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Abstract

In this paper we study the signed and minus total domination
problems for two subclasses of bipartite graphs: biconvex bipartite
graphs and planar bipartite graphs. We present a unified method to
solve the signed and minus total domination problems for biconvex
bipartite graphs in O(n + m) time. We also prove that the deci-
sion problem corresponding to the signed (respectively, minus) total
domination problem is NP-complete for planar bipartite graphs of
maximum degree 3 (respectively, maximum degree 4).
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1 Introduction

Total Domination is a fundamental concept in graph theory. It plays an im-
portant role as an often studied NP-complete problem in the literature and
has been surveyed in (8, 9, 11]. Recently two variations of total domination,
signed total domination and minus total domination, have been studied
in (7, 10, 12, 14, 21, 22, 23, 24, 25]. However, few papers studied the algo-
rithmic complexity of these two problems. From the algorithmic point of
view, the signed and minus total domination problems are polynomial-time
solvable for trees [7] and chordal bipartite graphs [14], while the decision
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problems corresponding to these two problems are NP-complete for bipar-
tite graphs and doubly chordal graphs (7, 14]. In (14}, Lee introduced the
concept of R-total domination as follows.

Definition 1. Suppose that G = (V, E) is a finite, simple, undirected
graph. Let P be a subset of real numbers. Let f : V — P be a function
which assigns to each v € V' a value in P. The set P is called the weight set
of f. Let f(S) = 3,5 f(u) for any subset S of V. Then f(V) is called
the weight of f.

Definition 2. Let ¢, d, I be fixed integers and £,d > 0. Let P be the
weight set {I;, I, +d, I, +2d,...,I; +(£—1)-d}. Suppose that G = (V, E)
is a graph and R is a labeling function which assigns an integer R(v) to
each v € V. An R-total dominating function of G = (V, E) is a function
f : V. — P such that f(Ng(v)) = R(v) for all vertices v € V. The
R-total domination number v, r(G) is the minimum weight of an R-total
dominating function of G. The R-total domination problem is to find an
R-total dominating function of G of minimum weight.

The concept of R-total domination is similar to that of labeled domina-
tion introduced by Lee and Chang [13]. It includes the total domination,
signed total domination, and minus total domination problems as special
cases. Any polynomial-time algorithm for the R-total domination prob-
lem gives a unified approach to the signed and minus total domination
problems. Lee showed that the R-total domination problem for chordal
bipartite graphs and trees can be solved in O(n?) and O(n + m) time, re-
spectively. Note that biconvex bipartite graphs are a subclass of chordal
bipartite graphs [2]. The R-total domination problem for biconvex bipartite
graphs can also be solved in O(n?) time.

In this paper we study the signed and minus total domination problems
on two classes of bipartite graphs: biconvex bipartite graphs and planar
bipartite graphs. We present a linear-time algorithm for the R-total dom-
ination problem on biconvex bipartite graphs. The algorithm improves
the complexity of the R-total domination problem for biconvex bipartite
graphs. This paper also shows that the decision problem corresponding to
the signed (respectively, minus) total domination problem is NP-complete
for planar bipartite graphs of maximum degree 3 (respectively, maximum
degree 4).

The rest of this paper is organized as follows. Section 2 reviews the
definitions and properties of some classes of graphs that will be studied
in this paper. Section 3 deals with the R-total domination problem for
biconvex bipartite graphs. Section 4 shows that the decision problem cor-
responding to the signed (respectively, minus) total domination problem
is NP-complete for planar bipartite graphs of maximum degree 3 (respec-
tively, maximum degree 4).
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2 Preliminaries

Let G = (V, E) be a finite, simple, undirected graph with verter set V
and edge set E. Unless stated otherwise, it is understood that |[V| = n
and |E| = m. We also use V(G) and E(G) to denote the vertex and edge
sets of G, respectively. We denote by G[W) the subgraph of G induced by
the vertex set W C V. For any vertex v € V, the neighborhood of v in G
is Ng(v) = {u € V|(u,v) € E} and the closed neighborhood of v in G is
Ng(v] = Ng(v) U {v}. The degree of a vertex v in G is degg(v) = [Ng(v)|.
The number, max{degg(v) | v € V}, is called the mazimum degree of G. A
cligue is a subset of pairwise adjacent vertices of V. A clique is mazimum
if there is no clique of G of larger cardinality.

A vertez cover of a graph G = (V, E) is a subset V' C V such that for
each edge (u,v) € E, at least one of u and v belongs to V’. The verter cover
number of G, denoted by 7(G), is the minimum cardinality of a vertex cover
of G. The vertex cover problem is to find a vertex cover of G of minimum
cardinality.

A total dominating set .D of a graph G is a subset S C V(G) such that
DN Ng(v)| > 1 for every vertex v € V(G). The total domination number
of G, denoted by v:(G), is the minimum cardinality of a total dominating
set of G. The total domination problem is to find a total dominating set of
G of minimum cardinality.

Suppose that G = (V, E) is a graph. A function f: V — {0,1} is a
total dominating function of G if f(Ng(v)) > 1 for every vertex ve V. A
total dominating set can be viewed as a total dominating function f and
7(G) = min{f(V) | f is a total dominating function of G}. A function
f:V — P is a signed (respectively, minus) total dominating function of G
if P is {—1,1} (respectively, {—1,0,1}). The signed (respectively, minus)
total domination number of G, denoted by vf(G) (respectively, v; (G)),
is the minimum weight of a signed (respectively, minus) total dominating
function of G. The signed (respectively, minus) total domination problem
is to find a signed (respectively, minus) total dominating function of G of
minimum weight.

Given a graph G = (V, E), a vertex v is simplicial if all vertices of Ng[v]
form a clique. The ordering v;,vs,...,v, of the vertices of V is a perfect
elimination ordering of G if for all i € {1,...,n}, v; is a simplicial vertex
of the subgraph G; of G induced by {v;, vit+1,...,vn}. A chord of a cycle is
an edge between two vertices of the cycle that is not an edge of the cycle.
A graph G is called a chordal graph if each cycle in G of length at least 4
has at least one chord. Rose [17] showed the characterization that a graph
is chordal if and only if it has a perfect elimination ordering. Let N;[v]
denote the closed neighborhood of v in G;. A perfect elimination ordering
is called a strong elimination ordering if it has the following property:
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For i < j < k if v; and v belong to Nj[vi] in Gy, then Ni[v;] C Ny[vx].
Farber [4] showed that a graph is strongly chordal if and only if it admits a
strong elimination ordering. Currently, the fastest algorithms for recogniz-
ing a strongly chordal graph and giving a strong elimination ordering run
in O(mlogn) [16] or O(n?) time [19].

A graph G = (V, E) is a bipartite graph if V can be partitioned into two
sets A and B such that every edge has its ends in different sets. We call
the sets, A and B, the bipartition of V and use G = (A, B, E) to denote
a bipartite graph. A bipartite graph is a chordal bipartite graph if every
cycle of length at least 6 has a chord. A bipartite graph G = (4,B,E) is a
biconvez bipartite graph if both A and B can be ordered so that for every
vertex v in A U B, vertices in Ng(v) occur consecutively in the ordering.
Then the ordering of the vertices in V = AUB is called a biconvez ordering
of G.

Given a bipartite graph G = (A, B, E), an ordering of the vertices of
A has the adjacency property if for each vertex b € B, Ng(b) consists of
vertices which are consecutive in the ordering of A. An ordering of the
vertices of A has the enclosure property if for every pair of b,b' € B with
Ng(b) C Ng(b'), vertices in Ng(b') — Ng(b) occur consecutively in the
ordering of A. A strong ordering of the vertices of G = (A, B, E) consists
of an ordering of A and an ordering of B such that for all (a, '), (a’,b) € E,
where a,a’ € A and b, € B, a < a’ and b < V' imply (a,d), (a’,b’) € E.
A bipartite permutation graph is a bipartite graph G = (A4, B, E) with
a strong ordering of AU B [20]. Bradstadt et al. (3] showed that given
a strong ordering of AU B, both A and B have the adjacency and the
enclosure properties if all isolated vertices of G appear at the beginning of
the orderings of A and B.

Biconvex (respectively, chordal) bipartite graphs are a superclass of bi-
partite permutation (respectively, biconvex bipartite) graphs [2]. Lipski et
al. [15] (respectively, Spinrad et al. [20]) gave a linear-time algorithm to
recognize whether a given graph is a biconvex bipartite (respectively, bi-
partite permutation) graph and producing a biconvex (respectively, strong)
ordering of the vertices if so.

Definition 3. Suppose that G = (A4, B, E) is a bipartite graph. Let G4
(respectively, Gg) be the graph obtained by adding all possible edges be-
tween vertices of A (respectively, B) such that the set A (respectively, B)
is a clique of G4 (respectively, Gg).

Lemma 1 shows a connection between chordal bipartite graphs and
strongly chordal graphs.

Lemma 1 ([1, 4]). The graphs G4 and Gp obtained from a chordal bi-
partite graph G = (A, B, E) are strongly chordal graphs.
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3 R-total domination on biconvex bipartite
graphs

In this section, we develop a linear-time algorithm for the R-total domi-
nation problem on biconvex bipartite graphs. Suppose that G = (4, B, E)
is a biconvex bipartite graphs with |AU B| = n and |E| = m. Section 3.1
gives an algorithm to compute a strong elimination ordering of G4 (re-
spectively, Gg) from a biconvex ordering of G in O(n + m) time. Using
strong elimination orderings of G4 and Gp, Section 3.2 gives a linear-time
algorithm to solve the R-total domination problem for a biconvex bipartite
graph G.

It is clear that an R-total dominating function of a graph does not
exist if the graph contains an isolated vertex. Throughout this section, we
assume that all graphs considered here do not contain isolated vertices.

3.1 From a biconvex ordering to a strong elimination
ordering

A vertex v is simple of a graph G if for any two vertices z,y € Ng(v) either

Nglz] € Ngly] or Negly] € Ng|z]. An ordering vy, vs, ..., v, of the vertices
in G is called a simple elimination ordering if for each 1 < i < n, the vertex
v; is a simple vertex of G[{v;, vi+1,...,vn}|. From this definition, we know
that strong elimination orderings are simple elimination orderings, but the
converse is not necessarily true.

Sawada and Spinrad [18] presented a linear-time algorithm for trans-
forming a simple elimination ordering of a strongly chordal graph into a
strong elimination ordering. Based upon their algorithm, we develop an al-
gorithm in this section for a given biconvex bipartite graph G = (4, B, E)
to transform a biconvex ordering of G into a strong elimination ordering of
G 4 (respectively, Gg) in O(n + m) time.

Definition 4. Suppose that G = (A, B, E) is a biconvex bipartite graph.
We use (A, B) (respectively, (B, A)) to denote a biconvex ordering v;,vs, .. .,
vn, Where A = {v1,...,v4} and B = {vj4)41,...,vn} (respectively, B =
{vl, e ,‘U|B|} and A= {v|3|+1, cee ,’Un}).

Lemma 2 shows that there is a biconvex ordering of a biconvex bipartite
G = (A, B, E), which is also a simple elimination ordering of G4 (respec-
tively, Gg).

Lemma 2. Suppose that G = (A, B, E) is a biconvez bipartite graph with
a biconvex ordering (A, B) (respectively, (B, A)). The following statements
are true.
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(1) The biconvez ordering (A, B) = v1,v2,...,Vn i8 a simple elimination
ordering of Gp.

(2) The biconvex ordering (B, A) = vy1,v,...,Vn 18 a simple elimination
ordering of G 4.

Proof. In the following, we just show the correctness of statement (1) since
statement (2) can be proved in the similar way.

By Lemma 1, the graphs G4 and Gp obtained from G are strongly
chordal graphs. Let G; be the subgraph of G induced by {v;, ¥i4+1,...,n},
where 1 < i < n. Let N;[v] denote the closed neighborhood of v in G;. It
can be easily verified that N;[v;] is a clique of G; for 1 < ¢ < n. Therefore,
the ordering v1,v2, ..., v, is a perfect elimination ordering of Gp. Suppose
that there exist three positive integers i, j, and k such that 1 < i < j <
k < n and vj, vk € Ni(v;). We prove the biconvex ordering v, v2,...,vn is
a simple elimination ordering of G by showing that either N;[v;] € Nj[vg]
or Nj[uk) € Ni[v;]. We consider the following cases:

Case 1: |A| +1 < i < n. Then V(G;) C B. Note that B is a clique of
Gp. Hence, N;[v;] = N;[vg].

Case 2: 1 < i < |A|. Then v; € 4, B C V(G;), and v;, v € B. Clearly
(Ni[v;) N B) = (N;[vx] N B). If Ni[vj] N A = {;}, then we have N;[v;] C
N;[vi). Assume that N;[v;]NA contains at least two vertices. By definition
of the biconvex ordering, the vertices in N;{v;]NA (respectively, N;vi] N A)
are consecutive in the ordering. This implies that either (NV;[v;] N A) C
(Nilve] N A) or (Ni[ve) N A) C (Nifv;] N A). Hence, either Nifv;] € Ni[v]
or Ni[vk] Q N,-['uj].

Following the discussion above, the biconvex ordering vy, v2,...,v, is a
simple elimination ordering of Gp. ]

Theorem 1. Let G = (A, B, E) be a biconvez bipartite graph with |A U
B| =n and |E| = m. A simple elimination ordering of G4 (respectively,
Gp) can be computed from G in O(n +m) time.

Proof. It follows from Lemma 2 and the result that a biconvex ordering
of a biconvex bipartite graph can be computed in O(n + m) time [15]. O

Following the arguments similar to those for proving Lemma 2, we can
prove that there is a strong ordering of a bipartite permutation graph G =
(A, B, E), which is also a simple elimination ordering of G4 (respectively,
Gp). Furthermore, we show in Lemma 3 that there is a strong ordering
of a bipartite permutation graph G = (A, B, E), which is also a strong
elimination ordering of G4 (respectively, Gg).

Lemma 3. Suppose that G = (A, B, E) is a bipartite permutation graph
with a strong ordering vi,va,...,vn (respectively, ui,ug,...,un), where
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A={v,...,vp} and B = {vpy1,...,vn} (respectively, B = {u;,uy,... yUug}

and A = {ug41,Uq+2,...,un} . The following statements are true.
(1) The strong ordering vy, ..., v, is a strong elimination ordering of Gp.
(2) The strong ordering uy,...,un is a strong elimination ordering of
Ga.

Proof. In the following we just show the correctness of statement (1) since
the statement (2) can be proved in the similar way.

By Lemma 1, the graphs G4 and Gp obtained from G are strongly
chordal graphs. Let G; be the subgraph of G induced by {v;, vi41,...,%,},
where 1 < i < n. Let V;[v] denote the closed neighborhood of v in G;. It
can be easily verified that N;[v;] is a clique of G; for 1 < i < n. Therefore,
the ordering vy,vs,...,v, is a perfect elimination ordering. Suppose that
i, J, and k are positive integers. Let 1 <i < j < k < n and vj;,ux € N;[v;).
We prove the ordering v;,v2,...,vn is a strong elimination ordering by
showing that N;[v;] C N;[ui]. We consider the following cases: '

Case 1: p+1 < i < n. Then V(G;) C B. Note that B is a clique of
Gp. Hence, N;[vj] = Nj[u].

Case 2: 1 < i < p Then v; € A, B C V(G;), and vj,vx € B.
Clearly (N;[v;] N B) = (Ni[vx] N B). If Nijv;] N A = {v;}, then we have
Ni[v;] C Ni[vx]. If there is a vertex ve € (N;[v;] N A) and ve # v;, then
i < £ < j < k. In this case, (vs,vk),(ve,v;) € E(G;). By definition
of the strong ordering, (ve,vx) € E(G;). We have vy € N;[vx). Hence,
N;[v;] € N;[vg]. Following the discussion above, the ordering vy,v2,...,v,
is a strong elimination ordering of Gp. ]

Theorem 2. Suppose that G = (A, B, E) is a bipartite permutation graph
with |JAU B| = n and |E| = m. The graphs G4 and Gp obtained from
G are strongly chordal graphs, and strong elimination orderings of G4 and
GB can be computed in O(n + m) time, respectively.

Proof. It follows from Lemmas 1 and 3, and the result that a strong or-
dering of a bipartite permutation graph can be computed in O(n + m)
time [20]. m]

In the rest of the subsection, we give the function SimpleToStrong(G, (X,
Y)) for transforming a biconvex ordering {X,Y) of a biconvex bipartite
graph G = (X,Y, E) into a strong elimination ordering of Gy. The func-
tion SimpleToStrong(G, (X,Y’)) includes the function MakeSets(G, (X,Y))
for partitioning the vertices in X UY into a list £ of disjoint sets. Let
H = (X,Y,E) be the biconvex bipartite graph with X = {a,b,c} and
Y = {d,e, f,g} as shown in Figure 1. The function MakeSets(H,X,Y)
returns the list of sets £ = {a}, {b}, {d, g9}, {c}, {e, f}. We can visit each
set in order, output the vertices within each set, and then obtain a new
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Figure 1: A biconvex bipartite graph.

ordering a,b,d,g,c,e, f. We can also obtain the orderings a,b,g,d,c, e, f
and a,b,g,d, ¢, f,e in this fashion. To simplify the discussion, we use (L)
to denote an arbitrary ordering obtained from £ as we did above.

For any biconvex bipartite graph G = (4, B, E), Lemma 4 shows that
an ordering (L) obtained from the function MakeSets(G, (A, B)) (respec-
tively, MakeSets(G, (B, A))) is also a simple elimination ordering of Gp
(respectively, G4)

Lemma 4. Suppose that G = (A, B,E) is a biconvez bipartite graph.
Let L = $,,8,,...,S, (respectively, L = S,,53,...,S5;) be returned from
the function MakeSets(G, (A, B)) (respectively, MakeSets(G, (B, A))). The
following statements are true.

(1) Let (L) =w1,...,wn. Then the ordering (L) is a simple elimination
ordering of Gp. If there exists i < j < k such that (w;,w;), (wi,wk),
and (wj, wr) are edges of Gp and there exists a positive integer £ such
that i < £ and (w;,we) is an edge of G, but (wk,we) is not, then w;
and wy must belong to the same set in L.

(2) Let (£) = wy,..., wn. Then the ordering (£) is a simple elimination
ordering of G4. If there ezists i < j < k such that (w;, w;), (wi, wk),
and (w;, wk) are edges of G4 and there exists a positive integer £ such
that ¢ < £ and (w;,we) is an edge of G4, but (w, wy) is not, then w;
and wy must belong to the same set in L.

Proof. In the following, we just show the correctness of statement (1) since
statement (2) can be proved in the similar way.

Note that G g is obtained from G by adding all possible edges between
the vertices of B such that the set B is a clique of Gg. By Lemma 2, the
biconvex ordering (A, B) = vy,...,v, is a simple elimination ordering of
Gp. If |A| = 1, then the ordering (L) is a simple elimination ordering of
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Function MakeSets(G, (X,Y))

1: L « empty list of sets;

2 v,vg,... v, — (XY

3: fori«—1to|X|do

4 IS —{vi}; &' « {u | u € Ng(v:) and degg(vi) = degg(u)+
Y|-1}

5: append S to £;

6: if S’ # 0 then

7: append S’ to L;

8: end if

9: remove S from X; remove S’ from Y’; update the
neighborhoods and degrees;

10: end for

11: ifY # @ then

12 append Y to L;

13: end if;

14: return C;

Gp. We therefore assume that |A| > 2. Let S be a set in £. Following
the function MakeSets(G, (A, B)), either S C B or S consists of precisely
one vertex in A. Let V = AU B and let h be a positive integer such that
1 <h<rand Sy = {ya} Then (Sh41 U Sp42U---US;) C B and
each vertex in S; is simple in the graph Gp[V — Sy — Sy — .-« — Sp_4] for
h<£iLrT.

Clearly S; = {v1} and v, is a simple vertex in Gp. In the following, we
show that each vertex in S; is simple in the graph Gp[V -S;-S3—-- . =S;_4]
for 2 < i < h—1. Now consider the set Ss.

Case 1: Sy consists of precisely one vertex in A. Then S; = {va}. It
can be easily verified that v, is a simple vertex in the graph Gg[V - S1).

Case 2: S2 € B. By the function MakeSets(G, (A4, B)), any vertex
z € S; must be a neighbor of v; and dege(v1) = degg(z) + |B| -1 =
deggp(z). By the construction of Gp, Ng[vi] = Ngg[vi]. We have
[Ngg[z)l = |Nggl[vi]l. If Neglz] # Ngglvi), then there is a vertex y
adjacent to v; but not adjacent to z. This contradicts the fact that v; is
a simple vertex in Gp. Thus Ng,[v1] = Ngg[z] which implies that v; and
each vertex in S; are simple in Gg. Therefore, each vertex in S is simple

in the graph Gp[V - 5].
Using the arguments similar to those for proving Cases 1 and 2, it follows
that each vertex in S are simple in the graphs Gg[V —8; — S —-- . — Se-1)

for 3 < £ < h — 1. Following the discussion above, the ordering (L) is a
simple elimination ordering of Gp.
Now suppose that there exists ¢ < j < k such that (w;,w;), (w;,wx),
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Function SimpleToStrong(G, (X,Y))

1: L'« MakeSets(G, (X,Y)); L « L',

20 vg,...,9n — (L);

3: fort—ndowntoldo

4 if v, € X then

5: for each set S € £ containing a vertex in Ng[v:] do

6: if S — Ng{v:] # 0 then

7. replace S in the list £ with the two sets S — Ng[v],
SN Nglw);

8: end if

9: end for

10: end if

11: end for

12: return (L)

and (w;, wy) are edges of Gp and there exists a positive integer £ such that
i < £ and (wj,we) is an edge of G, but (w,we) is not. Note that w;, wk,
and w; are adjacent to w;. If w; is in A, then w;, wy, we € B. Since B is a
clique of Gp, we is adjacent to wx. This contradicts the assumption that
(wk, we) is not an edge of Gp. Therefore w; € B.

Let G; = Gg[{wj,...,wn}]. If j < ¢, then since w; is simple in G;,
either Ng,[we] € Ng,[wk] or Ng,[wx] € Ng;[we]. This implies w, is adja-
cent to wx. This contradicts the fact that (wk,we) is not an edge of Gp.
Therefore, we have £ < j.

Assume for contrary that w; and wi belong to different sets S, and
S, in the list £, respectively. Since j < k, £ < y. Note that w; € B
and S; C B. By the function MakeSets(G, (A, B}), the set S;_; consists
of precisely one vertex in A. Let w; be the vertex in S;_;. Then £ <
t < j. Let Gt = Gg[{vt,...,un}]. It can be proved by contradiction that
Ng,[w:] = Ng,[w;]. Therefore, wy is adjacent to wy and wy € B. This
implies that there exists a vertex z € A such that 2 is adjacent to wy, but
not adjacent to w; in Gy. Otherwise wy would be in the same set as w;.
However, this contradicts the fact that w; is a simple vertex in G;. Thus
w; and wy, must belong to the same set in L. O

Theorem 3. Suppose that G = (A, B, E) is a biconvex bipartite graph.
The following statements are true.

(1) The function SimpleToStrong(G, (A, B)) outputs a strong elimination
ordering of Gp.

(2) The function SimpleToStrong(G, (B, A)) outputs a strong elimination
ordering of G 4.
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Proof. In the following, we just show the correctness of statement (1) since
statement (2) can be proved in the similar way.

The function SimpleToStrong(G, (A, B)) starts by obtaining a list of
sets L' returned by MakeSets (G, (A, B)). The list £ is a copy of the
list £'. In Step 2, the ordering v),vs,...,v, is updated to one that can
be obtained from £. By Lemma 4, the ordering v;,vs,...,v, is a simple
elimination ordering of G. In Steps 3-11, the function processes vertices
in the ordering vp,vn—1,...,v;. As a visited vertex v, is in A, the function
replaces each set S in £ that contains a neighbor of v; with two sets S —
Ng|[ve] and SNNg[ve] if S— Ng[ve] is not empty. Note that the set S—Ng[ve]
is placed before S N Ng[ve).

The list £ is finalized at the end of Step 11. Clearly each set S € £’ is
either the same as a set in £ or partitioned into at least two consecutive
sets in £. Thus the ordering (L), returned from Step 12, is an arbitrary
ordering that can also be obtained from L’ by visiting each set of £ in
order and outputting the vertices within each set. Hence it is a simple
elimination ordering of G g, too.

Let wy, ws,...,w, be the ordering returned from Step 12 of the function
SimpleToStrong(G, (A, B)). As we mentioned above, the ordering is a
simple elimination ordering that can also be obtained from the list £’. Now
suppose that there exists i < j < k such that (w;, w;) and (w;, wi) are edges
of Gp. Let G; = Gp[{wi, Wit1,...,wn}]. Since the ordering wy,...,wn
is a simple elimination ordering of G, the vertex w; is simple in G; and
either Ng,[v;] € Ng;[vk] or Ng,[vk] € Ng,[v;]. Therefore (w;,ws) is an
edge of Gp.

Assume for contrary that there exists a positive integer £ such that i < ¢
and (wj,we) is an edge of Gpg, but (wk,we) is not. Since w; is simple in
G;, we have Ng;[wi] C Ng,[w;]. By Lemma 4, w; and wx must belong
to the same set in £’. For each set S in L', either S C B or S consists of
precisely one vertex in A. Thus w;, wx € B and wg € A. After the iteration
of Steps 3-11 when ¢ = £, the vertex wi will be in a set that precedes the
set containing w;. This contradicts j < k. Hence w,...,w, is a strong
elimination ordering of Gp. (]

Theorem 4. The functions SimpleToStrong(G, (X, Y)) and MakeSets(G,
(X,Y)) can be implemented in O(m) time.

Proof. The analysis and implementation of the functions SimpleToStrong(G,
(X,Y)) and MakeSets(G, (X, Y')) are similar to those of the algorithm for
transforming a simple elimination ordering of a strongly chordal graphs
into a strong elimination ordering. We refer to [18] for the details. Hence
these two functions can be implemented in O(m) time. O
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Corollary 1. Let G = (A, B, E) be a biconver bipartite graph with |A U
B| = n and |E| = m. A strong elimination ordering of G4 (respectively,
Gpg) can be computed from G in O(n + m) time.

Proof. It follows from Theorems 1, 3, and 4. |

3.2 A linear-time algorithm

Let ¢, d, I; be fixed integers and £,d > 0. Let P be the weight set
{h,L+d,; +2d,...,I + (£ — 1) - d}. Suppose that G = (A4,B,E) is a
bipartite graph with a labeling function R which assigns an integer R(v)
to each vertex v € V(G). Let R4 (respectively, Rg) be a labeling function
of G which assigns an integer Ra(v) (respectively, Rp(v)) to each vertex
in G such that Ra(v) = I - dege(v) (respectively, Rp(v) = I; - degg(v))
for every v € A (respectively, v € B), and R4(v) = R(v) (respectively,
Rp(v) = R(v)) for every v € B (respectively, v € A).

Definition 5. An Rjs-total dominating function f of a bipartite graph
G = (A,B,E) is called an R}-total dominating function of G if f(v) =
I +(¢£—1)-d for every v € B. An Rp-total dominating function g of G
is called an R}-total dominating function of G if g(v) = I + (€ —1) - d for
every v € A.

Lemma 5 shows that a minimum R-total dominating function of a
chordal bipartite graph G can be obtained from a minimum R,-total dom-
inating function and a minimum Rj-total dominating function of G.

Lemma 5 ([14]). Suppose that G = (A, B, E) is a bipartite graph with
a labeling function R as mentioned above. Let fa (respectively, fp) be
a minimum R)-total (respectively, Ry-total) dominating function of G.
Let f be a function of G defined by f(v) = fa(v) for every v € A and
f(v) = fa(v) for every v € B. Then f is a minimum R-total dominating
Junction of G.

We give the function MRTD(G,(X,Y), R, I1, ¢, d) for computing a mini-
mum Rj,-dominating function of a biconvex bipartite graph G. The MRTD(
G, (X,Y), R, I, ¢,d) takes G, (X,Y), R, I, ¢, and d as inputs. Input G
represents a biconvex bipartite graph, and X and Y are the bipartition of
G. Input (X, Y) is a biconvex ordering of G. Input R is a labeling function
assigning an integer R(v) to each vertex v € X UY. Inputs ¢, d, I, are
integers and £,d > 0. The weight set P is assumed to be the set {I;,I) +
d I, +2d,...,I) + (¢ — 1) - d}. The function MRTD(G,(X,Y), R, I,,¢,d)
finds a minimum R} -dominating function of a biconvex bipartite graph G.

Lemma 6. If the function f initialized by the function MRTD(G, (X, Y),
R, I, ¢,d) in Steps 6-8 is not an Ry, -total dominating function of G, then
G has no R-total dominating functions.
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Function MRTD(G, (X, Y), R, I, ¢,d)

1: for every vertexve XUY do

2: ifv €Y then Ry (v) = I; - dege(v);

3 else Ry (v) = R(v);

4: end for

5:  v1,...,vn « SimpleToStrong(G, (X,Y));

6: fori—1tondo

7: fw)—L+(¢-1)-d;

8: end for

9: fori—1tondo

10: if Ry (vi) > f(Ne(v))

11: then stop and return the infeasibility of the problem;
13: end for

14: fori—1tondo

15: if v; € Y then

16: M «— min{f(Ne¢(v)) = Ry (v)|v € Ng(w)};
17 F(0) - max{Iy, I + (T - 41— 1) - d};
18: end for

19: return the function f;

Proof. Note that the maximum value in P is I; + (£ - 1) - d. We may
assume that £ > 1. The function MRTD(G, (X,Y), R, I, ¢,d) in Steps 6-8
assigns the maximum value in P to all vertices in G. The function f has
the largest weight among all Ry -total (respectively, R-total) dominating
functions if f is an R} -total (respectively, R-total) dominating function of
G. Since the minimum value in P is 1, f(Ng(v)) > Ry (v) for every vertex
v € Y. If there exists a vertex v € X UY such that Ry (v) > f(Ng(v)),
then v € X and R(v) = Ry (v) > f(Ng(v)). This implies that the function
[ is neither an Ry -total dominating function nor an R-total dominating
function of G, and thus G has no R-total dominating functions. m]

Lemma 7. The function f returned from Step 19 of the function MRTD(G,
(X,Y), R, I, £,d) is an R} -dominating function of G.

Proof. Following Theorem 3, the ordering v, ..., v, obtained by Step 5 is
a strong elimination ordering of Gy. By Lemma 6, the function f initialized
in Steps 6-8 is an Ry, -total dominating function of G if the function does not
stop in Step 11. In Steps 14-18, the function MRTD(G, (X,Y), R, I1,¢,d)
processes vertices in the ordering vi,v2,...,v, to decrease the weight of
the function f. In the following, we show that at the end of each iteration
of Steps 14-18, the new function f obtained by changing the value of f(v;)
in Step 17 is still an R} -total dominating function of G.

The function f at the beginning of the first iteration of Steps 14-18
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is an Ry -total dominating function initialized in Steps 6-8. We assume
that at the beginning of the i-th iteration of Steps 14-18, the function f
is an Ry -total dominating function of G. Suppose that v; € X. Then
the value of f(v;) will not be changed and thus f(v;) = I, + (£—1) - d.
The function f at the end of the i-th iteration is the same as the function
f at the beginning of the i-th iteration. Suppose that v; € Y. Let z =
max{I},I; + ([€— 41~1)-d}. Thenz > ) + ([¢— %] —1)-d. We have

a:211+(£—1—%)-d=>M2(I1+(£-1)-d)—:c.

Since M = min{f(Ng(v)) — Ry(v)[v € Ng(vi)}, f(Ne(v)) - Ry(v) >
(I + (€ —1) - d) — = for every vertex v € Ng(v;). We have f((Ng(v) —
{v:i})) + f(vi) = (I1 + (£ — 1) - d) + = > Ry (v) for every vertex v € Ng(v;).
Note that f(v;) = I + (€—1)-d before the execution of Step 17. Therefore,
the new function f obtained by changing the value of f(v;) in Step 17
is still an Rj-total dominating function of G. Following the discussion
above, we know that the function f returned from Step 19 of the function
MRTD(G, (X,Y), R, 1,¢,d) is an R}-total dominating function of G. O

Lemma 8. The function f found by the function MRTD(G, (X, Y), R,
I, ¢,d) is a minimum Ry -total dominating function of G.

Proof. By Lemmas 6 and 7, the function f found by the function MRTD(G,
(X,Y), R, I, £,d) is an R}-dominating function of G. In the following, we
let V = XUY and show that f is a minimum R} -total dominating function
of G. Among all minimum R} -total dominating functions of G, we let h be
a minimum R}y-total dominating function of G such that the cardinality
of {vlv € V, f(v) = h(v)} is maximum. We claim that f(v) = h(v) for
every vertex v € V. Assume for contrary that W is a nonempty set of all
vertices w with f(w) s h(w). Suppose that t is the smallest index such
that v, € W. Obviously, v, € Y and W C Y. We consider the following
cases.

Case 1: h(v:) < f(v:). By the function MRTD(G, (X,Y), R, I1,¢,d),
f(vs) = max{I;,I; + ([¢— %] — 1) - d} at the end of the t-th iteration
(where an iteration here is understood as one iteration of Steps 14-18).
We consider the following two cases:

Case 1.1: f(v¢) = I. Then h(v:) < f(v:) = I, which contradicts the
assumption that h(v;) € P since I; is the smallest number in P.

Case 1.2: f(v) = I + ([¢ — Y] —1)-d. Then h(v) < f(v:) —d =
I+ ([6— M1 -2)-d. Let v, be a vertex in Ng(v:) such that M =
f(Ng(va)) — Ry(va). Note that at the beginning of the ¢-th iteration,
f(ve) = I + (£—1)-d. Therefore, f(Ng(va) —{vt}) = M + Ry (va) — (11 +
(£—1) - d) before the execution of Step 17 at the t-iteration. Since only the
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value of f(v;) was changed at the t-th iteration, f(Ng(va) — {ve}) is still
equal to M + Ry (va) — (I1 + (£ — 1) - d) at the end of ¢-th iteration.

Note that h(vz) = f(v;) for every index z < t. At the end of the ¢-th
iteration, h(vz) < f(v.) = I; + (£ — 1) - d for every index = > t. Then,

h(No(va)) < f(Ne(va) — {ve}) + k()

f(No(va) = {ve}) + L + ([~ 41 -2)-d
M+Ry(va)—(h+(¢-1)-d)+ L +([¢-¥)-2).4
M+Ry(ve) = (h+(-1)-d)+ (L +((¢— %)-1)-9)
M+ Ry(ve)) = (i + (€= 1) -d) + (I + (¢~ 1) -d — M)
Ry (va)

Hence h(Ng(vo) < Ry (vq) which contradicts the assumption that & is an
Ry -total dominating function.

Case 2: f(v) < h(v:). Let P = {p1,p3,...,pe} where p; = I, pp =
L+d...,pe=5L+({—-1)-d Welet f(v;) = p; and h(v;) = p; for
1<i<j<{ Let X' = {vjv € Nag(w), h(Na(v)) —p; + pi < Ry (v)}. We
have X' # @. Otherwise, h(Ng(v)) — p; + pi = Ry (v) for every v € Ng(v:)
and there is an R} -total dominating function g with g(V') < h(V') by setting
g(ve) = h(v:) — pj + pi = p; and g(v) = h(v) for every vertex v € V — {u:}.
It leads to a contradiction to the assumption that k is a minimum R} -total
dominating function.

Note that h(v:) = f(vz) for every index z < t. Since h(Ng(v)) —a; +
a; < Ry(v) and f(Ng(v)) = Ry(v) for every vertex v € X', Ng(v) N
{vz|vz € W)t < z, and h(v;) < f(vz)} # 0. Let Y'(v) = Ng(v) N {vz|v;: €
W,t < z, and h(v:) < f(vz)} for every vertex v € X'. Clearly Y'(v) C Y
for every vertex v € X'.

Let s be the smallest index of vertices in X’. Let b be the smallest
index of Y'(v,). Note that X’ C Ng(v¢) C X. Since h(w:), f(v:), h(w),
and f(vp) are in P, there exist two positive integers a; and a2 such that
h(ve) = f(v) + o1 - d and f(vp) = h(vs) + 2 - d. We define a function h’
as follows.

(1) If oy < e, M (ve) = h(ve) — a1 -d = f(ve), h'(vp) = h(vs) + 1 -d and
k' (v) = h(v) for every vertex v € V — {v¢, vp}.

(2) If a1 > a2, h'(v;) = h(v) — az - d, k'(vs) = h(vp) + a2 - d = f(ws),
and h’(v) = h(v) for every vertex v € V — {uvg, s }.

Clearly, h(V) = k'(V) and [{v|v € V, f(v) = R'(v)}| > {vlv € V, f(v) =
h(v)}| + 1. We prove h'(Ng(v)) > Ry(v) for every vertex v € V by
showing that X’ C Ng(w). Since vs € X’ and v, € Y/(v,), vs € X and
v, % € Y. Apparently s # t. For 1 < i < n, we let N;[v] (respectively
NY[v]) denote the closed neighborhood of a vertex v € V in the subgraph of
G (respectively, Gy ) induced by {vi, vi41,...,vn}. For every vertexv € V,

A IAA
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we let Ni(v) = Ni[v] — {v} and NY (v) = NY[v] — {v}. We consider the
following two cases:

Case 2.1: s <. Then s <t < b. Following Theorem 3, the ordering
1, .., Vpn Obtained by Step 5 of the function MRTD(G, (X, Y), R, I;,£,d) is
a strong elimination ordering of Gy. By definition of the strong elimination
ordering, NY [ve] C NY [vs). Then N,(ve) = (NY [ve)nX) C (NY [us)nX) =
Ny(vp). Since X’ C N,(v¢), we have X' C Ny(vp) C Na(vs).

Case 2.2: s > t. By definition of the strong elimination ordering,
NY [vs] € NY [v] for every vertex v € X'. Since vy € N [v5], vo € NY [v] for
every vertex v € X'. Since vy € Y, vy  X. Therefore, X' C N¥ [vs) N X =
Ni(vs) € Na(ws).

Hence, A’ is a minimum R} -total dominating function such that the car-
dinality of {v|v € V, f(v) = h’(v)} is larger than that of {v|v € V, f(v) =
h(v)} which contradicts the assumption that the cardinality of {v|v €
V, f(v) = h(v)} is maximum.

Following the discussion above, W does not exist. Hence, f is & mini-
mum Ry -total dominating function of G. o

Lemma 9. The function MRTD(G, (X,Y), R, I1,4,d) finds a minimum
R}, -total dominating function of a biconvez bipartite graph G = (X,Y, E)
in O(n + m) time.

Proof. Steps 1-4 can be done in O(3_ ¢ xuy(dege(v) + 1)) = O(n + m)
time. By Theorem 4, Step 5 can be done in O(m) time. The initialization
of a function f in Steps 6-8 can be done in O(n) time.

For each vertex v; € X UY, we can use d(v;) to keep track of f(Ng(v;))
and use m(v;) to keep track of d(v;) — Ry(v;). Following the initialization
of a function f in Steps 6-8, we initialize d(v;) = (I} + (£ —1) - d) - dega(v;)
and m(v;) = d(v;) — Ry (v;). The initialization of d(v;) and m(v;) can be
done in O(degg(vi) + 1) time.

While f(v;) is replaced by a number z € P, d(v) and m(v) are respec-
tively decreased by (I3 + (£ — 1) - d) — x for every vertex v € Ng(v;). This
can be done in O(degg(v;) + 1) time. At i-th iteration, 1 <i < n, M can
be computed in O(degg(v;)) time by verifying m(v) for every vertex v €
Ng(v;). Following the discussion above, the running time of the function
MRTD(G,(X,Y), R, 1,¢,d) is O(L,,. c xuy (dega(vi)+1)) = O(n+m). O

Theorem 5. Given a biconvez bipartite graph G = (A, B, F) with |AUB| =
n and |E| = m, the R-total domination problem can be solved in O(n + m)
time.

Proof. By Lemma 8, a function f4 (respectively, fg) obtained by MRTD(G,
(B, A), R, I, £,d) (respectively, MRTD(G, (A, B), R, I, £,d)) is a mini-
mum R’ -total (respectively, Rp-total) dominating function of G. Follow-
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ing Lemmas 5 and 9, the R-total domination problem is linear-time solvable
for a biconvex bipartite graph G. o

4 NP-completeness results

In this section, we show that the signed (respectively, minus) total dom-
ination problem is NP-complete on planar bipartite graphs of maximum
degree 3 (respectively, maximum degree 4). Before presenting the NP-
completeness results, we restate the vertex cover, total domination, signed
total domination, and minus total domination problems as decision prob-

lems.

(1) The vertex cover problem:
Instance: A graph G = (V, E) and a positive integer K.
Question: Is 7(G) < K?

(2) The total domination problem:
Instance: A graph G = (V| E) and an integer K.
Question: Is v(G) < K7

(3) The signed total domination problem:
Instance: A graph G = (V, E) and an integer K.
Question: Is v/(G) < K?

(4) The minus total domination problem:
Instance: A graph G = (V, E) and an integer K.
Question: Is v; (G) £ K?

Theorem 6. The total domination problem is NP-complete on planar
bipartite graphs of mazimum degree 3.
Proof. The total domination problem on planar bipartite graphs of max-
imum degree 3 is clearly in NP. It is known that vertex cover problem is
NP-complete on planar graphs of maximum degree 3 [5, 6]. In the fol-
lowing, we show the NP-completeness of the total domination problem on
planar bipartite graphs of maximum degree 3 by reducing the vertex cover
problem on planar graphs of maximum degree 3 to it in polynomial time.
Let G = (V,E) be a planar graph of maximum degree 3. Let E =
{e1,e2,...,en}. Assume that e; = (u;,;) for 1 < i < m. We construct
the graph H using the following steps:

(1) Let V(H) =VUW, where W = {w; ;| 1<i<mand 1< j<2}.

(2) Let By = {(ui,wyi1), (win,v) | 1 < i < m}. In other words, we
replace each edge e; by two edges (ui,w;,1) and (w;1,v;) for 1 <4 <
m.
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(3) Let E(H) = E1 U E3, where B3 = {(wi,1,wi2) |1 < i <m}.

It is clear that the graph H can be constructed from G in polynomial
time and that H is a planar bipartite graph of maximum degree 3.

Claim 1. v.(H) = 7(G) +m.

Proof. Let W; = {w,-,l I 1<i< m} and Wy = {‘w,’,z | 1 <1< m}
Suppose that S is a vertex cover of G of 7(G) vertices. Let D = SUW;.
It can be easily verified that D is a total dominating set of H. We have
(H) < 7(G) +m.

Conversely, let D be a minimum total dominating set of H. Necessarily,
D contains all vertices in W;. Suppose that there is a vertex w;2 € Ws
such that w;2 € D. Then, D contains at most one vertex of u; and v;.
Otherwise, D would contain them both. The set D' = (D — {w;2}) would
be a total dominating set of H with |D’| < |D|. However, this contradicts
the assumption that D is a minimum total dominating set of H. We may
assume that u; € D. The set D' = (D — {wi2}) U {u,} is still a minimum
total dormnatmg set of H. Hence, there exists a minimum total dominating
set D of H such that DNW, =@ and W, is a subset, of D. Let wbe a
vertex in W1. Let u,v € Ny(w) and (u,v) € E. Since DnW, =0, at least
one vertex of u and v is in D. Then D — W is a vertex cover of G. We have
7(G) £ 7:(H) —m. Following the discussion above, 1¢(H) = 7(G)+m. O

The above claim implies that for a positive integer K, 7(G) < K if and
only if v.(H) < K +m. a

Theorem 7. The minus total domination problem is NP-complete on pla-
nar bipartite graphs of mazimum degree 4.

Proof. The minus total domination problem on planar bipartite graphs
of maximum degree 3 is clearly in NP. We have shown in Theorem 6 that
the total domination problem is NP-complete on planar bipartite graphs of
maximum degree 3. In the following we show the NP-completeness of the
minus total domination problem on planar bipartite graphs of maximum
degree 4 by reducing the total domination problem on planar bipartite
graphs of maximum degree 3 to it in polynomial time.

Given a planar bipartite graph G of maximum degree 3, we construct
the graph H by adding a path of length 4, say v — vy — vz — vz — v4, to
each vertex v € V(G). That is, V(H) = V(G) U (U,ev{v1,v2,v3,v4})
and E(H) = E(G) U (Uyev{(v,v1), (v1,72), (v2,v3), (v3,v4)}). It can be
easily verified that H is a planar bipartite graph of maximum degree 4.
Let |[V(G)| = n. By the arguments similar to those for proving the NP-
completeness of the minus total domination problem on bipartite graphs
in [7], we have the following claim.
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Claim 2. v (H) = v2(H) = 1(G) + 2n

The claim implies that for a positive integer K, v:(G) < K if and only
ify, (H) < K+2n. m}

Theorem 8. The signed total domination problem is NP-complete on pla-
nar bipartite graphs of marimum degree 3.

Proof. The signed total domination problem on planar bipartite graphs of
maximum degree 3 is clearly in NP. It is known that vertex cover problem is
NP-complete on planar graphs of maximum degree 3 [5, 6]. In the following,
we show the NP-completeness of the signed total domination problem on
planar bipartite graphs of maximum degree 3 by reducing the vertex cover
problem on planar graphs of maximum degree 3 to it in polynomial time.

Let G = (V, E) be a planar graph of maximum degree 3. Let E =
{ei,e2,...,en} and let e; = (u;,v;) for 1 < i < m. We construct the graph
H using the following steps:

(1) Let V(H) =V UW, where W = {w; ; | 1 <i<mand 1< j <3}

(2) Let Ey = {(ui,wi1),(wi1,v) | 1 < 4 < m}. In other words, we
replace each edge e; by two edges (u;,w;,;) and (w;;,v;) for 1 <i <
m.

(3) Let E(H) = E) U E,, where E; = {(w,',l,wi,z),(wi,z, wi,s) I 1<i<
m}.

It is clear that H can be constructed from G in polynomial time and
that H is a planar bipartite graph of maximum degree 3. Let |[V| = n.

Claim 3. y{(H) = 3m — n + 27(G).

Proof. Let S be a vertex cover of G of 7(G) vertices. Let h : V(H) —
{—1,1} be a function of H such that h(v) =1ifv € SUW and h(v) = -1
ifve V(H)— (SUW). It can be easily verified that h is a signed total
dominating function of H. We have v{(H) < (7(G) — (n — 7(G))) + 3m =
3m —n+27(G).

Conversely, let h be a minimum signed total dominating function of
H. Forl1<i<mandl < j< 3, we now consider the vertices u;, v;,
and w;,;. Necessarily, h(w;2) = 1. Note that Ny (wi2) = {wi,1, wi s}
Since Ny (wi,2) > 1, the function h cannot assign the value -1 to w;,; and
w;,3. Therefore, h(w; 1) = h(w;z) = h(w;3) = 1. Note that Ny(w;,;) =
{wi,2,ui, v}, Since Ny(w;1) > 1 and h(w; ) = 1, the function h assigns
the value -1 to at most one vertex of u; and v;. In other words, h assigns the
value 1 to at least one vertex of u; and v;. Hence, the set {v € V' | h(v) = 1}
is a vertex cover of G. Let K’ = |{v € V | h(v) = 1}|. The weight of h
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is v#(H) = 3m + K' + (n — K') = 3m —n+ 2K'. We have 7(G) < K’ =
2 (H)-(m—n) _2,(3"'_"). Following the discussion above, v§(H) = 3m-n+27(G). O

The above claim implies that for a positive integer K, 7(G) < K if and
only if vf(H) <3m —n+2K. O
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