Signed and minus total domination on subclasses of bipartite graphs

Chuan-Min Lee[†]

Department of Computer and Communication Engineering Ming Chuan University

5 De Ming Rd., Guishan District, Taoyuan County 333, Taiwan. Email: joneslee@mail.mcu.edu.tw

Abstract

In this paper we study the signed and minus total domination problems for two subclasses of bipartite graphs: biconvex bipartite graphs and planar bipartite graphs. We present a unified method to solve the signed and minus total domination problems for biconvex bipartite graphs in O(n+m) time. We also prove that the decision problem corresponding to the signed (respectively, minus) total domination problem is NP-complete for planar bipartite graphs of maximum degree 3 (respectively, maximum degree 4).

Keywords: Graph algorithms; Minus total dominating functions; Signed total dominating functions; Biconvex bipartite graphs; Planar bipartite graphs

1 Introduction

Total Domination is a fundamental concept in graph theory. It plays an important role as an often studied NP-complete problem in the literature and has been surveyed in [8, 9, 11]. Recently two variations of total domination, signed total domination and minus total domination, have been studied in [7, 10, 12, 14, 21, 22, 23, 24, 25]. However, few papers studied the algorithmic complexity of these two problems. From the algorithmic point of view, the signed and minus total domination problems are polynomial-time solvable for trees [7] and chordal bipartite graphs [14], while the decision

[†]This research was partially supported by National Science Council in Taiwan, under the grant number NSC-99-2221-E-130-006.

problems corresponding to these two problems are NP-complete for bipartite graphs and doubly chordal graphs [7, 14]. In [14], Lee introduced the concept of *R-total domination* as follows.

Definition 1. Suppose that G = (V, E) is a finite, simple, undirected graph. Let \mathcal{P} be a subset of real numbers. Let $f: V \to \mathcal{P}$ be a function which assigns to each $v \in V$ a value in \mathcal{P} . The set \mathcal{P} is called the weight set of f. Let $f(S) = \sum_{u \in S} f(u)$ for any subset S of V. Then f(V) is called the weight of f.

Definition 2. Let ℓ , d, I_1 be fixed integers and ℓ , d > 0. Let \mathcal{P} be the weight set $\{I_1, I_1 + d, I_1 + 2d, \ldots, I_1 + (\ell - 1) \cdot d\}$. Suppose that G = (V, E) is a graph and R is a labeling function which assigns an integer R(v) to each $v \in V$. An R-total dominating function of G = (V, E) is a function $f: V \to \mathcal{P}$ such that $f(N_G(v)) \geq R(v)$ for all vertices $v \in V$. The R-total domination number $\gamma_{t,R}(G)$ is the minimum weight of an R-total dominating function of G. The R-total domination problem is to find an R-total dominating function of G of minimum weight.

The concept of R-total domination is similar to that of labeled domination introduced by Lee and Chang [13]. It includes the total domination, signed total domination, and minus total domination problems as special cases. Any polynomial-time algorithm for the R-total domination problem gives a unified approach to the signed and minus total domination problems. Lee showed that the R-total domination problem for chordal bipartite graphs and trees can be solved in $O(n^2)$ and O(n+m) time, respectively. Note that biconvex bipartite graphs are a subclass of chordal bipartite graphs [2]. The R-total domination problem for biconvex bipartite graphs can also be solved in $O(n^2)$ time.

In this paper we study the signed and minus total domination problems on two classes of bipartite graphs: biconvex bipartite graphs and planar bipartite graphs. We present a linear-time algorithm for the R-total domination problem on biconvex bipartite graphs. The algorithm improves the complexity of the R-total domination problem for biconvex bipartite graphs. This paper also shows that the decision problem corresponding to the signed (respectively, minus) total domination problem is NP-complete for planar bipartite graphs of maximum degree 3 (respectively, maximum degree 4).

The rest of this paper is organized as follows. Section 2 reviews the definitions and properties of some classes of graphs that will be studied in this paper. Section 3 deals with the *R*-total domination problem for biconvex bipartite graphs. Section 4 shows that the decision problem corresponding to the signed (respectively, minus) total domination problem is NP-complete for planar bipartite graphs of maximum degree 3 (respectively, maximum degree 4).

2 Preliminaries

Let G=(V,E) be a finite, simple, undirected graph with vertex set V and edge set E. Unless stated otherwise, it is understood that |V|=n and |E|=m. We also use V(G) and E(G) to denote the vertex and edge sets of G, respectively. We denote by G[W] the subgraph of G induced by the vertex set $W\subseteq V$. For any vertex $v\in V$, the neighborhood of v in G is $N_G(v)=\{u\in V|(u,v)\in E\}$ and the closed neighborhood of v in G is $N_G[v]=N_G(v)\cup\{v\}$. The degree of a vertex v in G is $deg_G(v)=|N_G(v)|$. The number, $\max\{deg_G(v)\mid v\in V\}$, is called the maximum degree of G. A clique is a subset of pairwise adjacent vertices of V. A clique is maximum if there is no clique of G of larger cardinality.

A vertex cover of a graph G = (V, E) is a subset $V' \subseteq V$ such that for each edge $(u, v) \in E$, at least one of u and v belongs to V'. The vertex cover number of G, denoted by $\tau(G)$, is the minimum cardinality of a vertex cover of G. The vertex cover problem is to find a vertex cover of G of minimum cardinality.

A total dominating set D of a graph G is a subset $S \subseteq V(G)$ such that $|D \cap N_G(v)| \ge 1$ for every vertex $v \in V(G)$. The total domination number of G, denoted by $\gamma_t(G)$, is the minimum cardinality of a total dominating set of G. The total domination problem is to find a total dominating set of G of minimum cardinality.

Suppose that G=(V,E) is a graph. A function $f:V\to\{0,1\}$ is a total dominating function of G if $f(N_G(v))\geq 1$ for every vertex $v\in V$. A total dominating set can be viewed as a total dominating function f and $\gamma_t(G)=\min\{f(V)\mid f \text{ is a total dominating function of }G\}$. A function $f:V\to \mathcal{P}$ is a signed (respectively, minus) total dominating function of G if \mathcal{P} is $\{-1,1\}$ (respectively, $\{-1,0,1\}$). The signed (respectively, minus) total domination number of G, denoted by $\gamma_t^s(G)$ (respectively, $\gamma_t^-(G)$), is the minimum weight of a signed (respectively, minus) total dominating function of G. The signed (respectively, minus) total domination problem is to find a signed (respectively, minus) total dominating function of G of minimum weight.

Given a graph G = (V, E), a vertex v is simplicial if all vertices of $N_G[v]$ form a clique. The ordering v_1, v_2, \ldots, v_n of the vertices of V is a perfect elimination ordering of G if for all $i \in \{1, \ldots, n\}$, v_i is a simplicial vertex of the subgraph G_i of G induced by $\{v_i, v_{i+1}, \ldots, v_n\}$. A chord of a cycle is an edge between two vertices of the cycle that is not an edge of the cycle. A graph G is called a chordal graph if each cycle in G of length at least 4 has at least one chord. Rose [17] showed the characterization that a graph is chordal if and only if it has a perfect elimination ordering. Let $N_i[v]$ denote the closed neighborhood of v in G_i . A perfect elimination ordering is called a strong elimination ordering if it has the following property:

For i < j < k if v_j and v_k belong to $N_i[v_i]$ in G_i , then $N_i[v_j] \subseteq N_i[v_k]$. Farber [4] showed that a graph is *strongly chordal* if and only if it admits a strong elimination ordering. Currently, the fastest algorithms for recognizing a strongly chordal graph and giving a strong elimination ordering run in $O(m \log n)$ [16] or $O(n^2)$ time [19].

A graph G = (V, E) is a bipartite graph if V can be partitioned into two sets A and B such that every edge has its ends in different sets. We call the sets, A and B, the bipartition of V and use G = (A, B, E) to denote a bipartite graph. A bipartite graph is a chordal bipartite graph if every cycle of length at least G has a chord. A bipartite graph G = (A, B, E) is a biconvex bipartite graph if both G and G can be ordered so that for every vertex G in G in the ordering of the vertices in G is called a biconvex ordering of G.

Given a bipartite graph G=(A,B,E), an ordering of the vertices of A has the adjacency property if for each vertex $b\in B$, $N_G(b)$ consists of vertices which are consecutive in the ordering of A. An ordering of the vertices of A has the enclosure property if for every pair of $b,b'\in B$ with $N_G(b)\subset N_G(b')$, vertices in $N_G(b')-N_G(b)$ occur consecutively in the ordering of A. A strong ordering of the vertices of G=(A,B,E) consists of an ordering of A and an ordering of B such that for all $(a,b'),(a',b)\in E$, where $a,a'\in A$ and $b,b'\in B$, a< a' and b< b' imply $(a,b),(a',b')\in E$. A bipartite permutation graph is a bipartite graph G=(A,B,E) with a strong ordering of $A\cup B$ [20]. Bradstädt et al. [3] showed that given a strong ordering of $A\cup B$, both A and B have the adjacency and the enclosure properties if all isolated vertices of G appear at the beginning of the orderings of A and B.

Biconvex (respectively, chordal) bipartite graphs are a superclass of bipartite permutation (respectively, biconvex bipartite) graphs [2]. Lipski et al. [15] (respectively, Spinrad et al. [20]) gave a linear-time algorithm to recognize whether a given graph is a biconvex bipartite (respectively, bipartite permutation) graph and producing a biconvex (respectively, strong) ordering of the vertices if so.

Definition 3. Suppose that G = (A, B, E) is a bipartite graph. Let G_A (respectively, G_B) be the graph obtained by adding all possible edges between vertices of A (respectively, B) such that the set A (respectively, B) is a clique of G_A (respectively, G_B).

Lemma 1 shows a connection between chordal bipartite graphs and strongly chordal graphs.

Lemma 1 ([1, 4]). The graphs G_A and G_B obtained from a chordal bipartite graph G = (A, B, E) are strongly chordal graphs.

3 R-total domination on biconvex bipartite graphs

In this section, we develop a linear-time algorithm for the R-total domination problem on biconvex bipartite graphs. Suppose that G = (A, B, E) is a biconvex bipartite graphs with $|A \cup B| = n$ and |E| = m. Section 3.1 gives an algorithm to compute a strong elimination ordering of G_A (respectively, G_B) from a biconvex ordering of G in O(n+m) time. Using strong elimination orderings of G_A and G_B , Section 3.2 gives a linear-time algorithm to solve the R-total domination problem for a biconvex bipartite graph G.

It is clear that an R-total dominating function of a graph does not exist if the graph contains an isolated vertex. Throughout this section, we assume that all graphs considered here do not contain isolated vertices.

3.1 From a biconvex ordering to a strong elimination ordering

A vertex v is simple of a graph G if for any two vertices $x, y \in N_G(v)$ either $N_G[x] \subseteq N_G[y]$ or $N_G[y] \subseteq N_G[x]$. An ordering v_1, v_2, \ldots, v_n of the vertices in G is called a simple elimination ordering if for each $1 \le i \le n$, the vertex v_i is a simple vertex of $G[\{v_i, v_{i+1}, \ldots, v_n\}]$. From this definition, we know that strong elimination orderings are simple elimination orderings, but the converse is not necessarily true.

Sawada and Spinrad [18] presented a linear-time algorithm for transforming a simple elimination ordering of a strongly chordal graph into a strong elimination ordering. Based upon their algorithm, we develop an algorithm in this section for a given biconvex bipartite graph G = (A, B, E) to transform a biconvex ordering of G into a strong elimination ordering of G_A (respectively, G_B) in O(n+m) time.

Definition 4. Suppose that G = (A, B, E) is a biconvex bipartite graph. We use $\langle A, B \rangle$ (respectively, $\langle B, A \rangle$) to denote a biconvex ordering v_1, v_2, \ldots, v_n , where $A = \{v_1, \ldots, v_{|A|}\}$ and $B = \{v_{|A|+1}, \ldots, v_n\}$ (respectively, $B = \{v_1, \ldots, v_{|B|}\}$ and $A = \{v_{|B|+1}, \ldots, v_n\}$).

Lemma 2 shows that there is a biconvex ordering of a biconvex bipartite G = (A, B, E), which is also a simple elimination ordering of G_A (respectively, G_B).

Lemma 2. Suppose that G = (A, B, E) is a biconvex bipartite graph with a biconvex ordering $\langle A, B \rangle$ (respectively, $\langle B, A \rangle$). The following statements are true.

- (1) The biconvex ordering $\langle A, B \rangle = v_1, v_2, \dots, v_n$ is a simple elimination ordering of G_B .
- (2) The biconvex ordering $\langle B, A \rangle = v_1, v_2, \dots, v_n$ is a simple elimination ordering of G_A .

Proof. In the following, we just show the correctness of statement (1) since statement (2) can be proved in the similar way.

By Lemma 1, the graphs G_A and G_B obtained from G are strongly chordal graphs. Let G_i be the subgraph of G_B induced by $\{v_i, v_{i+1}, \ldots, v_n\}$, where $1 \leq i \leq n$. Let $N_i[v]$ denote the closed neighborhood of v in G_i . It can be easily verified that $N_i[v_i]$ is a clique of G_i for $1 \leq i \leq n$. Therefore, the ordering v_1, v_2, \ldots, v_n is a perfect elimination ordering of G_B . Suppose that there exist three positive integers i, j, and k such that $1 \leq i < j < k \leq n$ and $v_j, v_k \in N_i(v_i)$. We prove the biconvex ordering v_1, v_2, \ldots, v_n is a simple elimination ordering of G_B by showing that either $N_i[v_j] \subseteq N_i[v_k]$ or $N_i[v_k] \subseteq N_i[v_i]$. We consider the following cases:

Case 1: $|A|+1 \le i \le n$. Then $V(G_i) \subseteq B$. Note that B is a clique of G_B . Hence, $N_i[v_i] = N_i[v_k]$.

Case 2: $1 \leq i \leq |A|$. Then $v_i \in A$, $B \subset V(G_i)$, and $v_j, v_k \in B$. Clearly $(N_i[v_j] \cap B) = (N_i[v_k] \cap B)$. If $N_i[v_j] \cap A = \{v_i\}$, then we have $N_i[v_j] \subseteq N_i[v_k]$. Assume that $N_i[v_j] \cap A$ contains at least two vertices. By definition of the biconvex ordering, the vertices in $N_i[v_j] \cap A$ (respectively, $N_i[v_k] \cap A$) are consecutive in the ordering. This implies that either $(N_i[v_j] \cap A) \subseteq (N_i[v_k] \cap A)$ or $(N_i[v_k] \cap A) \subseteq (N_i[v_j] \cap A)$. Hence, either $N_i[v_j] \subseteq N_i[v_k]$ or $N_i[v_k] \subseteq N_i[v_j]$.

Following the discussion above, the biconvex ordering v_1, v_2, \ldots, v_n is a simple elimination ordering of G_B .

Theorem 1. Let G = (A, B, E) be a biconvex bipartite graph with $|A \cup B| = n$ and |E| = m. A simple elimination ordering of G_A (respectively, G_B) can be computed from G in O(n+m) time.

Proof. It follows from Lemma 2 and the result that a biconvex ordering of a biconvex bipartite graph can be computed in O(n+m) time [15]. \Box

Following the arguments similar to those for proving Lemma 2, we can prove that there is a strong ordering of a bipartite permutation graph G = (A, B, E), which is also a simple elimination ordering of G_A (respectively, G_B). Furthermore, we show in Lemma 3 that there is a strong ordering of a bipartite permutation graph G = (A, B, E), which is also a *strong* elimination ordering of G_A (respectively, G_B).

Lemma 3. Suppose that G = (A, B, E) is a bipartite permutation graph with a strong ordering v_1, v_2, \ldots, v_n (respectively, u_1, u_2, \ldots, u_n), where

 $A = \{v_1, \ldots, v_p\}$ and $B = \{v_{p+1}, \ldots, v_n\}$ (respectively, $B = \{u_1, u_2, \ldots, u_q\}$ and $A = \{u_{q+1}, u_{q+2}, \ldots, u_n\}$). The following statements are true.

- (1) The strong ordering v_1, \ldots, v_n is a strong elimination ordering of G_B .
- (2) The strong ordering u_1, \ldots, u_n is a strong elimination ordering of G_A .

Proof. In the following we just show the correctness of statement (1) since the statement (2) can be proved in the similar way.

By Lemma 1, the graphs G_A and G_B obtained from G are strongly chordal graphs. Let G_i be the subgraph of G_B induced by $\{v_i, v_{i+1}, \ldots, v_n\}$, where $1 \leq i \leq n$. Let $N_i[v]$ denote the closed neighborhood of v in G_i . It can be easily verified that $N_i[v_i]$ is a clique of G_i for $1 \leq i \leq n$. Therefore, the ordering v_1, v_2, \ldots, v_n is a perfect elimination ordering. Suppose that i, j, and k are positive integers. Let $1 \leq i < j < k \leq n$ and $v_j, v_k \in N_i[v_i]$. We prove the ordering v_1, v_2, \ldots, v_n is a strong elimination ordering by showing that $N_i[v_j] \subseteq N_i[v_k]$. We consider the following cases:

Case 1: $p+1 \le i \le n$. Then $V(G_i) \subseteq B$. Note that B is a clique of G_B . Hence, $N_i[v_j] = N_i[v_k]$.

Case 2: $1 \leq i \leq p$. Then $v_i \in A$, $B \subset V(G_i)$, and $v_j, v_k \in B$. Clearly $(N_i[v_j] \cap B) = (N_i[v_k] \cap B)$. If $N_i[v_j] \cap A = \{v_i\}$, then we have $N_i[v_j] \subseteq N_i[v_k]$. If there is a vertex $v_\ell \in (N_i[v_j] \cap A)$ and $v_\ell \neq v_i$, then $i < \ell < j < k$. In this case, $(v_i, v_k), (v_\ell, v_j) \in E(G_i)$. By definition of the strong ordering, $(v_\ell, v_k) \in E(G_i)$. We have $v_\ell \in N_i[v_k]$. Hence, $N_i[v_j] \subseteq N_i[v_k]$. Following the discussion above, the ordering v_1, v_2, \ldots, v_n is a strong elimination ordering of G_B .

Theorem 2. Suppose that G = (A, B, E) is a bipartite permutation graph with $|A \cup B| = n$ and |E| = m. The graphs G_A and G_B obtained from G are strongly chordal graphs, and strong elimination orderings of G_A and G_B can be computed in O(n+m) time, respectively.

Proof. It follows from Lemmas 1 and 3, and the result that a strong ordering of a bipartite permutation graph can be computed in O(n+m) time [20].

In the rest of the subsection, we give the function SimpleToStrong $(G, \langle X, Y \rangle)$ for transforming a biconvex ordering $\langle X, Y \rangle$ of a biconvex bipartite graph G = (X, Y, E) into a strong elimination ordering of G_Y . The function SimpleToStrong $(G, \langle X, Y \rangle)$ includes the function MakeSets $(G, \langle X, Y \rangle)$ for partitioning the vertices in $X \cup Y$ into a list \mathcal{L} of disjoint sets. Let H = (X, Y, E) be the biconvex bipartite graph with $X = \{a, b, c\}$ and $Y = \{d, e, f, g\}$ as shown in Figure 1. The function MakeSets(H, X, Y) returns the list of sets $\mathcal{L} = \{a\}, \{b\}, \{d, g\}, \{c\}, \{e, f\}$. We can visit each set in order, output the vertices within each set, and then obtain a new

Figure 1: A biconvex bipartite graph.

ordering a, b, d, g, c, e, f. We can also obtain the orderings a, b, g, d, c, e, f and a, b, g, d, c, f, e in this fashion. To simplify the discussion, we use $\langle \mathcal{L} \rangle$ to denote an arbitrary ordering obtained from \mathcal{L} as we did above.

For any biconvex bipartite graph G = (A, B, E), Lemma 4 shows that an ordering $\langle \mathcal{L} \rangle$ obtained from the function MakeSets $(G, \langle A, B \rangle)$ (respectively, MakeSets $(G, \langle B, A \rangle)$) is also a simple elimination ordering of G_B (respectively, G_A)

Lemma 4. Suppose that G = (A, B, E) is a biconvex bipartite graph. Let $\mathcal{L} = S_1, S_2, \ldots, S_r$ (respectively, $\hat{\mathcal{L}} = \hat{S}_1, \hat{S}_2, \ldots, \hat{S}_r$) be returned from the function MakeSets $(G, \langle A, B \rangle)$ (respectively, MakeSets $(G, \langle B, A \rangle)$). The following statements are true.

- (1) Let $\langle \mathcal{L} \rangle = w_1, \ldots, w_n$. Then the ordering $\langle \mathcal{L} \rangle$ is a simple elimination ordering of G_B . If there exists i < j < k such that (w_i, w_j) , (w_i, w_k) , and (w_j, w_k) are edges of G_B and there exists a positive integer ℓ such that $i < \ell$ and (w_j, w_ℓ) is an edge of G_B , but (w_k, w_ℓ) is not, then w_j and w_k must belong to the same set in \mathcal{L} .
- (2) Let $\langle \hat{\mathcal{L}} \rangle = w_1, \ldots, w_n$. Then the ordering $\langle \hat{\mathcal{L}} \rangle$ is a simple elimination ordering of G_A . If there exists i < j < k such that (w_i, w_j) , (w_i, w_k) , and (w_j, w_k) are edges of G_A and there exists a positive integer ℓ such that $i < \ell$ and (w_j, w_ℓ) is an edge of G_A , but (w_k, w_ℓ) is not, then w_j and w_k must belong to the same set in $\hat{\mathcal{L}}$.

Proof. In the following, we just show the correctness of statement (1) since statement (2) can be proved in the similar way.

Note that G_B is obtained from G by adding all possible edges between the vertices of B such that the set B is a clique of G_B . By Lemma 2, the biconvex ordering $\langle A, B \rangle = v_1, \ldots, v_n$ is a simple elimination ordering of G_B . If |A| = 1, then the ordering $\langle \mathcal{L} \rangle$ is a simple elimination ordering of

```
Function MakeSets(G, \langle X, Y \rangle)
         \mathcal{L} \leftarrow \text{empty list of sets}:
 2:
         v_1, v_2, \ldots, v_n \leftarrow \langle X, Y \rangle;
         for i \leftarrow 1 to |X| do
 3:
              S \leftarrow \{v_i\}; S' \leftarrow \{u \mid u \in N_G(v_i) \text{ and } \deg_G(v_i) = \deg_G(u) + 1\}
 4:
             |Y|-1\};
 5:
              append S to \mathcal{L}:
 6:
             if S' \neq \emptyset then
 7:
                 append S' to \mathcal{L};
 8:
             end if
             remove S from X; remove S' from Y; update the
 9:
             neighborhoods and degrees;
10:
        end for
11:
        if Y \neq \emptyset then
12:
             append Y to \mathcal{L};
13:
        end if:
14:
        return \mathcal{L};
```

 G_B . We therefore assume that $|A| \geq 2$. Let S be a set in \mathcal{L} . Following the function MakeSets $(G, \langle A, B \rangle)$, either $S \subseteq B$ or S consists of precisely one vertex in A. Let $V = A \cup B$ and let A be a positive integer such that $1 < h \leq r$ and $S_h = \{v_{|A|}\}$. Then $(S_{h+1} \cup S_{h+2} \cup \cdots \cup S_r) \subseteq B$ and each vertex in S_ℓ is simple in the graph $G_B[V - S_1 - S_2 - \cdots - S_{\ell-1}]$ for $h \leq \ell \leq r$.

Clearly $S_1 = \{v_1\}$ and v_1 is a simple vertex in G_B . In the following, we show that each vertex in S_i is simple in the graph $G_B[V-S_1-S_2-\cdots-S_{i-1}]$ for $2 \le i \le h-1$. Now consider the set S_2 .

Case 1: S_2 consists of precisely one vertex in A. Then $S_2 = \{v_2\}$. It can be easily verified that v_2 is a simple vertex in the graph $G_B[V - S_1]$.

Case 2: $S_2 \subseteq B$. By the function MakeSets $(G, \langle A, B \rangle)$, any vertex $x \in S_2$ must be a neighbor of v_1 and $deg_G(v_1) = deg_G(x) + |B| - 1 = deg_{G_B}(x)$. By the construction of G_B , $N_G[v_1] = N_{G_B}[v_1]$. We have $|N_{G_B}[x]| = |N_{G_B}[v_1]|$. If $N_{G_B}[x] \neq N_{G_B}[v_1]$, then there is a vertex y adjacent to v_1 but not adjacent to x. This contradicts the fact that v_1 is a simple vertex in G_B . Thus $N_{G_B}[v_1] = N_{G_B}[x]$ which implies that v_1 and each vertex in S_2 are simple in G_B . Therefore, each vertex in S_2 is simple in the graph $G_B[V - S_1]$.

Using the arguments similar to those for proving Cases 1 and 2, it follows that each vertex in S_{ℓ} are simple in the graphs $G_B[V-S_1-S_2-\cdots-S_{\ell-1}]$ for $3 \leq \ell \leq h-1$. Following the discussion above, the ordering $\langle \mathcal{L} \rangle$ is a simple elimination ordering of G_B .

Now suppose that there exists i < j < k such that (w_i, w_j) , (w_i, w_k) ,

```
Function SimpleToStrong(G, \langle X, Y \rangle)
         \mathcal{L}' \leftarrow \mathsf{MakeSets}(G, \langle X, Y \rangle); \mathcal{L} \leftarrow \mathcal{L}';
         v_1,\ldots,v_n \leftarrow \langle \mathcal{L} \rangle;
 2:
         for t \leftarrow n down to 1 do
 3:
 4:
                if v_t \in X then
                   for each set S \in \mathcal{L} containing a vertex in N_G[v_t] do
 5:
 6:
                        if S - N_G[v_t] \neq \emptyset then
 7:
                            replace S in the list \mathcal{L} with the two sets S - N_G[v_t],
                            S \cap N_G[v_t];
 8:
                       end if
 9:
                   end for
10:
               end if
11:
         end for
12:
         return \langle \mathcal{L} \rangle
```

and (w_j, w_k) are edges of G_B and there exists a positive integer ℓ such that $i < \ell$ and (w_j, w_ℓ) is an edge of G_B , but (w_k, w_ℓ) is not. Note that w_i, w_k , and w_ℓ are adjacent to w_j . If w_j is in A, then $w_i, w_k, w_\ell \in B$. Since B is a clique of G_B , w_ℓ is adjacent to w_k . This contradicts the assumption that (w_k, w_ℓ) is not an edge of G_B . Therefore $w_j \in B$.

Let $G_j = G_B[\{w_j, \ldots, w_n\}]$. If $j < \ell$, then since w_j is simple in G_j , either $N_{G_j}[w_\ell] \subseteq N_{G_j}[w_k]$ or $N_{G_j}[w_k] \subseteq N_{G_j}[w_\ell]$. This implies w_ℓ is adjacent to w_k . This contradicts the fact that (w_k, w_ℓ) is not an edge of G_B . Therefore, we have $\ell < j$.

Assume for contrary that w_j and w_k belong to different sets S_x and S_y in the list \mathcal{L} , respectively. Since j < k, x < y. Note that $w_j \in B$ and $S_x \subseteq B$. By the function MakeSets $(G, \langle A, B \rangle)$, the set S_{x-1} consists of precisely one vertex in A. Let w_t be the vertex in S_{x-1} . Then $\ell \leq t < j$. Let $G_t = G_B[\{v_t, \ldots, v_n\}]$. It can be proved by contradiction that $N_{G_t}[w_t] = N_{G_t}[w_j]$. Therefore, w_k is adjacent to w_t and $w_k \in B$. This implies that there exists a vertex $z \in A$ such that z is adjacent to w_k , but not adjacent to w_j in G_t . Otherwise w_k would be in the same set as w_j . However, this contradicts the fact that w_t is a simple vertex in G_t . Thus w_j and w_k must belong to the same set in \mathcal{L} .

Theorem 3. Suppose that G = (A, B, E) is a biconvex bipartite graph. The following statements are true.

- (1) The function SimpleToStrong($G, \langle A, B \rangle$) outputs a strong elimination ordering of G_B .
- (2) The function SimpleToStrong $(G, \langle B, A \rangle)$ outputs a strong elimination ordering of G_A .

Proof. In the following, we just show the correctness of statement (1) since statement (2) can be proved in the similar way.

The function SimpleToStrong $(G, \langle A, B \rangle)$ starts by obtaining a list of sets \mathcal{L}' returned by MakeSets $(G, \langle A, B \rangle)$. The list \mathcal{L} is a copy of the list \mathcal{L}' . In Step 2, the ordering v_1, v_2, \ldots, v_n is updated to one that can be obtained from \mathcal{L} . By Lemma 4, the ordering v_1, v_2, \ldots, v_n is a simple elimination ordering of G_B . In Steps 3-11, the function processes vertices in the ordering $v_n, v_{n-1}, \ldots, v_1$. As a visited vertex v_t is in A, the function replaces each set S in \mathcal{L} that contains a neighbor of v_t with two sets $S - N_G[v_t]$ and $S \cap N_G[v_t]$ if $S - N_G[v_t]$ is not empty. Note that the set $S - N_G[v_t]$ is placed before $S \cap N_G[v_t]$.

The list \mathcal{L} is finalized at the end of Step 11. Clearly each set $S \in \mathcal{L}'$ is either the same as a set in \mathcal{L} or partitioned into at least two consecutive sets in \mathcal{L} . Thus the ordering $\langle \mathcal{L} \rangle$, returned from Step 12, is an arbitrary ordering that can also be obtained from \mathcal{L}' by visiting each set of \mathcal{L}' in order and outputting the vertices within each set. Hence it is a simple elimination ordering of G_B , too.

Let w_1, w_2, \ldots, w_n be the ordering returned from Step 12 of the function Simple ToStrong $(G, \langle A, B \rangle)$. As we mentioned above, the ordering is a simple elimination ordering that can also be obtained from the list \mathcal{L}' . Now suppose that there exists i < j < k such that (w_i, w_j) and (w_i, w_k) are edges of G_B . Let $G_i = G_B[\{w_i, w_{i+1}, \ldots, w_n\}]$. Since the ordering w_1, \ldots, w_n is a simple elimination ordering of G_B , the vertex w_i is simple in G_i and either $N_{G_i}[v_j] \subseteq N_{G_i}[v_k]$ or $N_{G_i}[v_k] \subseteq N_{G_i}[v_j]$. Therefore (w_j, w_k) is an edge of G_B .

Assume for contrary that there exists a positive integer ℓ such that $i < \ell$ and (w_j, w_ℓ) is an edge of G_B , but (w_k, w_ℓ) is not. Since w_i is simple in G_i , we have $N_{G_i}[w_k] \subset N_{G_i}[w_j]$. By Lemma 4, w_j and w_k must belong to the same set in \mathcal{L}' . For each set S in \mathcal{L}' , either $S \subseteq B$ or S consists of precisely one vertex in A. Thus $w_j, w_k \in B$ and $w_\ell \in A$. After the iteration of Steps 3-11 when $t = \ell$, the vertex w_k will be in a set that precedes the set containing w_j . This contradicts j < k. Hence w_1, \ldots, w_n is a strong elimination ordering of G_B .

Theorem 4. The functions $SimpleToStrong(G, \langle X, Y \rangle)$ and $MakeSets(G, \langle X, Y \rangle)$ can be implemented in O(m) time.

Proof. The analysis and implementation of the functions SimpleToStrong $(G, \langle X, Y \rangle)$ and MakeSets $(G, \langle X, Y \rangle)$ are similar to those of the algorithm for transforming a simple elimination ordering of a strongly chordal graphs into a strong elimination ordering. We refer to [18] for the details. Hence these two functions can be implemented in O(m) time.

Corollary 1. Let G = (A, B, E) be a biconvex bipartite graph with $|A \cup B| = n$ and |E| = m. A strong elimination ordering of G_A (respectively, G_B) can be computed from G in O(n+m) time.

Proof. It follows from Theorems 1, 3, and 4.

3.2 A linear-time algorithm

Let ℓ , d, I_1 be fixed integers and ℓ , d > 0. Let \mathcal{P} be the weight set $\{I_1, I_1 + d, I_1 + 2d, \ldots, I_1 + (\ell - 1) \cdot d\}$. Suppose that G = (A, B, E) is a bipartite graph with a labeling function R which assigns an integer R(v) to each vertex $v \in V(G)$. Let R_A (respectively, R_B) be a labeling function of G which assigns an integer $R_A(v)$ (respectively, $R_B(v)$) to each vertex in G such that $R_A(v) = I_1 \cdot deg_G(v)$ (respectively, $R_B(v) = I_1 \cdot deg_G(v)$) for every $v \in A$ (respectively, $v \in B$), and $R_A(v) = R(v)$ (respectively, $R_B(v) = R(v)$) for every $v \in B$ (respectively, $v \in A$).

Definition 5. An R_A -total dominating function f of a bipartite graph G = (A, B, E) is called an R_A^* -total dominating function of G if $f(v) = I_1 + (\ell - 1) \cdot d$ for every $v \in B$. An R_B -total dominating function g of G is called an R_B^* -total dominating function of G if $g(v) = I_1 + (\ell - 1) \cdot d$ for every $v \in A$.

Lemma 5 shows that a minimum R-total dominating function of a chordal bipartite graph G can be obtained from a minimum R_A^* -total dominating function and a minimum R_B^* -total dominating function of G.

Lemma 5 ([14]). Suppose that G = (A, B, E) is a bipartite graph with a labeling function R as mentioned above. Let f_A (respectively, f_B) be a minimum R_A^* -total (respectively, R_B^* -total) dominating function of G. Let f be a function of G defined by $f(v) = f_A(v)$ for every $v \in A$ and $f(v) = f_B(v)$ for every $v \in B$. Then f is a minimum R-total dominating function of G.

We give the function MRTD($G,\langle X,Y\rangle,R,I_1,\ell,d$) for computing a minimum R_Y^* -dominating function of a biconvex bipartite graph G. The MRTD($G,\langle X,Y\rangle,R,I_1,\ell,d$) takes $G,\langle X,Y\rangle,R,I_1,\ell$, and d as inputs. Input G represents a biconvex bipartite graph, and X and Y are the bipartition of G. Input $\langle X,Y\rangle$ is a biconvex ordering of G. Input G is a labeling function assigning an integer G integer G is a sum of G. Input G is a labeling function assigning an integer G in G in G is assumed to be the set G in G is a minimum G in G

Lemma 6. If the function f initialized by the function $MRTD(G, \langle X, Y \rangle, R, I_1, \ell, d)$ in Steps 6-8 is not an R_Y^* -total dominating function of G, then G has no R-total dominating functions.

```
Function MRTD(G, \langle X, Y \rangle, R, I_1, \ell, d)
 1:
        for every vertex v \in X \cup Y do
 2:
             if v \in Y then R_Y(v) = I_1 \cdot deg_G(v);
 3:
             else R_Y(v) = R(v);
 4:
        end for
 5:
        v_1, \ldots, v_n \leftarrow \mathsf{SimpleToStrong}(G, \langle X, Y \rangle);
 6:
        for i \leftarrow 1 to n do
 7:
             f(v_i) \leftarrow I_1 + (\ell - 1) \cdot d;
 8:
        end for
 9:
        for i \leftarrow 1 to n do
10:
             if R_Y(v_i) > f(N_G(v_i))
11:
             then stop and return the infeasibility of the problem;
13:
        end for
14:
        for i \leftarrow 1 to n do
15:
            if v_i \in Y then
                   M \leftarrow \min\{f(N_G(v)) - R_Y(v) | v \in N_G(v_i)\};
16:
                   f(v_i) \leftarrow \max\{I_1, I_1 + (\lceil \ell - \frac{M}{d} \rceil - 1) \cdot d\};
17:
18:
       end for
19:
       return the function f;
```

Proof. Note that the maximum value in \mathcal{P} is $I_1 + (\ell - 1) \cdot d$. We may assume that $\ell > 1$. The function MRTD $(G, \langle X, Y \rangle, R, I_1, \ell, d)$ in Steps 6-8 assigns the maximum value in \mathcal{P} to all vertices in G. The function f has the largest weight among all R_Y^* -total (respectively, R-total) dominating functions if f is an R_Y^* -total (respectively, R-total) dominating function of G. Since the minimum value in \mathcal{P} is I_1 , $f(N_G(v)) > R_Y(v)$ for every vertex $v \in Y$. If there exists a vertex $v \in X \cup Y$ such that $R_Y(v) > f(N_G(v))$, then $v \in X$ and $R(v) = R_Y(v) > f(N_G(v))$. This implies that the function f is neither an R_Y^* -total dominating function nor an R-total dominating function of G, and thus G has no R-total dominating functions. \square

Lemma 7. The function f returned from Step 19 of the function MRTD(G, $\langle X, Y \rangle$, R, I_1 , ℓ , d) is an R_Y^* -dominating function of G.

Proof. Following Theorem 3, the ordering v_1, \ldots, v_n obtained by Step 5 is a strong elimination ordering of G_Y . By Lemma 6, the function f initialized in Steps 6-8 is an R_Y^* -total dominating function of G if the function does not stop in Step 11. In Steps 14-18, the function MRTD $(G, \langle X, Y \rangle, R, I_1, \ell, d)$ processes vertices in the ordering v_1, v_2, \ldots, v_n to decrease the weight of the function f. In the following, we show that at the end of each iteration of Steps 14-18, the new function f obtained by changing the value of $f(v_i)$ in Step 17 is still an R_Y^* -total dominating function of G.

The function f at the beginning of the first iteration of Steps 14-18

is an R_Y^* -total dominating function initialized in Steps 6-8. We assume that at the beginning of the *i*-th iteration of Steps 14-18, the function f is an R_Y^* -total dominating function of G. Suppose that $v_i \in X$. Then the value of $f(v_i)$ will not be changed and thus $f(v_i) = I_1 + (\ell - 1) \cdot d$. The function f at the end of the *i*-th iteration is the same as the function f at the beginning of the *i*-th iteration. Suppose that $v_i \in Y$. Let $x = \max\{I_1, I_1 + (\lceil \ell - \frac{M}{d} \rceil - 1) \cdot d\}$. Then $x \geq I_1 + (\lceil \ell - \frac{M}{d} \rceil - 1) \cdot d$. We have

$$x \ge I_1 + (\ell - 1 - \frac{M}{d}) \cdot d \Rightarrow M \ge (I_1 + (\ell - 1) \cdot d) - x.$$

Since $M = \min\{f(N_G(v)) - R_Y(v) | v \in N_G(v_i)\}, f(N_G(v)) - R_Y(v) \ge (I_1 + (\ell - 1) \cdot d) - x$ for every vertex $v \in N_G(v_i)$. We have $f((N_G(v) - \{v_i\})) + f(v_i) - (I_1 + (\ell - 1) \cdot d) + x \ge R_Y(v)$ for every vertex $v \in N_G(v_i)$. Note that $f(v_i) = I_1 + (\ell - 1) \cdot d$ before the execution of Step 17. Therefore, the new function f obtained by changing the value of $f(v_i)$ in Step 17 is still an R_Y^* -total dominating function of G. Following the discussion above, we know that the function f returned from Step 19 of the function MRTD $(G, \langle X, Y \rangle, R, I_1, \ell, d)$ is an R_Y^* -total dominating function of G.

Lemma 8. The function f found by the function $MRTD(G, \langle X, Y \rangle, R, I_1, \ell, d)$ is a minimum R_Y^* -total dominating function of G.

Proof. By Lemmas 6 and 7, the function f found by the function MRTD(G, $\langle X, Y \rangle$, R, I_1 , ℓ , d) is an R_Y^* -dominating function of G. In the following, we let $V = X \cup Y$ and show that f is a minimum R_Y^* -total dominating function of G. Among all minimum R_Y^* -total dominating functions of G, we let h be a minimum R_Y^* -total dominating function of G such that the cardinality of $\{v|v\in V, f(v)=h(v)\}$ is maximum. We claim that f(v)=h(v) for every vertex $v\in V$. Assume for contrary that W is a nonempty set of all vertices w with $f(w)\neq h(w)$. Suppose that t is the smallest index such that $v_t\in W$. Obviously, $v_t\in Y$ and $W\subseteq Y$. We consider the following cases.

Case 1: $h(v_t) < f(v_t)$. By the function MRTD $(G, \langle X, Y \rangle, R, I_1, \ell, d)$, $f(v_t) = \max\{I_1, I_1 + (\lceil \ell - \frac{M}{d} \rceil - 1) \cdot d\}$ at the end of the t-th iteration (where an *iteration* here is understood as one iteration of Steps 14-18). We consider the following two cases:

Case 1.1: $f(v_t) = I_1$. Then $h(v_t) < f(v_t) = I_1$ which contradicts the assumption that $h(v_t) \in \mathcal{P}$ since I_1 is the smallest number in \mathcal{P} .

Case 1.2: $f(v_t) = I_1 + (\lceil \ell - \frac{M}{d} \rceil - 1) \cdot d$. Then $h(v_t) \leq f(v_t) - d = I_1 + (\lceil \ell - \frac{M}{d} \rceil - 2) \cdot d$. Let v_{α} be a vertex in $N_G(v_t)$ such that $M = f(N_G(v_{\alpha})) - R_Y(v_{\alpha})$. Note that at the beginning of the t-th iteration, $f(v_t) = I_1 + (\ell - 1) \cdot d$. Therefore, $f(N_G(v_{\alpha}) - \{v_t\}) = M + R_Y(v_{\alpha}) - (I_1 + (\ell - 1) \cdot d)$ before the execution of Step 17 at the t-iteration. Since only the

value of $f(v_t)$ was changed at the t-th iteration, $f(N_G(v_\alpha) - \{v_t\})$ is still equal to $M + R_Y(v_\alpha) - (I_1 + (\ell - 1) \cdot d)$ at the end of t-th iteration.

Note that $h(v_x) = f(v_x)$ for every index x < t. At the end of the t-th iteration, $h(v_x) \le f(v_x) = I_1 + (\ell - 1) \cdot d$ for every index x > t. Then,

$$\begin{array}{ll} h(N_G(v_\alpha)) & \leq & f(N_G(v_\alpha) - \{v_t\}) + h(v_t) \\ & \leq & f(N_G(v_\alpha) - \{v_t\}) + I_1 + (\lceil \ell - \frac{M}{d} \rceil - 2) \cdot d \\ & = & M + R_Y(v_\alpha) - (I_1 + (\ell - 1) \cdot d) + I_1 + (\lceil \ell - \frac{M}{d} \rceil - 2) \cdot d \\ & \leq & M + R_Y(v_\alpha) - (I_1 + (\ell - 1) \cdot d) + (I_1 + ((\ell - \frac{M}{d}) - 1) \cdot d) \\ & = & M + R_Y(v_\alpha)) - (I_1 + (\ell - 1) \cdot d) + (I_1 + (\ell - 1) \cdot d - M) \\ & = & R_Y(v_\alpha) \end{array}$$

Hence $h(N_G(v_\alpha) < R_Y(v_\alpha)$ which contradicts the assumption that h is an R_Y^* -total dominating function.

Case 2: $f(v_t) < h(v_t)$. Let $\mathcal{P} = \{p_1, p_2, \dots, p_\ell\}$ where $p_1 = I_1, p_2 = I_1 + d, \dots, p_\ell = I_1 + (\ell - 1) \cdot d$. We let $f(v_t) = p_i$ and $h(v_t) = p_j$ for $1 \leq i < j \leq \ell$. Let $X' = \{v | v \in N_G(v_t), h(N_G(v)) - p_j + p_i < R_Y(v)\}$. We have $X' \neq \emptyset$. Otherwise, $h(N_G(v)) - p_j + p_i \geq R_Y(v)$ for every $v \in N_G(v_t)$ and there is an R_Y^* -total dominating function g with g(V) < h(V) by setting $g(v_t) = h(v_t) - p_j + p_i = p_i$ and g(v) = h(v) for every vertex $v \in V - \{v_t\}$. It leads to a contradiction to the assumption that h is a minimum R_Y^* -total dominating function.

Note that $h(v_x) = f(v_x)$ for every index x < t. Since $h(N_G(v)) - a_j + a_i < R_Y(v)$ and $f(N_G(v)) \ge R_Y(v)$ for every vertex $v \in X'$, $N_G(v) \cap \{v_x | v_x \in W, t < x, \text{ and } h(v_x) < f(v_x)\} \neq \emptyset$. Let $Y'(v) = N_G(v) \cap \{v_x | v_x \in W, t < x, \text{ and } h(v_x) < f(v_x)\}$ for every vertex $v \in X'$. Clearly $Y'(v) \subseteq Y$ for every vertex $v \in X'$.

Let s be the smallest index of vertices in X'. Let b be the smallest index of $Y'(v_s)$. Note that $X' \subseteq N_G(v_t) \subseteq X$. Since $h(v_t)$, $f(v_t)$, $h(v_b)$, and $f(v_b)$ are in \mathcal{P} , there exist two positive integers α_1 and α_2 such that $h(v_t) = f(v_t) + \alpha_1 \cdot d$ and $f(v_b) = h(v_b) + \alpha_2 \cdot d$. We define a function h' as follows.

- (1) If $\alpha_1 \leq \alpha_2$, $h'(v_t) = h(v_t) \alpha_1 \cdot d = f(v_t)$, $h'(v_b) = h(v_b) + \alpha_1 \cdot d$ and h'(v) = h(v) for every vertex $v \in V \{v_t, v_b\}$.
- (2) If $\alpha_1 > \alpha_2$, $h'(v_t) = h(v_t) \alpha_2 \cdot d$, $h'(v_b) = h(v_b) + \alpha_2 \cdot d = f(v_b)$, and h'(v) = h(v) for every vertex $v \in V \{v_t, v_b\}$.

Clearly, h(V) = h'(V) and $|\{v|v \in V, f(v) = h'(v)\}| \ge |\{v|v \in V, f(v) = h(v)\}| + 1$. We prove $h'(N_G(v)) \ge R_Y(v)$ for every vertex $v \in V$ by showing that $X' \subseteq N_G(v_b)$. Since $v_s \in X'$ and $v_b \in Y'(v_s)$, $v_s \in X$ and $v_t, v_b \in Y$. Apparently $s \ne t$. For $1 \le i \le n$, we let $N_i[v]$ (respectively $N_i^Y(v)$) denote the closed neighborhood of a vertex $v \in V$ in the subgraph of G (respectively, G_Y) induced by $\{v_i, v_{i+1}, \ldots, v_n\}$. For every vertex $v \in V$,

we let $N_i(v) = N_i[v] - \{v\}$ and $N_i^Y(v) = N_i^Y[v] - \{v\}$. We consider the following two cases:

Case 2.1: s < t. Then s < t < b. Following Theorem 3, the ordering v_1, \ldots, v_n obtained by Step 5 of the function MRTD $(G, \langle X, Y \rangle, R, I_1, \ell, d)$ is a strong elimination ordering of G_Y . By definition of the strong elimination ordering, $N_s^Y[v_t] \subseteq N_s^Y[v_b]$. Then $N_s(v_t) = (N_s^Y[v_t] \cap X) \subseteq (N_s^Y[v_b] \cap X) = N_s(v_b)$. Since $X' \subseteq N_s(v_t)$, we have $X' \subseteq N_s(v_b) \subseteq N_G(v_b)$.

Case 2.2: s > t. By definition of the strong elimination ordering, $N_t^Y[v_s] \subseteq N_t^Y[v]$ for every vertex $v \in X'$. Since $v_b \in N_t^Y[v_s]$, $v_b \in N_t^Y[v]$ for every vertex $v \in X'$. Since $v_b \in Y$, $v_b \notin X$. Therefore, $X' \subseteq N_t^Y[v_b] \cap X = N_t(v_b) \subseteq N_G(v_b)$.

Hence, h' is a minimum R_Y^* -total dominating function such that the cardinality of $\{v|v \in V, f(v) = h'(v)\}$ is larger than that of $\{v|v \in V, f(v) = h(v)\}$ which contradicts the assumption that the cardinality of $\{v|v \in V, f(v) = h(v)\}$ is maximum.

Following the discussion above, W does not exist. Hence, f is a minimum R_V^* -total dominating function of G.

Lemma 9. The function MRTD $(G, \langle X, Y \rangle, R, I_1, \ell, d)$ finds a minimum R_Y^* -total dominating function of a biconvex bipartite graph G = (X, Y, E) in O(n+m) time.

Proof. Steps 1-4 can be done in $O(\sum_{v \in X \cup Y} (deg_G(v) + 1)) = O(n + m)$ time. By Theorem 4, Step 5 can be done in O(m) time. The initialization of a function f in Steps 6-8 can be done in O(n) time.

For each vertex $v_i \in X \cup Y$, we can use $d(v_i)$ to keep track of $f(N_G(v_i))$ and use $m(v_i)$ to keep track of $d(v_i) - R_Y(v_i)$. Following the initialization of a function f in Steps 6-8, we initialize $d(v_i) = (I_1 + (\ell - 1) \cdot d) \cdot deg_G(v_i)$ and $m(v_i) = d(v_i) - R_Y(v_i)$. The initialization of $d(v_i)$ and $m(v_i)$ can be done in $O(deg_G(v_i) + 1)$ time.

While $f(v_i)$ is replaced by a number $x \in \mathcal{P}$, d(v) and m(v) are respectively decreased by $(I_1 + (\ell - 1) \cdot d) - x$ for every vertex $v \in N_G(v_i)$. This can be done in $O(deg_G(v_i) + 1)$ time. At *i*-th iteration, $1 \le i \le n$, M can be computed in $O(deg_G(v_i))$ time by verifying m(v) for every vertex $v \in N_G(v_i)$. Following the discussion above, the running time of the function $\mathsf{MRTD}(G, \langle X, Y \rangle, R, I_1, \ell, d)$ is $O(\sum_{v_i \in X \cup Y} (deg_G(v_i) + 1)) = O(n + m)$. \square

Theorem 5. Given a biconvex bipartite graph G = (A, B, E) with $|A \cup B| = n$ and |E| = m, the R-total domination problem can be solved in O(n + m) time.

Proof. By Lemma 8, a function f_A (respectively, f_B) obtained by MRTD(G, $\langle B, A \rangle$, R, I_1 , ℓ , d) (respectively, MRTD(G, $\langle A, B \rangle$, R, I_1 , ℓ , d)) is a minimum R_A^* -total (respectively, R_B^* -total) dominating function of G. Follow-

ing Lemmas 5 and 9, the R-total domination problem is linear-time solvable for a biconvex bipartite graph G.

4 NP-completeness results

In this section, we show that the signed (respectively, minus) total domination problem is NP-complete on planar bipartite graphs of maximum degree 3 (respectively, maximum degree 4). Before presenting the NP-completeness results, we restate the vertex cover, total domination, signed total domination, and minus total domination problems as decision problems.

- (1) The vertex cover problem: Instance: A graph G = (V, E) and a positive integer K. Question: Is $\tau(G) \leq K$?
- (2) The total domination problem: Instance: A graph G = (V, E) and an integer K. Question: Is $\gamma_t(G) \leq K$?
- (3) The signed total domination problem: Instance: A graph G = (V, E) and an integer K. Question: Is $\gamma_s^s(G) \leq K$?
- (4) The minus total domination problem: Instance: A graph G = (V, E) and an integer K. Question: Is $\gamma_t^-(G) \leq K$?

Theorem 6. The total domination problem is NP-complete on planar bipartite graphs of maximum degree 3.

Proof. The total domination problem on planar bipartite graphs of maximum degree 3 is clearly in NP. It is known that vertex cover problem is NP-complete on planar graphs of maximum degree 3 [5, 6]. In the following, we show the NP-completeness of the total domination problem on planar bipartite graphs of maximum degree 3 by reducing the vertex cover problem on planar graphs of maximum degree 3 to it in polynomial time.

Let G = (V, E) be a planar graph of maximum degree 3. Let $E = \{e_1, e_2, \ldots, e_m\}$. Assume that $e_i = (u_i, v_i)$ for $1 \le i \le m$. We construct the graph H using the following steps:

- (1) Let $V(H) = V \cup W$, where $W = \{w_{i,j} \mid 1 \le i \le m \text{ and } 1 \le j \le 2\}$.
- (2) Let $E_1 = \{(u_i, w_{i,1}), (w_{i,1}, v_i) \mid 1 \leq i \leq m\}$. In other words, we replace each edge e_i by two edges $(u_i, w_{i,1})$ and $(w_{i,1}, v_i)$ for $1 \leq i \leq m$.

(3) Let
$$E(H) = E_1 \cup E_2$$
, where $E_2 = \{(w_{i,1}, w_{i,2}) \mid 1 \le i \le m\}$.

It is clear that the graph H can be constructed from G in polynomial time and that H is a planar bipartite graph of maximum degree 3.

Claim 1.
$$\gamma_t(H) = \tau(G) + m$$
.

Proof. Let $W_1 = \{w_{i,1} \mid 1 \leq i \leq m\}$ and $W_2 = \{w_{i,2} \mid 1 \leq i \leq m\}$. Suppose that S is a vertex cover of G of $\tau(G)$ vertices. Let $D = S \cup W_1$. It can be easily verified that D is a total dominating set of H. We have $\gamma_t(H) \leq \tau(G) + m$.

Conversely, let D be a minimum total dominating set of H. Necessarily, D contains all vertices in W_1 . Suppose that there is a vertex $w_{i,2} \in W_2$ such that $w_{i,2} \in D$. Then, D contains at most one vertex of u_i and v_i . Otherwise, D would contain them both. The set $D' = (D - \{w_{i,2}\})$ would be a total dominating set of H with |D'| < |D|. However, this contradicts the assumption that D is a minimum total dominating set of H. We may assume that $u_i \notin D$. The set $D' = (D - \{w_{i,2}\}) \cup \{u_i\}$ is still a minimum total dominating set of H. Hence, there exists a minimum total dominating set \hat{D} of H such that $\hat{D} \cap W_2 = \emptyset$ and W_1 is a subset of \hat{D} . Let w be a vertex in W_1 . Let $u, v \in N_H(w)$ and $(u, v) \in E$. Since $\hat{D} \cap W_2 = \emptyset$, at least one vertex of u and v is in \hat{D} . Then $\hat{D} - W_1$ is a vertex cover of G. We have $\tau(G) \leq \gamma_t(H) - m$. Following the discussion above, $\gamma_t(H) = \tau(G) + m$.

The above claim implies that for a positive integer K, $\tau(G) \leq K$ if and only if $\gamma_t(H) \leq K + m$.

Theorem 7. The minus total domination problem is NP-complete on planar bipartite graphs of maximum degree 4.

Proof. The minus total domination problem on planar bipartite graphs of maximum degree 3 is clearly in NP. We have shown in Theorem 6 that the total domination problem is NP-complete on planar bipartite graphs of maximum degree 3. In the following we show the NP-completeness of the minus total domination problem on planar bipartite graphs of maximum degree 4 by reducing the total domination problem on planar bipartite graphs of maximum degree 3 to it in polynomial time.

Given a planar bipartite graph G of maximum degree 3, we construct the graph H by adding a path of length 4, say $v-v_1-v_2-v_3-v_4$, to each vertex $v \in V(G)$. That is, $V(H) = V(G) \cup (\bigcup_{v \in V} \{v_1, v_2, v_3, v_4\})$ and $E(H) = E(G) \cup (\bigcup_{v \in V} \{(v, v_1), (v_1, v_2), (v_2, v_3), (v_3, v_4)\})$. It can be easily verified that H is a planar bipartite graph of maximum degree 4. Let |V(G)| = n. By the arguments similar to those for proving the NP-completeness of the minus total domination problem on bipartite graphs in [7], we have the following claim.

Claim 2.
$$\gamma_t^-(H) = \gamma_t(H) = \gamma_t(G) + 2n$$

The claim implies that for a positive integer K, $\gamma_t(G) \leq K$ if and only if $\gamma_t^-(H) \leq K + 2n$.

Theorem 8. The signed total domination problem is NP-complete on planar bipartite graphs of maximum degree 3.

Proof. The signed total domination problem on planar bipartite graphs of maximum degree 3 is clearly in NP. It is known that vertex cover problem is NP-complete on planar graphs of maximum degree 3 [5, 6]. In the following, we show the NP-completeness of the signed total domination problem on planar bipartite graphs of maximum degree 3 by reducing the vertex cover problem on planar graphs of maximum degree 3 to it in polynomial time.

Let G = (V, E) be a planar graph of maximum degree 3. Let $E = \{e_1, e_2, \ldots, e_m\}$ and let $e_i = (u_i, v_i)$ for $1 \le i \le m$. We construct the graph H using the following steps:

- (1) Let $V(H) = V \cup W$, where $W = \{w_{i,j} \mid 1 \le i \le m \text{ and } 1 \le j \le 3\}$.
- (2) Let $E_1 = \{(u_i, w_{i,1}), (w_{i,1}, v_i) \mid 1 \leq i \leq m\}$. In other words, we replace each edge e_i by two edges $(u_i, w_{i,1})$ and $(w_{i,1}, v_i)$ for $1 \leq i \leq m$.
- (3) Let $E(H) = E_1 \cup E_2$, where $E_2 = \{(w_{i,1}, w_{i,2}), (w_{i,2}, w_{i,3}) \mid 1 \leq i \leq m\}$.

It is clear that H can be constructed from G in polynomial time and that H is a planar bipartite graph of maximum degree 3. Let |V| = n.

Claim 3.
$$\gamma_t^s(H) = 3m - n + 2\tau(G)$$
.

Proof. Let S be a vertex cover of G of $\tau(G)$ vertices. Let $h: V(H) \to \{-1,1\}$ be a function of H such that h(v)=1 if $v \in S \cup W$ and h(v)=-1 if $v \in V(H)-(S \cup W)$. It can be easily verified that h is a signed total dominating function of H. We have $\gamma_t^s(H) \leq (\tau(G)-(n-\tau(G)))+3m=3m-n+2\tau(G)$.

Conversely, let h be a minimum signed total dominating function of H. For $1 \leq i \leq m$ and $1 \leq j \leq 3$, we now consider the vertices u_i , v_i , and $w_{i,j}$. Necessarily, $h(w_{i,2}) = 1$. Note that $N_H(w_{i,2}) = \{w_{i,1}, w_{i,3}\}$. Since $N_H(w_{i,2}) \geq 1$, the function h cannot assign the value -1 to $w_{i,1}$ and $w_{i,3}$. Therefore, $h(w_{i,1}) = h(w_{i,2}) = h(w_{i,3}) = 1$. Note that $N_H(w_{i,1}) = \{w_{i,2}, u_i, v_i\}$. Since $N_H(w_{i,1}) \geq 1$ and $h(w_{i,2}) = 1$, the function h assigns the value -1 to at most one vertex of u_i and v_i . In other words, h assigns the value 1 to at least one vertex of u_i and v_i . Hence, the set $\{v \in V \mid h(v) = 1\}$ is a vertex cover of G. Let $K' = |\{v \in V \mid h(v) = 1\}|$. The weight of h

is $\gamma_t^s(H)=3m+K'+(n-K')=3m-n+2K'$. We have $\tau(G)\leq K'=\frac{\gamma_t^s(H)-(3m-n)}{2}$. Following the discussion above, $\gamma_t^s(H)=3m-n+2\tau(G)$. \square

The above claim implies that for a positive integer K, $\tau(G) \leq K$ if and only if $\gamma_t^s(H) \leq 3m - n + 2K$.

References

- [1] A. Brandstädt, F.F. Dragan, V.D. Chepoi, and V. Voloshin, Dually chordal graphs, SIAM J. Discrete Math., 11 (1998) 437-455.
- [2] A. Brandstädt, V.B. Le, and J.P. Spinrad, Graph Classes: A Survey, SIAM Monographs on Discrete Mathematics and Applications, Philadelphia 1999.
- [3] A. Brandstädt, J.P. Spinrad, and L. Stewart, Bipartite permutation graphs are bipartite tolerance graphs, Congr. Numer. 58 (1987) 165– 174.
- [4] M. Farber, Characterizations of strongly chordal graphs, Discrete Math., 43 (1983) 173-189.
- [5] M.R. Garey and D.S. Johnson The rectilinear Steiner tree problem is NP-complete. SIAM Journal on Applied Mathematics, 32 (1977) 826-834.
- [6] M.R. Garey, D.S. Johnson, and L. Stockmeyer, Some simplified NP-complete graph problems, Theoretical Computer Science, 1 (1976) 237–267.
- [7] L. Harris, J.H. Hattingh, The algorithmic complexity of certain functional variants of total domination in graphs, Australas. J. Combin., 29 (2004) 143-156.
- [8] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [9] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
- [10] M.A. Henning, Signed total domination in graphs, Discrete Math., 278 (2004) 109–125.
- [11] M.A. Henning, A survey of selected recent results on total domination in graphs, Discrete Math., 309 (2009) 32–63.
- [12] L.Y. Kang, E.F. Shan, L. Caccett, Total minus domination in k-partite graphs, Discrete Math., 306 (2006) 1771–1775.
- [13] C.M. Lee and M.S. Chang, Variations of Y-dominating functions on graphs, Discrete Math., 308 (2008) 4185-4204.
- [14] C.M. Lee, On the complexity of signed and minus total domination in graphs, Inform. Process. Lett., 109 (2009) 1177-1181.

- [15] W. Lipski, Jr., and F.P. Preparata, Efficient algorithms for finding maximum matchings in convex bipartite graphs and related problems, Acta Inform., 15 (1981) 329-346.
- [16] R. Paige and R.E. Tarjan, Three partition refinement algorithms, SIAM J. Comput., 16 (1987) 973-989.
- [17] D.J. Rose, Triangulated graphs and the elimination process, J. Math. Anal. Appl., 32 (1970) 597-609.
- [18] J. Sawada and J.P. Spinrad, From a simple elimination ordering to a strong elimination ordering in linear time, Inform. Process. Lett., 86 (2003) 299-302.
- [19] J.P. Spinrad, Doubly Lexical Ordering of Dense 0-1 Matrices, Inform. Process. Lett., 45 (1993) 229-235.
- [20] J.P. Spinrad, A. Brandstädt, L. Stewart, Bipartite permutation graph, Discrete Appl. Math., 18 (1987) 279–292.
- [21] E. Shan and T.C.E. Cheng, Remarks on the minus (signed) total domination in graphs, Discrete Math., 308 (2008) 3373-3380.
- [22] E. Shan and T.C.E. Cheng, Upper bounds on the upper signed total domination number of graphs, Discrete Appl. Math., 157 (2009) 1098– 1103.
- [23] H.C. Wang, and E.F. Shan, Upper minus total domination of a 5-regular graph, Ars Combin., 91 (2009) 383-389.
- [24] H. Yan, X.Q. Yang, E.F. Shan, Upper minus total domination in small-degree regular graphs, Discrete Math., 307 (2007) 2453-2463.
- [25] B. Zelinka, Signed total domination number of a graph, Czechoslovak Math. J. 51 (2001) 225–229.