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Abstract

A graph G is edge-L-colorable, if for a given edge assignment
L = {L(e) : e € E(G)}, there exits a proper edge-coloring ¢ of G
such that ¢(e) € L(e) for all e € E(G). If G is edge-L-colorable for
every edge assignment L with |L(e)| > k for e € E(Q), then G is
said to be edge-k-choosable. In this paper, we prove that if G is a
planar graph without chordal 7-cycles, then G is edge-k-choosable,
where k = max{8, A(G) + 1}.
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1 Introduction

Graphs considered in this paper are finite, simple and undirected. For a pla-
nar graph G, we denote its vertex set, edge set, face set, maximum degree,
and minimum degree by V(G), E(G), F(G), A(G) and §(G), respectively.
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An edge coloring of a graph G is a mapping ¢ from E(G) to the set
of colors {1,2,...,k} for some positive integer k. An edge coloring is
called proper if adjacent edges receive different colors. The edge chromatic
number x (G) is the smallest integer k such that G has a proper edge-
coloring into the set {1,2,...,k}. We say that L is an edge assignment for
the graph G if it assigns a list L(e) of possible colors to each edge e of G.
If G has a proper edge-coloring ¢ such that ¢(e) € L(e) for each edge e of
G, then we say that G is edge-L-colorable or ¢ is an edge-L-coloring of G.
The graph G is edge-k-choosable if it is edge-L-colorable for every edge as-
signment L satisfying |L(e)| > k for each edge e € E(G). The edge choice
number x;(G’) of G is the smallest k such that G is edge-k-choosable.

The following conjecture was formulated independently by Vizing, by
Gupta, by Alberson and Collins, and by Bollobés and Harris(see [7] and
[12]), and this combinatorial problem is well known as the List Coloring
Conjecture.

Conjecture 1.1. If G is a multigraph, then x;(G) = x (G).

The conjecture has been proved for a few special cases, such as bipartite
multigraphs [5], complete graphs of odd order [6], multicircuits [21], graphs
with A(G) > 12 which can be embedded in a surface of non-negative char-
acteristic [2], and outerplanar graphs [20]. Vizing (see [14]) proposed a
weaker conjecture as follows.

Conjecture 1.2. Every graph G is edge-(A(G) + 1)-choosable.

Harris [8] shows that x;(G) < 2A(G)—2 if G is a graph with A(G) > 3.
This implies Conjecture 1.2 for the case A(G) = 3. In 1999, Juvan, Mohar
and Skrekovski [13] settled the case for A(G) = 4. Some other special cases
of Conjecture 1.2 have been confirmed such as complete graphs (6], graphs
with girth at least 8A(G)(In A(G) +1.1) [14], planar graphs with A(G) > 9
[1], and planar graph with A(G) # 5 and without two 3-cycles sharing a
common vertex [18]. Suppose that G is a planar graph without k-cycles
for some fixed integer 3 < k¥ < 6. Then it was shown that Conjecture 1.2
holds if G satisfies one of following conditions: (i) either k = 3 or k = 4 and
A(G) # 5 [22); (ii) k = 4 [16]; (iii) £ = 5 [19); (iv) k¥ = 6 and A(G) # 5 [17],
related known results on this topic we refer the readers to [3,9,10,11,15).

In this paper, we will consider planar graphs without chordal 7-cycles
and get the following theorem.

Theorem 1.1. Let G be a planar graph without chordal 7-cycles. Then
G is edge-k-choosable, where k = max{8,A(G) +1}.

In Section 2, we will consider the structure of planar graphs without
chordal 7-cycles. In Section 3, we will prove Theorem 1.1.
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2 Structure lemma of some planar graphs

First, let us introduce some notation and definitions. Let G = (V, E, F)
be a planar graph. A vertex v is called a d-vertez or d*-vertez if d(v) = d
or d(v) > d, respectively. For f € F, we use b(f) to denote the closed
boundary walk of f and write f = [ujuz...un] if uy, us, ..., un are the vertices
on the boundary walk in clockwise order, with repeated occurrences of
vertices allowed. The degree of a face f, denoted by d(f), is the number
of edge-steps in b(f). Note that each cut-edge is counted twice. A d-face
or d*-face is a face of degree d or of degree at least d, respectively. Let
0(f) denote the minimum degree of vertices incident with f. When v is a
d-vertex, we say that there are d faces incident with v. However, these faces
are not required to be distinct, i.e., v may have repeated occurrences on the
boundary walk of an incident face. Let na(v) or ng+(v) denote the number
of d-faces or d*-faces incident with vertex v with repeated occurrence of
faces allowed, respectively.

We use the technique of “discharging” to prove the following Lemma
which gives some information about the structure of a planar graph without
chordal 7-cycles.

Lemma 2.1. Let G be a planar graph without chordal 7-cycles. Then
G contains one of the following configurations.

(1) An edge wv with d(u) + d(v) < max{9, A(G) + 2}.
(2) An even cycle c: vivg - - - vopv1 withd(v1) = d(v3) = -+ = d(van—1) = 3
and d(v) = d(vg) = - - - = d(va,) = A(G).

The proof is carried out by contradiction. Let G be a minimal coun-
terexample to the lemma in terms of the number of vertices and edges.
Then G is a connected planar graph with 6(G) > 3 because there is no
edge uv as in (1). Since G is a planar graph, by Euler’s formula, we have

> " (3d(v) — 10) + Y (2d(f) — 10) = —10(|V| - |E| + |F|) = =20 < 0.
veV feF

Now we define the initial weight function on V(G) U F(G). Let w(v) =
3d(v) — 10 if v € V(G) and w(f) = 2d(f) — 10 if f € F(G). Thus the total
sum of weights is the negative number —20. We are going to introduce
discharging rules so that the total sum of weights is kept fixed while the
discharging is in progress. However, once the discharging is finished, we
can show that the resulting weight function w* is nowhere negative. Thus,
the following contradiction is arrived at and the existence of G is absurd.

0< ) w@= ) u(z)=-20.

xeVUF zeVUF

By the choice of G, we have the following observations.
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(P;) Let uv be any edge of G. Then d(u) + d(v) > max{10,A(G) + 3}.
This implies that

d(v) = A(G) > 7 if v neighbors a 3-vertex.
(P,) Since G does not contain a 7-cycle with chords, it does not contain
three adjacent triangles adjacent to a 4-face or a triangle adjacent to two
4-faces respectively.

If d(v) > 5, then v cannot be incident with five adjacent triangles.
(Ps) Let G3 be the subgraph induced by the edges 1nc1dent thh the 3-
vertices of G. Then Gj contains a bipartite subgraph G =W,V,,EG )
such that for any vertex v € V;, dg (v) = 2; for any vertex v € v,
dgr(v) = 1. If uv € E(G’) and dg(u) = 3, then v is called a 3-master of u
and u is called a dependent of v. Each 3-vertex has exactly two 3-masters

and each vertex of degree A can be the 3-master of at most one 3-vertex.

Next we show that (P;) is true. Clearly, G3 does not contain odd cycles
by (P;). Thus Gs is a bipartite graph with partite sets V3, V2, so that
V(G) = V1 UV, and for each vertex v € Vi, dg(v) = 3; for each vertex
v € V,, dg(v) = A. By the choice of G, we know G3 does not contain
even cycles. Thus Gj3 is a forest. For any component of G3, we can select
a vertex u with dg(u) = 3 as the root of the tree. We define the distance
between an edge and u to be the distance between one end of the edge
having shorter distance to u and the root u. Thus, an edge incident with «
is at distance O from the root. Then, we define edges of distance ¢ from the
root to be at level i, where i = 0,1,-- -,m and m is the depth of the tree.
We can select the edges which are not incident with u and at even level to
form 3-paths vyvv, such that dg(v) = 3 and for the three edges incident
with u, we select two of them to form a 3-path v uve. The selected edges
form a bipartite subgraph G' with all the properties described in (P;). This
completes the proof of (Ps).

Note that each 3-vertex has exactly two 3-masters and each vertex of
degree A can be the 3-master of at most one 3-vertex.

To prove the lemma, we are ready to consider a new weight w* on G as
follows:
R;: From the 3-master to each 3-vertex transfer 2.
Rs: From each 3-vertex v to each incident 3-face f, transfer 1.
R3: From each 4-vertex v to each incident face f, where 3 < d(f) < 4,
transfer -;-

Let v be a 5-vertex and SB(v) be the weights transferred from v to its
incident 4-face.
R4: From each 5-vertex v to each incident face f, where 3 < d(f) < 4,
transfer

g if U =3

2: lfd(f) -

172



Rs: From each 6%-vertex v to each incident face f, where 3 < d( f) < 4,
transfer

4: ifd(f) =3;

1,ifd(f) =

Let v(z — y) denote the amount transferred out of an element z into
another element y according to the above rules.

Next we will show that w*(z) > 0 for all z € VUF. Suppose that
v is a d-vertex of G. If d = 3, then w(v) = —1. By (FP3), v has two
3-masters, and v is incident with at most three 3-faces; so by R; and R,
w*(v) 2 w(v)+2x2—-1x3 = 0. If d = 4, then w(v) = 2. It follows from R3
that w*(v) > w(v) - 3 x4 =0. If d = 5 then w(v) = 5. From (P2) we know
that when n3(v) > 3, n4(v) = 0. So by Ry w*(v) > w(v)- ﬁ xnz(v) = 0.
When n3(v) < 2, it is obvious that w*(v) > 0 by (P;) and Ry. If d = 6,
then w(v) = 8. From (P;) we know that n3(v) < 4. When n3(v) = 4
then n4(v) = 0 by (P2). So by Rs w*(v) 2> w(v) — - X 4 > 0. When
n3(v) = 3 then n4(v) <1 by (P,). So by Rs w*(v) > w(u) —¥Ix3-1>0.
By (P,;) and Rs it is obvious that when n3(v) < 2, w*(v) 2 0. If d = 7,
then w(v) = 11. From (P,) we know that n3(v) < 5. When n3(v) = 5,
then n4(v) = 0 by (P2) and v can be the 3-master of a 3-vertex. So by
Ry and Rs w*(v) > w(v) — I x5—-2 = 1 > 0. When n3(v) = 4, then
n4(v) €1 by (P) and v can be the 3-master of a 3-vertex. So by R; and
Rs w*(v) > w(v)— I x4-1-2> 0. By (P,), R; and Ry it is obvious that
when n3(v) < 3, w*(v) 2 0. If d = 8, then w(v) = 14. From (P,) we know
that nz(v) < 6. When nz(v) = 6, then n4(v) = 0 by (Pz) and v can be the
3-master of a 3-vertex. So by R, ‘and Rs w*(v) 2 w(v)-{x6-2=1>0.
It is obvious that when nz(v) < 5, then w*(v) > 0 by R; and R;. If d 9,
we can use the same argument as above cases to verify that w*(v) > 0. If
d > 10, then w(v) = 3d — 10. Let n3(v) = i. Then n4(v) <d—i. Soby Ry
andR5 w*(v) 2 wv)—Ixi—(d-i)-2=2d-12-3i > 5d 12>1>o0

Let f be any face of G, Clearly, w*(f) = w(f) > 0if d(f) > 5. We first
consider the case that f = vyv3v3v; is a 3-face with d(v1) < d(v2) < d(vs).
Then w(f) = —4. If d(v1) = 3, then d(v2) = d(vs) = A(G) > 7 by (P1).
Thus by R and Ry, 7(v1 = f) = 1, 7(v2 = f) = v(vs > f) = %, and

w*(f) =w(f) +1+ % x2>0. If d(v1) = 4, then d('uz) > 6, d(vs3) > 6 by
(Py)- Thus accordmg to R and R5, Y(v1 = f) =1, y(va = ) = v(vs =
N=Ladw(f)=w({f)+i+Ix2=0. Ifd(vl)—5 then d(v;) > 5,
d(vs) > 5. If d(v2) > 6, by R4 and Rg, it is obvious that w*(f) > 0. If
d(v2) = 5 and d(v3) = 5, we consider the following cases: when ns(v;) = 5,
by (P;) we know that nz(v2) + ng(v2) < 3, and na(vs) + n4(v3) < 3.
Then by R4, y(v1) = f = 1 Y(v2) = f > § and y(v3) = f >3 So
w*(f) 2w(f)+1+§x2=1>0 When na(vl) = 4, by (P,) we know that

n3(v2) +ng(ve) < 3, and n3(vs) +n4(vs) < 3. Then by Ry, y(v1) = f >
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Y(v2) = f > § and y(v3) & f 2 §. Sow*(f) 2w(f)+5+5x2=1>0.
When n3(v1) = 3, then by (P,) we know that nz(vs) + n4(v2) < 4, and
na(v3) +n4(vs) < 3or n3(v2) +n4('ug) < 8, and n3(vs) + n4(vs) < 4. Then
by Ry, w*(f) = w(f) + x2+§= 6 > 0. when n3(v;) < 2, it is obvious
that w*(f) > 0. If d(v2) = 5 and d(vs) > 6. When ng(v;) = 5, then by (P;)
we know that n3(va) + n4(vz) < 3. Then by R4 and R, v(v1) = f =1,
Y() > 2§ and y(v)) » £ > ] Sow () 2w(f)+1+5+1>0. If
d(v1) > 6, clearly w*(f) > 0.

Next, we consider the case that f = vyvav3v4v; is a 4-face, then w(f) =
-2 . If 6(f) > 4, then w*(f) > w(f) + 3 x 4 = 0. Now assume that
0(f) = 3. Without loss of generality, let d(v,) = 3, then d(v2) = d(v4) =
A > 7, and d(vs) > 4 since there is no even cycle as in (2). Thus by
R3 and Rs, v(v2 — f) =1, y(vs = f) = 1and y(vs = f) 2 1. So

w*(f)2w(f)+1x2 + > 0. This completes the proof of Lemma 2 1.

3 Proof of Theorem 1.1

The proof is carried out by contradiction. Let G be a minimal counterex-
ample to the theorem. Then there is an edge assignment L with |L(e)| > &k
for all e € E(G), where k = max{8, A(G) + 1}, such that G is not edge-L-
colorable. By Lemma 2.1, we consider two cases as follows.

Case 1. G contains an edge uv with with d(u)+d(v) < max{9, A(G) +
2}. Consider the graph G' =G —wv. Then G has an edge-L-coloring ¢.
Since there exist at most max{7, A(G)} edges adjacent to uv and |L(uv)| >
max{8, A(G)+1}, we can color uv with some color from L(uv) that was not
used by ¢ on the edges adjacent to uv. It is easy to see that the resulting
coloring is an edge-L-coloring of G. This contradicts the choice of G.

Case 2. G contains an even cycle C = vqvg - - - Vo with d(v) =
d(vs3) = = d(v2n—1) = 3. Let G’ be the subgraph of G obtained by
deleting the edges of C. Then G’ has an edge-L-colonng ¢ Deﬁne an
edge assignment L’ of C such that L'(e) = L(e) \ {#(¢') | ¢ € E(G ) is
adjacent to e in G} for each e € E(C). It is easy to see that L'(e) > 2
for each e € E(C). As has been proved independently by Vizing and by
Erdés, Rubin, and Taylor (see [4]), a cycle of even length is 2-choosable.
Thus C is edge-2-choosable and hence G is edge-L-colorable, which is a
contradiction. This completes the proof.
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