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Abstract

The competition hypergraph CH(D) of a digraph D is the hypergraph
such that the vertex set is the same as D and e C V(D) is a hyperedge if and
only if e contains at least 2 vertices and e coincides with the in-neighborhood
of some vertex v in the digraph D. Any hypergraph with sufficiently many
isolated vertices is the competition hypergraph of an acyclic digraph. The
hypercompetition number hk(H) of a hypergraph H is defined to be the
smallest number of such isolated vertices.

In this paper, we study the hypercompetition numbers of hypergraphs.
First, we give two lower bounds for the hypercompetition numbers which
hold for any hypergraphs. And then, by using these results, we give the
exact hypercompetition numbers for some family of uniform hypergraphs.
In particular, we give the exact value of the hypercompetition number of a
connected graph.
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1 Introduction

All hypergraphs considered in this paper may have isolated vertices but have no
loops, where a vertex v in a hypergraph is called isolated if v is not contained in
any hyperedge in the hypergraph, and a hyperedge e in a hypergraph is called a
loop if e consists of exactly one vertex. So all the hyperedges of hypergraphs, in
this paper, have at least two vertices. If (z,) is an arc of a digraph D, then z is
called an in-neighbor of y in D and y is called an out-neighbor of z in D. The
in-neighborhood N, (v) of a vertex v in a digraph D is the set of in-neighbors of
vin D.

The notion of a competition graph was introduced by Cohen [2] in 1968 and
has arisen from ecology. The competition graph C(D) of a digraph D is the
graph which has the same vertex set as D and has an edge between vertices u
and v if and only if there exists a common out-neighbor of v and v in D. Any
graph together with sufficiently many isolated vertices is the competition graph of
an acyclic digraph. Roberts [6] defined the competition number k(G) of a graph
G to be the minimum number k such that G together with k isolated vertices is
the competition graph of an acyclic digraph. Since Cohen introduced the notion
of a competition graph, various variations have been defined and studied by many
authors (see the survey articles by Kim [3] and Lundgren [4]).

The notion of a competition hypergraph was introduced by Sonntag and Te-
ichert [7] as a variant of a competition graph. The competition hypergraph CH(D)
of a digraph D is the hypergraph such that the vertex set is the same as D and
e C V(D) is a hyperedge if and only if e contains at least 2 vertices and e coin-
cides with the in-neighborhood of some vertex v in the digraph D (see [7, 8, 9, 10]
for studies on competition hypergraphs of digraphs). Any hypergraph with suf-
ficiently many isolated vertices is the competition hypergraph of an acyclic di-
graph. The hypercompetition number hk(H) of a hypergraph H is defined to be
the smallest number of such isolated vertices. Though Sonntag and Teichert called
it just the competition number of H and denoted it by k(*), we use the terminol-
ogy “hypercompetition number” and the notation hk(?) to avoid confusion in the
case where we regard graphs as hypergraphs. A hypergraph H is called a graph if
le| = 2 for any hyperedge e € E(H). The following example shows the difference
between the (ordinary) competition number of a graph and the hypercompetition
number of a graph.

Example. Let G be a triangle, i.e.,
V(g) = {vh ’U2,’U3}, E(g) = {{vll vz}, {01303}1 {'UZ, ‘03}}.

Since the digraph D defined by V(D) = V(G)U{z} and A(D) = {(1, 2), (v2, 2),
(vs, z)} is acyclic and its competition graph C(D) is the graph G with one isolated
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vertex z, the competition number k(G) of G is at most one. But the hypercompe-
tition number hk(G) of G is equal to 2, which follows from Theorem 2.6.

Opsut [S] showed that the computation of the competition number of an ar-
bitrary graph is an NP-hard problem. On the other hand, we can show that the
hypercompetition number of a connected graph is computed easily.

In this paper, we study the hypercompetition numbers of hypergraphs. First
we give two lower bounds for the hypercompetition numbers which hold for any
hypergraph, and then we give several formulas for the hypercompetition numbers
for some families of uniform hypergraphs.

2 Main results

We introduce notation and terminologies used in this section. For a (hyper)graph
'H and a finite set I, we denote by H U I the (hyper)graph such that V(HU I) =
V(H)UI and E(HU I) = E(H). The degree degy(v) of a vertex v in a
hypergraph H is defined to be the number of hyperedges containing the vertex v.
We say two vertices u and v are adjacent in H if there is a hyperedge e in H such
that {u,v} Ce.

A hypergraph H is called r-uniform if each hyperedge of the hypergraph H
has the same size r, where 2 < r < |V(H)|. Note that 2-uniform hypergraphs are
graphs.

A sequence vov; - - - Uy of distinct vertices of a hypergraph H is called a path
if there exist k distinct hyperedges e, ez, . . ., €; such that e; contains {v;_y, v;}
foreach 1 < i < k. A sequence vpv; - - - U, Of vertices of a hypergraph H with
vp = vy is called a cycle if there exist k distinct hyperedges e, e2, .. ., ex such
that e; contains {v;_;,v;} for each 1 < ¢ < k. We say that H is connected if
there exists a path between any two vertices of H. A connected component of H
is a maximal connected subhypergraph of H.

For a digraph D, an ordering vy, vs, ..., v, of the vertices of D is called an
acyclic ordering of D if (vs,v;) € A(D) implies ¢ < j. It is well-known that
a digraph D is acyclic if and only if there exists an acyclic ordering of D. For
simplicity, we denote a set {(z,v) |z € S} by S — v.

2.1 Two lower bounds for the hypercompetition number of a
hypergraph

In this section, we give two lower bounds for the hypercompetition numbers of
hypergraphs. Opsut [5] showed the following two lower bounds for competition
numbers:

(LB1) For any graph G, k(G) > 6.(G) - |V(G)| + 2;
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(LB2) For any graph G, k(G) > minyev(g) d(Ne(v)),

where 0.(G) is the smallest number of cliques in G that cover the edges of G,
0(H) is the smallest number of cliques in a graph H that cover the vertices of H
and Ng(v) := {u € V(G) | wv € E(G)} is the open neighborhood of a vertex v
in the graph G.

Our first lower bound for hypercompetition numbers, which corresponds to
(LB1), is as follows:

Theorem 2.1. Let H be a hypergraph. Then

hk(H) 2 |[E(H)| — [V(H)| + oo le].
Proof. Let n and k be the number of vertices in a hypergraph H and the hy-
percompetition number hk(H) of the hypergraph H, respectively. Then there
exists an acyclic digraph D such that CH(D) = H U {z3,...,2x}. Further-
more, D can be chosen such that v;,vs,...,¥n, 21, ..., 2k is an acyclic or-
dering of D. Let ! be the smallest index such that {v;,v2,...,v;} contains a
hyperedge of H. If there is a vertex v; in the set {v1,v2,..., v} such that v;
has at least two in-neighbors in D, then N (v;) is a hyperedge of H and so
{v1,...,vj—1} contains a hyperedge of H, which contradicts the choice of I.
Therefore, [N (v)| < 1 for any v € {1, v,...,v}. Then all in-neighborhoods
of size at least 2 are in-neighborhoods of vertices in V(D) \ {vy,va,...,u}. So
n+k—12>|E(H)|ie., k2 |E(H)| — n+1. Since minee g, |e| < I, we have
|E(H)] — n + minepm) le] < |E(H)| —-n+ 1 < k. |

We present our second lower bound for hypercompetition numbers, which
corresponds to (LB2).

Theorem 2.2. Let H be a hypergraph. Then
hk(H) > min d .
(H) 2 min degs(v)
Proof. Let n and %k be the number of vertices in a hypergraph H and the hy-

percompetition number hk(H) of the hypergraph H, respectively. Let m :=
min,ev () degy (v). Then there exists an acyclic digraph D such that CH(D) =

HU{z,..., 2k}, and so there is an acyclic ordering v1,v2,...,Vn, 21, .., 2k Of
D. Since v, is contained in at least m hyperedges, v, has at least m out-neighbors
inD. Thus m < k. a

For a hypergraph H with no isolated vertices, min,ev (7;) degy(v) > 1 and
so the following corollary holds (this is also justified by the fact that any acyclic
digraph has a vertex which has no out-neighbors).

Corollary 2.3. For a hypergraph H with no isolated vertex, hk(H) > 1.
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2.2 The hypercompetition numbers of uniform hypergraphs

In this subsection, we give the exact values of the hypercompetition numbers of
several kinds of uniform hypergraphs by using results in Subsection 2.1. Roberts
[6] showed the following results for the (ordinary) competition numbers of graphs:

(R1) For a triangle free connected graph G, k(G) = |E(G)| - |V(G)| + 2;

(R2) For a chordal graph G, k(G) < 1, and the equality holds if and only if G
has no isolated vertex.

The first result (R1) gives a graph family which satisfies the equality of (LB1) and
the second result (R2) gives a graph family which satisfies the equality of (LB2).
In this section, we found two hypergraph families that correspond to (R1) and
(R2), respectively.

An ordering vy, vy, ...,V of the vertices of an 7-uniform hypergraph H is
called an elimination ordering of H if, for each r < i < n, the vertex v; has
degree one in the subhypergraph of H induced by {v,,...,v;}. Note that if an
r-uniform hypergraph H has an elimination ordering then |E(H)| =n —r + 1.

Lemma 2.4. Let n and r be positive integers with r < n and H be a connected
r-uniform hypergraph with n vertices which has an elimination ordering. Then

hk(H) = 1.

Proof. Let n and t be the numbers of vertices and hyperedges in a hypergraph
H, respectively. Let v;,vs,...,v, be an elimination ordering of . For each
r < ¢ < n, let e; be the unique hyperedge containing v; in the subhypergraph of
H induced by {v1,...,v;}. We define a digraph D by

V(D) = V(H)u{z},
n—1

A(D) := ( GICE v.-+1)) U (en — 2).
t=r

Then we can check that CH(D) = H U {z} and that D is acyclic. Thus hk(H) <
1. By Corollary 2.3, we have hk(H) > 1. Hence the theorem holds. O

The following theorem gives a family of hypergraphs whose hypercompetition
numbers satisfy the equality of Theorem 2.1, that corresponds to (R1).

Theorem 2.5. Let n and r be positive integers such that r < n, and H be a
connected r-uniform hypergraph with n vertices. Suppose that H has a spanning
subhypergraph Hy which has an elimination ordering. Then

hk(H) = |E(H)| = [V(H)| + .
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Proof. Let n and ¢ be the number of vertices and hyperedges in a hypergraph
H, respectively. By Lemma 2.4, there exists an acyclic digraph Dy such that
CH(Do) = Ho U {z1}. If E(H) \ E(Ho) = 0, then |[E(H)| = |E(Ho)| =
n—r+1,i.e., hk(H) = 1 and the theorem holds. Suppose that E(H)\ E(Ho) # 0.
Let E(H) \ E(Ho) := {e1,€2,...,€t—ntr—1}. We define a digraph D by

V(D) = V(H)U{z1,22,--.,2zt—ntrh
t—n+r-1
A(Do)u( U (ei_'zi+l))'
t=1

Then we can check that CH(D) = HU{z, z3,.. ., Zt—n+-} and that D is acyclic.
Thus hk(H) <t — n + 7. By Theorem 2.1, we have hk(H) >t — n + r. Hence
the theorem holds. (]

A(D)

Let us consider 2-uniform hypergraphs, i.e., graphs. Opsut [5) showed that
the computation of the competition number of an arbitrary graph is an NP-hard
problem. On the other hand, we can show that the hypercompetition number of a
graph is computed easily from Theorem 2.5.

Corollary 2.6. For a connected graph G,
hk(G) = |E(G)| - V()| +2.

Proof. Let|V(G)| = n, and T be a spanning tree of G. Let vy, be a pendent vertex
of T', and then take a pendent vertex v, of T — v,. Foreach2 < i <n -1, we
take a pendent vertex v; of T — {v;41,...,vn}. Then the ordering v1,v2,...,0n
of the vertices of G is an elimination ordering of H. By Theorem 2.5, hk(G) =
|E(G)] - V(9] +2. o

A complete r-uniform hypergraph K(n, r) is the hypergraph with |V (H)| = n
and E(H) = (V), where (V{") denotes the family of all r-subsets of V().
We can obtain the hypercompetition numbers of complete uniform hypergraphs
as a corollary of Theorem 2.5.

Corollary 2.7. For2 < r < n, it holds that
Rk(K(n,r)) = (:) —n+r.

Proof. Let2 < r < n. By Theorem 2.1, we have hk(K(n,7)) = (F) —n+r.
If r = n, since KC(n, n) is the only n-uniform hypergraph with n vertices, then it
trivially holds that hk(K(n,n)) = 1 = (7) — n + n. Suppose that 7 < n. Let
V(K(n,r)) = {v1,v2,...,vs}. Then the spanning subgraph Ho with hyperedge
set {{vi, Vit1,. .+, Vigr—1} € E(K(n,7)) | 1 £ ¢ < n—r+1} has an elimination
ordering v1,v2, . .., Un. By Theorem 2.5, we have hk(K(n,r)) = () —n + 7.
Hence, the corollary holds.
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Next, we present a family of hypergraphs whose hypercompetition numbers
satisfy the equality of the inequality in Theorem 2.2. From (R2), it is well known
that since a forest with no isolated vertex is a chordal graph, its (ordinary) compe-
tition number is exactly one. We generalize this result to the case for hypergraphs
by showing that for an r-uniform hypergraph H with no isolated vertices and no
cycles, hk(H) = 1. We need the following lemma.

Lemma 2.8. Let H be a hypergraph. If the number of vertices of degree one in
H is at least |E(H)| — 1, then hk(H) < 1 and the equality holds if and only if H
has no isolated vertex.

Proof. Let n and t be the number of vertices and hyperedges in a hypergraph
H, respectively. Let Q be the set of vertices. of degree one in H and let ¢ :=
|@|. Label the hyperedges of H as {ej,es,...,e;:} so that {e},...,e} is the
set of distinct hyperedges containing a vertex of Q. Since each vertex in Q is
contained in a unique hyperedge of H, we have ! < g. Label the vertices of H as
{v1,v2,...,vn}, where {vy,...,v,} are the vertices of Q and {v,,..., v} were
chosen from @ such that v; € e; for 1 < i < I. Now we define a digraph D by

V(D):=V(H)U{vw} and A(D):=J(e: — vi-1).

i=1

By definition, E(CH(D)) = {e1,...,et}, 50 CH(D) = H U {vo}. It remains to
show that D is acyclic. We prove it by showing that vy,,...,v;, v is an acyclic
ordering of D. Consider an arc (z,v;—1) where € e;. If 1 < i < [ then
e; € {vi,v141,...,vn}, and 50 £ = v; with j > i — 1. On the other hand, if
i > 1, then e; C {vg41,...,vn}, and again z = v; with j > i — 1. So all the arcs
in D are of the form (vj,v;—1) with j > ¢ — 1, and this shows that v,,, ..., v, vg
is an acyclic ordering of D and therefore D is acyclic.

For determining when hk(H) = 1, suppose that H has an isolated vertex.
Then the hypergraph H; obtained from H by deleting the set I of isolated vertices
of H also has g vertices of degree one and ¢ hyperedges. The above argument
shows that hk(Ho) < 1. Thus hk(H) = hk(HoUI) = 0. On the other hand, if H
has no isolated vertices, then hk() = 1 by the above argument and Corollary 2.3.
This proves the lemma. a

The following lemma is well-known.

Lemma 2.9 ((1, p.392]). Let H be a hypergraph and p be the number of connected
components of H. Then 'H has no cycle if and only if

> (lel=1)=|V(H)| -p.

ecE(H)
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Now we will show that for an r-uniform hypergraph H with no isolated ver-
tices and no cycles, hk(H) = 1.

Theorem 2.10. Let r be a positive integer with r > 3, and H be an r-uniform
hypergraph with no isolated vertex. If H has no cycle, then hk(H) = 1.

Proof. We prove by induction on the number of connected components of H.
Suppose that  is a connected hypergraph. Let n and ¢ be the numbers of vertices
and hyperedges in H, respectively. Since |e| = r for any e € E(H) and H has no
cycle, we obtain by Lemma 2.9 that

n=(r—1)3¢t+1. )
Also we have
Y degy(v)= D le|=rt. @
vEV(H) e€E(H)

Since H is connected, degy(v) > 1 for any v € V/(H). Let g be the number of
vertices of degree one in H. Then,

Y degy(v)22(n-g)+g=2n-g. 3
veEV(H)

By (1), (2), and (3), we have
g>2n—rt=2rt—t+1)—-rt=(r—2)t+2>¢t+2.

By Lemma 2.8, it holds that hk(H) = 1.

Suppose that the statement holds for hypergraphs with p connected compo-
nents where p > 1. Now suppose that H has p 4 1 connected components. Take
a connected component ; of H. Let H, be the union of the connected com-
ponents of H other than ;. Then H2 has p components and it has no isolated
vertex and no cycle. By induction hypothesis, we have hk(Hz) = 1. Then, there
exists an acyclic digraph D, (resp. Dj) such that CH(D,) = H1 U {21} (resp.
CH(D3) = HaU{22}), where 2, (resp. 22) is a new isolated vertex. Without loss
of generality, we may assume that N, (22) = 0. Since D, is acyclic, there exists
a vertex v in D; which has no in-neighbor in D;. We define a digraph D by

V(D) = V(H)U{a},
A(D) A(D1) U (A(D2) \ (Np,(22) = 22)) U (Np,(22) — v).

Then D is acyclic and CH(D) = H U {z;} and so hk(H) < 1. Since H has no
isolated vertex, we have hk(H) > 1 by Corollary 2.3. Hence hk(H) = 1. O
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