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Abstract

Robertson ([5]) and independently, Bondy ([1]) proved that the
generalized Petersen graph P(n,2) is non-hamiltonian if n = 5 (mod
6), while Thomason (7] proved that it has precisely 3 hamiltonian
cycles if n = 3 (mod 6). The hamiltonian cycles in the remaining
generalized Petersen graphs were enumerated by Schwenk [6]. In this
note we give a short unified proof of these results using Grinberg's
theorem.

A celebrated result of Grinberg (see [4]) concerning planar hamiltonian
graphs states that if a planar graph G has a hamiltonian cycle C which
partitions its f; faces of degree i into f; (respectively ;) faces of degree i
in the interior (respectively exterior) of C, then

Y a-2)(f: - fi) =0

i>3

If there is precisely one natural number i not congruent to 2(mod 3)
such that f; > 0, then Grinberg’s equation cannot be satisfied, and hence
the graph is non-hamiltonian. But even if the equation can be satisfied, it
is still possible, in special cases, to use the criterion to prove that a graph
is non-hamiltonian. Thus Thomassen [8] used the criterion to describe an
infinite class of cubic planar hypohamiltonian graphs (all of which have a
face partition that satisfies Grinberg’s equation), and also the Tutte graph
can be shown to be non-hamiltonian using the Grinberg criterion, see for
example, [2] p.166 and [3] Chapter 6. In this note we apply the criterion
to a class of non-hamiltonian graphs, namely some generalized Petersen

graphs.
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Suppose n and k are two integers such that 1 <k <n-—1and n > 5.
The generalized Petersen graph P(n, k) is defined to have vertex-set {u;,v; :
i=0,1,...,n — 1} and edge-set {u;ui+1,uiv;,vivisr : ¢ =0,1,...,n 1
with subscripts reduced modulo n}.

Let F,, denote the m-th Fibonacci number defined by Fy = F, = 1,
and Fy, = Fra—y + Fr—2 for m > 2. It is easy to prove, by induction on n,
that the number of matchings (including the empty matching) of the path
with n vertices is F,,+;. Hence the number of matchings of the cycle with
n vertices is Frny1 + Fn—1.

Theorem 1 Let n be a natural number, n > 5. Then

(1) ({1}, [5]) P(n,2) is non-hamiltonian if n=5 (mod 6),

(i) ([7])) P(n,2) has precisely three hamiltonian cycles if n =3 (mod
6), and

(iii) ([6]) the number of hamiltonian cycles in P(n,2) is

n if n=1 (mod 6)
2(Fp41+F3_1-1) if n=0,2 (mod 6)

n+2(F§+1 +F.3._1—1) if n=4 (mod 6)

Proof: Assume first that n = 3,5 (mod 6) and n > 5.

If the two edges uou; and vovy are deleted from P(n,2), the result
is a planar graph whose face-degree sequence is (5,...,5, 22, 2£7) (see
Figure 1) and hence is non-hamiltonian by Grinberg’s criterion because
when n = 3 (mod 6), 2£2 and 2}’ are 1,2 (mod 3) respectively while
when n =5 (mod 6), %g and 247 are 2,0 (mod 3) respectively.

This means that

(%) if P(n,2) has a hamiltonian cycle C, then C must contain at least
one of the edges uou;, vove.

Assume now that C is a hamiltonian cycle of P(n,2). Since C cannot
contain all the edges of the inner cycle vpvavy - - - Un—2v0, We may assume
that vovs is not an edge in C. But then this implies that the paths v, _svouo
and ugvsus must be part of C.

Since wous is not an edge in C, the observation (*) implies that uou; is
an edge in C. By symmetry, uju; is also an edge in C. This follows because
there is an automorphism (the reflection fixing u;, v;) of P(n, 2) which inter-
changes between the edges ujuo, uou; and keeps vovs fixed. (“Reflection”
here refers to the standard drawing of P(n, k) where the vertices ug, u1,...
and also the vertices vo,v;,... form convex n-gons.) Hence C contains the



ul

Figure 1: P(n,2) with uou; and vovp deleted, n = 3,5 (mod 6)

path v,_avououiugv2vy. So C also contains the path v,_i1vivausus and
therefore C' does not contain the edge vzvs. Summarizing, we have proved
that if a hamiltonian cycle C does not contain the edge vovs, then C does
not contain the edge v3vs either. By repeating this argument with vsvs
instead of vpv,, we conclude that C does not contain the edge vgug either.
In fact C does not contain any of the edges vovs, v3vs, vgvs, vev1y, -...
Since C must contain some edge of the inner cycle vovavys -+ - Un—_2vp, We
conclude that n = 0 (mod 3). Hence P(n,2) has no hamiltonian cycle if
n =5 (mod 6). In the case that n = 3 (mod 6), the argument eventually
leads to a unique hamiltonian cycle which can be rotated to yield precisely
three hamiltonian cycles.

Assume next that n = 1 (mod 6). Then Grinberg’s equation is satisfied
but only if the two faces of degrees %’—5 and 22*‘—7- are both in the interior (or
exterior) of the hamiltonian cycle on the resulting graph of Fig. 1. This is
possible only if the edge vyv,—; is not contained in the hamiltonian cycle.
Assume that C’ is such a hamiltonian cycle. Then it is easy to see (from Fig.
1) that the paths v,_3¥n—_1Up—1UoVoUn—2Un—2Un—_3 and v4V2UU; v VaU3U,
must be part of C’. There is a unique hamiltonian cycle containing these
paths which can be rotated to yield n hamiltonian cycles. If it is not possible
to obtain a hamiltonian cycle by deleting a pair u;u;41, v;vi42, then we get
a contradiction as in the case when n = 5 (mod 6).

When n > 6 is even, P(n,2) is a planar graph. Again, the above
method can be applied. Note that (*) cannot be satisfied for each pair
UiUi41, ViVip2 and also for each pair w;u;—;, viv;_o because the argument

in the case n = 3,5 (mod 6) would lead to a 2-factor consisting of two



cycles rather than a hamiltonian cycle. So there exists some pair of edges
UiUiy1, ViVis2 (OF SOMe pair u u;—1, vivVi—2), Say uou, VoV2, Which is avoided
by some hamiltonian cycle.

Draw P(n,2) in the plane such that the Z-cycle vjv3...vn—1v) is the
outer face boundary. In this case, the face-degree sequence of the resulting
graph (after deleting the edges uou; and wowe) is (5,...,5, %, 3 + 6) and
Grinberg’s equation is satisfied. For this to be possible, any hamiltonian
cycle must contain the edge v;vn—1 (which is common to both the 5-face
and the (% + 6)-face) unless n = 4 (mod 6).

Assume first that n = 0,2 (mod 6). Then for any even integer 0 <
i < %, whenever the pair of edges v;vi42, Uiuis1 is deleted, then the paths
Ui 1 Ui Vs V-2, Vim1 Vit 1 Uit 1 UipoVitaVirs AN Ui 4Ui43Vi4 30545 Must be part
of the hamiltonian cycle. We now follow the hamiltonian cycle along the
path v;42vit4.... If we never use an edge vju; there is a unique way to
continue the hamiltonian cycle. On the other hand, the first time we use an
edge vju; we repeat the previous configuration with j instead of ¢. Those
edges of the cycle vova ... vp which are not in the hamiltonian cycle clearly
form a matching. On the other hand, whenever we specify a matching on
this cycle, there is a unique hamiltonian cycle which avoids this matching
and also avoids edges of the form wu;uit1,v;vi42. Therefore the number
of hamiltonian cycles in P(n,2) avoiding some pairs of edges of the form
Uili41, ViVit2 is Fg 41+ F3_1—1. Note that for any such hamiltonian cycle,
(*) fails for the pairs u;ui4+1, viviyo but holds for the pairs ujui—1, vivi-2.

By symmetry (more precisely, by taking the cycle ujus...upu; in its
reverse order) the number of hamiltonian cycles in P(n,2) avoiding pairs
of edges of the form w;u;_1, v;v;—z is also Fg 1+ Fg_; — 1. Thus the total
number of hamiltonian cycles in P(n,2) is 2(Fg+1 + Fg—1 — 1) in the case
n=0,2 (mod 6).

The reason that we have counted all hamiltonian cycles is that () fails
either for the pairs u;u;41, vivi42 or for the pairs u;ui—1, v;v;—2, as noted
above.

For n = 4 (mod 6), there are two types of hamiltonian cycles, namely
the 2(Fg 41+ F3 1 — 1) hamiltonian cycles which we have already counted,
and also the unique hamiltonian cycle that avoids uou1,vove, ¥1¥n-1, and
those which can be obtained from this hamiltonian cycle by rotation and
reflection. There are n hamiltonian cycles of the latter type. This completes
the proof. a
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