first time we use an edge  $v_j u_j$  we repeat the previous configuration with j instead of i. Those edges of the cycle  $v_0 v_2 \dots v_0$  which are not in the hamiltonian cycle clearly form a matching. On the other hand, whenever we specify a matching on this cycle, there is a unique hamiltonian cycle which avoids this matching and also avoids edges of the form  $u_i u_{i+1}, v_i v_{i+2}$ . Therefore the number of hamiltonian cycles in P(n, 2) avoiding some pairs of edges of the form  $u_i u_{i+1}, v_i v_{i+2}$  is  $F_{\frac{n}{2}+1} + F_{\frac{n}{2}-1} - 1$ . Note that for any such hamiltonian cycle, (\*) fails for the pairs  $u_i u_{i+1}, v_i v_{i+2}$  but holds for the pairs  $u_i u_{i-1}, v_i v_{i-2}$ .

By symmetry (more precisely, by taking the cycle  $u_1u_2...u_nu_1$  in its reverse order) the number of hamiltonian cycles in P(n,2) avoiding pairs of edges of the form  $u_iu_{i-1}$ ,  $v_iv_{i-2}$  is also  $F_{\frac{n}{2}+1}+F_{\frac{n}{2}-1}-1$ . Thus the total number of hamiltonian cycles in P(n,2) is  $2(F_{\frac{n}{2}+1}+F_{\frac{n}{2}-1}-1)$  in the case  $n \equiv 0, 2 \pmod{6}$ .

The reason that we have counted all hamiltonian cycles is that (\*) fails either for the pairs  $u_iu_{i+1}$ ,  $v_iv_{i+2}$  or for the pairs  $u_iu_{i-1}$ ,  $v_iv_{i-2}$ , as noted above.

For  $n \equiv 4 \pmod{6}$ , there are two types of hamiltonian cycles, namely the  $2(F_{\frac{n}{2}+1}+F_{\frac{n}{2}-1}-1)$  hamiltonian cycles which we have already counted, and also the unique hamiltonian cycle that avoids  $u_0u_1, v_0v_2, v_1v_{n-1}$ , and those which can be obtained from this hamiltonian cycle by rotation and reflection. There are n hamiltonian cycles of the latter type. This completes the proof.

## References

- [1] J.A. BONDY, Variations on the hamiltonian theme, Canad. Math. Bull. 15 (1972) 57-62.
- [2] M. CAPOBIANCO AND J.C. MOLLUZZO, "Examples and Counterexamples in Graph Theory", North-Holland, (1978) New York.
- [3] G. CHARTAND AND L.LESNIAK, "Graphs and Digraphs", Chapman & Hall/CRC, 4th Edition (2005), New York.
- [4] E. GRINBERG, Plane homogeneous graphs of degree three without Hamiltonian circuits, Latvian Math. Yearbook, Izdat. Zinatne Riga 4 (1968) 51-58 [Russian, Latvian and English summaries.]
- [5] G.N. ROBERTSON, "Graphs under Girth, Valency, and Connectivity Constraints", Ph. D. Thesis, University of Waterloo, Ontario, Canada, 1968.
- [6] A.J. SCHWENK, Enumeration of Hamiltonian cycles in certain generalized Petersen graphs, J. Combinat. Theory B 47 (1989) 53-59.
- [7] A.G. THOMASON, Cubic graphs with three hamiltonian cycles are not always uniquely edge-colorable, J. Graph Theory 6 (1982) 219-221.
- [8] C. THOMASSEN, Planar cubic hypohamiltonian and hypotraceable graphs, J. Combinat. Theory B 30 (1981) 36-44.
- [9] W.T. TUTTE, On Hamiltonian circuits, J. London Math. Soc. 21 (1946) 98-101.