COMPOSITION OPERATORS ON THE FOCK SPACE OF
VECTOR-VALUED ANALYTIC FUNCTIONS

SEI-ICHIRO UEKI

ABSTRACT. In this note, we study some properties of the composi-
tion operator C, on the Fock space .‘F,’( of X-valued analytic func-
tions in C. We give a necessary and sufficient condition for a bounded
operator on .7-'} to be a composition operator and for the adjoint op-
erator of a composition operator to be also a composition operator
on F%. We also give characterizations of normal, unitary and co-
isometric composition operators on .F'j"(

1. INTRODUCTION

Throughout this paper, let X be a separable Hilbert space with an in-
ner product {-,-)x and Hx(C) denote the space of all X-valued analytic
functions defined in C. For proerties of X-valued analytic functions, see
[4). The X -valued Fock space F% over C is defined as follows:

7= {1 € Hx(©) U1 1= 5 [ WP dm(e) < oo,

where || - |lx = \/{:,-)x and dm denotes the two-dimensional Lebesgue
measure. F% is a Hilbert space with inner product

(£,9)= 55 [ (1(2). 9@ xeHoP dm(a).

Recently Carswell, MacCluer and Schuster [1} or Guo and Izuchi [2]
studied the composition operator on the scalar-valued Fock space. Stevié
[6] and the author [7, 8, 9, 10] have considered the weighted composition
operator on the Fock spaces and related spaces. In studies on these type of
operators, the main subject is to describe operator theoretic properties of
them in terms of function theoretic properties of their including functions.
Some authors have studied composition operators on vector-valued analytic
function spaces defined on the unit disk in C ([3, 5]). In [5], Sharma and
Bhanu gave a necessary and sufficient condition for a bounded operator on
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the vector-valued Hardy space to be a composition operator. They also
characterized the holomorphic self map of the unit disk that the adjoint
operator of a composition operator is also a composition operator. The
purpose of this note is to consider the problems of Sharma and Bhanu
about a composition operator on F%.

2. PRELIMINARIES

Let Z, = {0,1,2,...} and {en : n € Z; } be an orthonormal basis for
X. For m,n € Z,, we define the vector-valued functions e : C — X as

follows
zm

el = VT

Proposition 1. {ey . :m,n € Z,} is an orthonormal basis for F%.

€n (z €C).

Proof. Since {e, : n € Z4} is an orthonormal basis for X, we see that

{em,ns€k,t)

1 1 mek _il"'zd .
— — fn=1,
Tt Je T dma) dn=ho
0 ifn#l,
for m,n, k,l € Z,.. When n =, a polar coordinate shows that
—————1———i / szke-ilzladm(z)
2m+kT(m + 1)T'(k + 1) 27 Jc
1 ° 2m+1 -grz — . _
_ 2"‘I‘(m+1)_/; r e"iNdr=1 ifm=k, @
0 ifm # k.

By (1) and (2), we see that {emn : m,n € Z;} is an orthonormal subset
of F%. In order to prove that {em ., : m,n € Z;} is a basis for F%, we
suppose that f € % and (f,en,m) = 0. Thus,

1/ -31=P -
o /c T V@ exeH dm() =0 @)

Since {z™//2™T'(m + 1) : m € Z, } is an orthonormal basis for the (scalar-
valued) Fock space 2 and (f(-),en)x is in F2, we have (f(-),en)x =0in
C. Moreover {e, : n € Z,.} is an orthonormal basis for X, and so f = 0.
That is, {€mn : m,n € Z,} is a basis for F%. 0

Fix z € C. Let L(f)(w) = e'#"‘""ﬂiﬂf(w —2) for all f € F% and
w € C. By using a change of variables, we see that I, is a unitary operator
on F% and I, ™! = I_,. These proerties and the subharmonicity of || f(-}|%

show the inequality || f(z)]lx < el [I]l (see e.g.[7]). This implies that the
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point evaluation is bounded on F%. For each z € C and j € Z,, we
define E(f) = (f(2),e;)x for all f € F%. The boundedness of the point
evaluation shows that EYJ is a bounded lmea.r functional on ¥%. By Riesz’s
. representation theorem, "there exists Ki € F% such that EJ(f )} = {f,KI)
for all f € F%. We designate KJ as the reproducmg kernel functions for
F%. By Propos:tlon 1, we can get the concrete formula for KJ.

Proposition 2. For each z € C and j € Zy, KI is given by
. Zz . |2
Ki(w)=e¢; -exp(%) (weC) and ||KI|| =et.

3. COMPOSITION OPERATORS ON F%
We begin this section by giving a necessary and sufficient condition for
a bounded operator on F% to be a composition operator.

Theorem 1. Suppose that T is a bounded operator on ¥%. Then T is a
composition operator if and only if for each z € C there exists a unique
w € C such that T*KI = Ki, forallj € Z,.

Proof. If T = C,, for some holomorphic map ¢ on C, then for each f €
F% and j € Z.,., we obtain that (f,T*K?) = (C.,,f,K’) = Ei(C,f) =

(F(e(2)),e5)x = (,)(f) (£, ,p(;)) and so T*Kj = K¢(Z)~

Conversely, suppose that for each z € C there exists a unique w € C such
that T* K7 = KJ for all j € Z,. Then define the map ¢ on C by p(z) = w.
Furthermore, ﬁ% = (j%:(%-el.el)x = é(z)(el,l) = (el,l,K':,(z)) =
(el_l,T‘K}) (Tel,l,K ) = EI(TCL],) = (Tel,l(z),el)x. This implies
that ¢ is a holomorphic map on C. For each f € F%, 2 € C and j € Z,,
we Obta'ln (Tf(z)1 eJ)X = (Tf! KJ) - (f’ T‘KJ) (f) SO(Z)) (p(z)(f)
(f(¢(2)),e;)x. Since {e; : j € Z,} is an orthonomal basis for X, we see
that (T'f(2),z)x = (f(¢(2)),z)x for all z € X, and so T'= C,. ]

From now on, till the end of this chapter, we suppose that ¢ is a holo-
morphic map on C with C,, is a operator from F% to F%.
Theorem 2. C} is a composition operator if and only if ¢(2) = az for
somea € C.

Proof. First we assume that C; = Cy for some holomorphic map % on C.
Let (2) = Y020 an2™ and 9(z) = Yoo, ba2™. Since
1 27 it int
n_ _* 4 —in
anr" = 5= /; p(ret*)e ™ dt
for alln € Z4 and 0 < r < o0, we have

1 27 . 2% . X
an,r?" = 5 / p(re)(re” ) dt = -21— (p(re)ey, (re'*) ey ) x dt.
T Jo T Jo
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Combining a polar coordinate with this, we have
1 2 o0 2
o /;(gp(z)el,z"el)xe'*lﬂ dm(z) = a,,/; rrtle=irigr (4

foralln e Z,.
On the other hand, it follows from —&2ize; = C,ey,1(2), ’2""1%717‘31 =

en,1(2) and C;, = Cy that @)
% /c (p(2)er, 2e) x e~ 1o dm(z)
- % /C(C'Pelnl(z)’en.l(l))xe‘*""dm(z)
= (Cper1,en1) = (1,1, Chen1) = (1,1, Cypen1)
= 2%, /c (e1,1(2), Cyen1(2)) xe~ 12 dm(z)
- 517? /c(zel’ ¥(z)"er)xe”Hl dm(z) = '21—1|- /:: 29(z) e~ 11+ dmy(z)

o0 ,3 1 21 . :
= / r2e=3" dr— / e*yp(reit)"dt. (5)
0 27 0
By (4) and (5), we have
00 1 o0 2 1 2m ——
a"/ pintlo—ir dr—/ r2e—tr d’r-—/ e“yY(reit)"dt, (6)
0 0 27 0

foralln € Z,.
Now, for each j € Z,. and f € F%, we see that (f, C‘ng,) = (Cof, K}) =

( npf) (f(‘/’(o)):e])x = (f, 9,(0)); and so C¢K° = K¢(o) on C. By
Proposxtxon 2, we also see that Cy K3 (2) = K3 (%(2)) = e;. Thus we obtain
|| K? (0)“ = 1. Since |K? ol = exp(m) by Proposition 2, we have
exp(lﬂ—n-) =1, and so ap = 0. By the same argument, we also obtain

bo = 0. Thus, for each n € Z; \ {0}, the first n Taylor coefficients of ¢
and ¢ are zero. If ¥*(2) = Y50, Bxz*, then

1 i -it T g Bl?‘ ifn= 1,
arfy & YIS0 nso,

forall 0 < r < o0 and n € Zy \ {0}. Since B; = b, we have for each
0<r<ocandne€Z;\{0}

2 .
hr ifn=1
— e't Y(ret)dt = ’ 7
/ viret)d {o ifn > 2. ™
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By (6) and (7) we see that

(=<
—[® i,
an/m r2ntle=irigr = {bl/o PeiTdr ifn=1,
0

0 ifn>2,

for all 0 < r < 0o and n € Z, \ {0}. Since f;° rPe~4dr # 0, we see that
a1 = b; € C and a,, =0 for all n > 2. That is, p(z) = a; 2.

Conversely, we assume that ¢(z) = az for some a € C. Put ¥(z) = @z.

It is clear that % is a holomorphic map on C. Take z € C and j € Z,.

By Proposmon 2, we see that (Cp)*Ki(w) = Ki(ow) = e; - exp(E2g2) =

KL (w)= ( 2) (w), for all w € C. Hence, it follows from Theorem 1 that

C‘ is a composition operator and C = Cy. 0

Theorem 3. C, i3 a normal operator if and only if p(2) = az for some
aeC.

Proof. Suppose that C, is normal, we have that ||C"Kj I =C, Kj || for
all j € Zy. Since C,Kj(z) = K (p(2)) = e and || = exp(1242L) by
Proposition 2, we have exp(l‘ﬂ—u—) = [|K: (o)” = ||Co K 2 = IIC‘,KJ =1
That is, ap = 0 where ¢(z) = Y o, a,2". As in the proof of (7), we see

that
1 (> ——m,, 8T ifm=1,
'27/0 e“lre®) dt"{o if m > 2.
Thus we have

1 ——_—}|z 0 ifm#1,
= / 2 @ e Mol dm(z) = {2r(2)a—1 i, ®)

Parseval’s identity and (8) show that
ICseral® =3 KCiernemn)l®= 3 Ier1,Cotmn)l®

(m,n)ezi (m,n)ez3

7 S T T ) e ) e M |
o J\ VL@ Y aTm 1) T

(m,n)ez3
—_— 2
- : M-tz g = lai]2.
: ,,,% \/2”‘“1"(2)1"(m+1)21r/ #(2) dm(z)| =laf?. (9)

On the other hand, Fubini’s theorem gives
ICse111? = ICpera]l?

=51?/«:”‘31»1(«’(2))" el dm(z )=5- : "2"523 e~ 314 dm(2)
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"’d— Jgidt S g rkeikt dt

2F(2)_/ T / {ZG r'e }{kz-_woak'l‘ € }

= ooy e PPT@ =l + 2 (10)
=0

22
Equations (9) and (10) imply that a, = 0 for all n > 2. Hence ¢(z) = a;2.
Conversely, we suppose that ¢(z) = az for some a € C. By Theorem
2, we obtain C; = Cy where (z) = @z. Hence we have C,C_f(2) =
b0 p(2)) = flal?2) = flp o b(z) = CeC,f(2) for each f € f"' and

z € C. This implies that C,, is a normal operator on F%. O
Corollary 1. C, is self-adjoint if and only if p(2) = az for some x € R.

Proof. If C, is self-adjoint, then C,, is normal. Hence, by Theorem 3, we
have ¢(z) = az for some a € C. Moreover, it follows from Theorem 2 that
= Cy where ¢(z) = @z. That is, C, = Cy on F%. Since e;; € F%, we

see that :/%T(% = Cpe1,1(z) = Cyey1(2) = Vﬁ%el’ and so ¢ = ¥ in

C. This implies that o: = @, that is, « is real.

Conversely, we assume that ¢(z) = az for some a € R. By Theorem 2
we have C;, = Cy where (z) = Gz. Since a € R, we see that p(2) = az =
@z = ¢(z) a.nd s0 Cp, = Cy. Thus Cj, = C,, that is, C,, is self-adjoint. O

Theorem 4. C,, is unitary if and only if p(z) = az for some o € C with
o] =1.

Proof. If C,, is unitary, then it is normal. Hence Theorem 3 and Theorem
2 show that there exists o € C such that ¢(2z) = az and C;, = Cy where
¥(z) = @z. Take z € C and j € Z;. Since C,C; = idsz (the identity
operator on F%), we obtain KJ(|a|?w) = Ki(¢ o p(w)) = Cp,CyKi(w) =
C,CyKi(w) = Ki(w) for each w € C. By Proposition 2, we see that
ej exp(il-‘fl—) = e; -exp(32), and |af = 1.

Conversely, we suppose that ¢(z) = az for some a € C with |a| = 1.
Theorem 3 and Theorem 2 imply that C, is normal and C} = C,, where
¥(z) = @z. Therefore, for each f € .7-?( and z € C, C¢C;f(z) = f(po
9)(z) = f(lal’z) = f(2), that is, C,C;, = idrz. The normality of C,
shows that C, is unitary. (]

A bounded operator T on the Hilbert space H is said to be co-isometry
if and only if the adjoint T* is isometry of H. It is easily see that a
unitary operator on M is co-isometry. The following theorem present the
characterization of a co-isometric composition operator on F%.

Theorem 5. C,, is co-isometry if and only if ¢(2) = az for some a € C
with |of = 1.
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Proof. First we assume that C,, is co-isometry. Since Cg is isometry, we

have [|C5 fll = ||f|l for all f € F}. Proposition 2 shows that exp(l2&)L) =
. . . 2

1K = IC; KN = 11| = exp(2E), and 50 fp(2)] = |2|. Thus there

exists & € C with |a| = 1 such that ¢(z) = az.

Conversely, we assume that ¢(2) = az for some a € C with |a| = 1. By
Theorem 4, we see that C,, is a unitary operator on F% and so [|C, f|| = || ||
for all f € F%. Moreover, the unitarity of C, implies that C,, is normal.
So ||ICofll = IC5 |l for all f € F%. Hence |[CLf| = ||f]| for all f € F%.
This completes the proof. a

It follows from an elementary calculation that the entire function p(z) =
az with |a| = 1 induces a surjective composition operator on F%. Hence,
the following result is an immediately consequence of Theorem 4 and The-
orem 5.

Corollary 2. The following conditions are equivalent :
(a) C, is a unitary operator on F%.
(b) C, is a co-isometry operator on F%.
(c) ¢(2) = az for some o € C with ja| = 1.
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