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Abstract
We explicitly evaluate the generating functions for joint distri-
butions of pairs of the permutation statistics inv, maj and ch over
the symmetric group when both variables are set to —1. We give
a combinatorial proof by means of a sign-reversing involution that
specializing the variables to —1 in these bimahonian generating func-
tions gives the number of two-colored permutations up to sign.

1 Introduction

Permutation statistics are useful tools in the study of the symmetric group
Sn. The well-known inversion statistic counts the number of inversions in
a permutation and is known to determine the length of a reduced word
in the symmetric group (Coxeter group of type A,) with the generating
set of adjacent transpositions. The generating function for the number of
inversions is [1}:

YO =1+l +g+e) - (L+g++- 4"
€Sy

Setting ¢ = —1 in this generating function results in a sum over the
symmetric group where each permutation is weighted with a 1 if the per-
mutation has an even number of inversions (i.e. can be written as a product

ARS COMBINATORIA 100(2011), pp. 225-237



of an even number of transpositions) and —1 if the permutation has an odd
number of inversions (i.e. can be written as a product of an odd number
of transpositions). The right hand side of the generating function is zero
when ¢ = —1 giving a natural combinatorial proof that the number of even
permutations is equal to the number of odd permutations.

In this paper we consider two variable generating functions over the
symmetric group of the type

flg,t)= Y ¥ (1)

nESn

where a(w) and d(w) are Mahonian statistics and employ combinatorial
techniques to evaluate the specialization ¢ = ¢ = —1.

The main result of this paper, in Section 4, is to give a sign-reversing
involution that proves that f(g,t) with ¢ = t = -1, a(x) = inv(w) and
b(m) = maj(r) is equal to 2"nl. We use this main result to prove sim-
ilar results for the pairs of statistics (inv,ch), (maj, ch), (inv,cch), and
(maj, cch) in Section 5. We describe the set of fixed points of the main in-
volution in Section 4 in terms of two-colored permutations and rotationally
symmetric permutations matrices which are described in Section 3. Section
2 contains the necessary background and definitions.

2 Background and Definitions

For a permutation 7 = mymy-- -7, € Sy, define an inversion to be a pair
(¢,7) such that ¢ < j and m; > m;. Then the inversion statistic, inv(w), is
the total number of inversions in .

For example, for 7 = 3285746 19, inv(r) = 15 since each of
the pairs (1,2), (1,3), (1,4), (1,5), (1,6), (1,7), (1,8), (2,3), (4,5), (4,7),
(4,8), (5,8), (6,7), (6,8), (7,8) is an inversion.

The generating function for the inversion statistic,

Z qinv(ﬂ)

ﬂesn

is known to be symmetric.

For m = mymy---m, € Sp, we say 7 has a descent in position j if
m; > ®j+1. The major indez of a permutation =, written maj(w), is the
sum of the descents of «. lL.e.,

maj(r)= Y j.

Ti>Wi4r
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For example, for r =328574619, maj(r) =1+3+5+7 = 16.
The generating function for the major index

E qmaj (m)

TESn

is also known to be symmetric and was proven by MacMahon [5] to be
equal to the generating function for the inversion statistic. Any permuta-
tion statistic that is equidistributed with the major index is now called a
Mahonian statistic.

A third Mahonian statistic which has not been as widely studied as the
inversion statistic and the major index is the charge statistic. The definition
of the charge statistic was first given by Lascoux and Schiitzenberger [4].

For each element ¢ € m, define the charge contribution of i, che(%), to
be zero if i = 1 or i lies to the right of ¢ — 1 in 7 and to be n— i+ 1if ¢ lies
to the left of ¢ — 1 in 7. We now define the charge of » to be

ch(r) = Zché(i).

For the previous example, the charge contribution of each element is
given below that element:

T =3 28574619
7 8 2 56 3 0 0 0 0

thus the charge of 7 is equal to 7+8+2+5+3=25.

The statistic cocharge is defined similarly to charge. For each element
i € m, define the cocharge contribution of i, coc(i), to be zero if i = 1 or i
lies to the left of ¢ — 1 in 7 and to be n — ¢+ 1 if i lies to the right of ¢ — 1
in 7. We now define the cocharge of 7 to be

cch(m) =Y _ coe(i).
i
For the previous example, the cocharge contribution of each element is
given below that element:
T =3 2857 46109
0 0 0 0 0 6 4 0 1
thus the cocharge of 7 is equal to 6+4+1=11.
The two variable generating functions for the pairs (maj,inv),

(maj,ch), (maj,cch), (inv,ch) and (inv,cch) are all known to be sym-
metric functions. Our interest is in the specialization ¢ =t = —1 in each
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of these bimahonian generating functions. We will examine these special-
izations and their corresponding fixed points in Sections 4 and 5.

There are three maps on the symmetric group that are of interest. First,
i is the usual inverse map i : 7 — 7~1. Second, c is the complement map
¢ : m — 7, in which each k is replaced with n — k 4+ 1 to form #°. Third,
r is the reverse map r : # — =%, which replaces each m; with m,_j41 for
e Sn-

For example, for the permutation 7 = 3 28 574 6 1 9 we have
M=n1"1=821647539,7°=782536491,andn* =916475823.

The map ¢ : S, — S, defined by ¢¥(x) = ((#")~!)" is a bijection
which swaps maj and charge, i.e. maj(m) = ch(¥(n)) = ch(((=")~)")
and ch(n) = maj($(r)) = maj(((r")"1)").

The well-known bijection ¢ given by Foata and Schiitzenberger [3] has
the property that for any = € S,, maj(r) = inv(¢(r)) and consequently
. the inverse map has the property that inv(r) = maj(¢~1(r)). In addition,
the bijection ¢ preserves the charge statistic, thus ch(w) = ch(¢(7)).

We review Foata and Schiitzenberger’s map, ¢ : S, = S,,. We construct
¢ in steps. Let w = mymy...m, be a permutation in one line notation. We
define the map ¢ in steps.

1. Define w; = m;. Assume w; has been defined for all k¥ < n.

2. Consider the string wy. If the last letter of wy is greater than w4,
split wy by placing a bar after each letter greater than k4. Similarly,
if wi is less that k4, split wy by placing a bar after each letter less
than mg41.

3. In each block (created by the bars in Step 2) of wi cycle the last letter
of the block to the beginning of that block. Then append 74 at the
end of the string to obtain wk4; and repeat Steps 2 and 3.

4. The process is complete when =, is added, i.e. ¢(7) = wy.

For example, if T = 649275183, the successive stages of the algorithm
yield

w; = 6]

we = 6[4]
w3 = 6/4/9|
wy = 6]4]92|



ws = 6]429](7|

we = 6]9]4/2|7/5]

wr = 6]94{2|7]5]1

ws = 6[4]9]27]5|18|

wy =649725813= ¢(m)

s0$(649275183)=649725813. Note that maj(649275183) =
23=inv(649725813).

3 Symmetric Matrices and Two-Colored Per-
mutations

In this section we will define the combinatorial objects we will need to de-
scribe our fixed point sets in Section 4 and construct bijections between
these objects. We will consider rotationally symmetric permutation matri-
ces, two-colored permutations and the set of permutations that will appear
as fixed points in the involution in Section 4.

Define a Rotationally Symmetric Permutation Matriz (RSPM) of size n
to be an n x n permutation matrix which is invariant under a 180 degree
rotation. For example for n = 4 there are eight such matrices:

1 0 0 0]fo 1 0 0]Jf0 0 1 0]f0 0 0 1
01 00fft0oo0O[|0O0O0TI1//0 010
00 10/|000T1f|1 0o0O[f0100
_0001J_001o__0100j_1000j
0 0 0 172 0 0 0]f0o 0 1 0] [0 1 0 0
01 00[f[o 010 f1000 700071
00 1 0/|0100[{000O0T1f1 000
1 0 0 0J[0 00 1J]0 1 0 0f|0 0 1 0f

It is easy to check that the number of RSPM'’s of size 2n is the same as
the number of RSPM’s of size 2n+1. The rotational symmetry requires that
a matrix of size 2n + 1 have a 1 in the center entry, i.e. in the (n+1,n+1)
entry.

Define a two-colored permutation of length n to be a permutation r € S,
with each m; either colored or uncolored. A colored ; will be denoted by a
bar. For example, the permutation 7 = 4 3 1 2 is a two-colored permutation
of length 4.
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Proposition 1. The number of rotationally symmetric permutation ma-
trices of size 2n is 2"n!.

Proof. It is well known that the number of two-colored permutations of
length n is 2"n!. We will construct a bijection from the rotationally sym-
metric permutation matrices of size 2n and the set of two-colored permu-
tations of length n thus proving the claim.

Let Rs, be the set of RSPMs of size 2n and let C,, be the set of two-
colored permutations of length n, where a colored part will be denoted with
a bar. We will construct a map ¢ : Ra, = Cy, in two stages, ¢ and ¢,.

First, given a matrix M € Ra,, consider the corresponding permutation
mam € San. Construct an ezpanded two-colored permutation of length 2n,
o with entries {1,2,...,n,1,2,...,7} in the following way. Let 1,2,...,n
in 7 correspond to 1,2,...,nino=¢;(7) andlet n+1,n+2,...,2nin =
correspond to @,n — 1,...,1in o = ¢;(m).

For example, if M € Ry is given below, the corresponding permutation
in Sy is 7= (2,4,1,3). Then o = ¢1(7) = (2,1,1,2).

0
_ o
M=1
0

O OO

0
1
0
0

OO

Because a rotation of 180 degrees takes entry (i,j) to (2n+1—1,2n +
1 -~ j), it is easy to verify that ¢;(w) will be a palindrome if the bars are
disregarded.

Next, given an ezpanded two-colored permutation o of length 2n create
a two-colored permutation ¢2(c) of length n by deleting the last n entries
of . Because the ezpanded two-colored permutations were palindromes
and consist of each integer 1,2,...n and its barred pair, there is no loss of
information in ignoring the last n entries of o.

For example, if ¢ = (2,1, 1,2), then ¢2(0) = (2,1).

It is easy to verify that what remains is the set of two-colored per-
mutations of {1,2,...,n}, thus establishing our bijection and proving our
claim. O

It is now a simple exercise to check that the fixed points in the involution
in Section 4, namely permutations 7w € Sa, with 2i — 1 and 27 in adjacent
positions, are in one-to-one correspondence with colored permutations of
length n and thus with RSPM’s of size 2n. (If 2 — 1 is to the left of 2i,
replace 2i — 1 and 2¢ with ¢ and if 2¢ — 1 is to the right of 2, replace 2i -1
and 2i with 7.)
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4 A Sign-Reversing Involution for (inv, maj)

The following specialization of the two variable generating function for the
statistics inv and maj strongly suggests the existence of a sign-reversing
involutions on the symmetric group that gives rise to a set of fixed points
counted by 2-colored permutations. We give such an involution below then
explain how our methods can be extended to other specializations of bima-
honian generating functions with inv, maj, ch and cch.

Theorem 1.

Z (_l)inv(w)(_l)maj(w) =9l = z (_l)inv(ﬂ)(_l)maj(w).
TESan TESan41

Proof. We will first prove the result by induction for So,. If n = 1, then
there are only two permutations in S;. These are 7, = 12 and 72 = 21.
For 7 both inv and maj are equal to 0 so (—1)""?(m)(=1)mai(71) = 1, For
2, both inv and maj are equal to 1 so (—1)i"?("3)(—1)mai(72) = 1 and the
left side of Theorem 1 is equal to 2, which is equal to 2! 1!,

Now we will assume the result is true for Ss, and prove the result for
Son+2. Let m € Sapg2. Then the numbers 2n + 1 and 2n + 2 can appear in
w in several ways.

Case 1: Suppose 2n + 1 and 2n 4 2 are in non-adjacent positions.
WLOG assume 2n + 1 appearing before 2n + 2 in 7. Thus,

w=m - W1 2n+1 my .- Tj—1 2n + 2 i+l °°°  Ton42.
Now form ¢ by interchanging 2n + 1 and 2n + 2 in 7 so,
oc=m -+ Mi-1 2n+2 Mi+1 - Wi 2n+1 Ti41 -+ Mang2.

Any inversion in 7 between the elements 1 through 2n also exists as
an inversion in o since these elements appear in the same order in both
permutations. In 7, both 2n 41 and 2n 4 2 form an inversion with each of
the elements m;4; through m3,42. In addition, 2n + 1 forms an inversion
with each of the elements 74, through m;_;. In o, both 2n+1 and 2n + 2
form an inversion with each of the elements m;;; through m3n42. The
number 2n+1 no longer forms an inversion with the elements ;11 through
mj~1, but 2n+2 now forms an inversion with each of these elements. There
is one additional inversion in ¢ formed between 2n+1 and 2n + 2, thus the
total number of inversions in ¢ is one greater than the number of inversions
in m.

Any descents that occur in 7 in positions 1 through i — 2, i + 1 through
J—2and j+1 through 2n + 1 also occur in ¢ in the same positions, since
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the elements 7, through m;_y, i+, through mj_; and m;4; through mapn42
occur in the same order in both m and ¢. Since both 2n + 1 and 2n + 2
are larger then all the other elements in 7 and o, there is no descent in
position i — 1 or position j — 1 in either 7 or ¢ and there are descents in
positions i and j in both 7 and o, thus the positions of the descents in 7
and o are the same so maj(w) = maj(s).

Then for permutations in Sz 42 of this type, (—=1)v(*)(=1)m4/(%) and
(—1)inv(9)(—=1)mai(?) have opposite parity, thus they will cancel each other
out in the sign reversing involution.

Case 2: Suppose that 2n + 1 and 2n + 2 are in adjacent positions
in Son42, with 2n + 1 occuring first in the permutation and with 2n + 1
occuring in position j with j even. Then

T=m - M-l 2n+1 2042 mige -0 Wongo.
Again we will form o by swapping 2n+ 1 and 2n + 2 so
C=m -+ Tj-y 2n+2 2n+1 Tj+2 - Ton42.

Any inversions formed between elements 1 through 2n that occur in
also occur in o since the order of these elements remains the same in both
permutations. The elements 2n + 1 and 2n + 2 form inversions with all of
the elements ;42 through 72,42 in both 7 and ¢. However, in & there is
one additional inversion between 2n + 2 and 2n + 1 so the total number of
inversions in o is one greater than the number of inversions in .

Any descents that occur in 7 in positions 1 through j — 2 or j + 2
through 2n+ 1 also occur in ¢ in these same positions since the elements in
positions 1 through j —1 and j+ 2 through 2n+ 2 remain unaltered. Since
both 2n 4 1 and 2n + 2 are larger than all other numbers in 7, there is no
descent in position j — 1 in either 7 or o and there is a descent in both 7
and ¢ in position j+ 1. In addition, there is a descent in o between 2n + 2
and 2n + 1 which occurs in position j. Since j is even, the maj statistic
for o differs from the maj statistic for # by an even number.

Thus (—1)¥(m)(—1)maei(7) and (—1)inv(?)(—1)m8i(?) have opposite par-
ity and will cancel each other in the sign reversing involution.

Case 3: Suppose that 2n + 1 and 2n + 2 are in adjacent positions
in Spn42, with 2n + 1 occuring first in the permutation and with 2n + 1
occuring in position j with j odd. Then

*=m -+ Wi-1 2n+1 2n4+2 mWige -+ Tonga.
Again we will form o by swapping 2n + 1 and 2n + 2 so

o=m - W1 2n+4+2 2n+1 Tjg2 - Tont2.
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Consider inversions and descents in ¢ similarly to the considerations in
Case 2. We see that since j is odd, the maj statistic for o differs from the
maj statistic for 7 by an odd number.

Thus (—1)*(M(—1)m3i() and (—1)""*(?)(~1)™4i(°) have the same
parity.

For any permutation 7 in S2n42 with 2n 4+ 1 and 2n + 2 occuring in
adjacent positions with the first occurrence in an odd position, let w =
Ty Wj-1Tj42 "+ T2n42 denote the permutation in Sy, formed from 7 by
removing 2n + 1 and 2n + 2.

If w is not a fixed point when applying the sign reversing involution
to San, let u denote the permutation in S,, of opposite parity that is
paired with w in the sign reversing involution on Sp,. Now let v be the
permutation in San42 given by gy ---pj_1 then 2n + 1 and 2n + 2 in the
same order that they appeared in m, then u; - .- p2,. Since w and u have
opposite parity, 7 and v will have opposite parity and will thus cancel in
the sign reversing involution.

If w is a fixed point under the sign reversing involution on Ss,, then 7
will be a fixed point under the sign reversing involution on Szn+42.

By induction, the fixed points of the sign reversing involution will be
precisely those permutations @ € Sz, with the property that 2¢ — 1 and 2
are in adjacent positions and we showed in Section 3 that the number of
such permutations is 2" n!.

The proof for Spn+1 is similar by considering 2n and 2n + 1 and will be

left to the reader.
O

5 Specializations for ch and cch

We note that several other bimahonian generating functions specialize like
(inv, maj). In this section we give four specializations involving ch and cch
and use Theorem 1 to prove the results.

Theorem 2.

Z (_l)inu(zr)(_l)ch(x) =9"nl = Z (_l)inu(w)(_l)ch(vr).

TES2n TE€San41
Proof. The map ¢ : S, — S, given by %(x) = (((")"1)") is a bi-

Jection and has the property that maj(w) = ch(¥(x)). In addition,
inv(r") = (3) — inv(m) and since inv(m) = inv(r~1) we have that
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inv(m) = inv((((=")~")")). Thus

9l = Z (_l)inv(sr)(_l)maj(rr) = z (_l)inv(tp(fr))(_l)ch(gp(ﬁ))
TESan TESzn

= Z (_1)inu(a)(_1)ch(a)

0€San

and

Mpl = Z (_l)inu(n)(_l)maj(ﬂ')= Z (__l)iﬂu(w(ﬂ))(__l)ch(ila(fr))

TES2n41 TESan41

- Z (_l)inv(o) (_l)ch(a) .

0€San41

Theorem 3.
Z (_l)maj(n')(_l)ch(n-) =9%pl = Z (_l)maj(n)(_l)ch(w).
TESan TESan41

Proof. The Foata-Schiitzenberger bijection ¢ : S, — S, has the property
that maj(m) = inv(¢(w)) so inv(r) = maj(¢~'(x)) and that ch(r) =
ch(é(w)). Thus

Ml = z (1) (M (—1)eht) = Z (~1)mai(s™ (M) (—1)eh(¢™"(m)
TE€San mESan

= Z (_l)maj(a)(_l)ch(a)

0€Sz2n

and

Ml = Z (—1)inv(m)(—1)ehlm) = Z (—=1)mad($7H(m)) (—1)eh(7 (m)

TESan41 TESan41

- Z (_l)maj(a) (_l)ch(a) i

0€San41

a
Theorem 4.

Z (_l)maj(ﬂ-)(_l)cch(rr) = (—1)"2"71! - Z (_l)maj(rr) (—l)“h(").

T€S2n TE€ESInt1
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Proof. From the definition of charge and cocharge we have that ch(w) =
(3) = cch(n) for 7 € S,. Then

9npl — Z (_l)maj(w)(_l)ch(ﬁ) = Z (_l)maj(n)(_l)(’,")—cch(w)

TES2n TE€San
= 3 () -ymaitn) (—y)een,
TESan

Since (%') is even if n is even and is odd if n is odd, then

(~1)"2"n! = Z (_1)maj(n)(_1)cch(1r)'
T€San

Also,

9l = Z (_l)maj(w)(_l)ch(ﬂ')= Z (—l)maj(")(_1)(2";‘)—6013(10

TESan41 TE€Sanq1
= 3 ()T yra e,
TE€ES2n41

Since (*";!) is even if n is even and is odd if n is odd, then

(-1)"2"n! = E (_l)maj(n)(_l)cch(tr)‘

TE€S2n+1

Theorem 5.
Z (_l)inv(fr)(_l)cch(r) = (—1)"2"11! = Z (_l)inv(n-)(_l)cch(w)'
mES2n TE€ESan41

Proof. We will again make use of properties of the Foata-Schiitzenberger
bijection ¢ : S, — Sn. Since ch(m) = ch(d(r)) and cch(m) = (3) — ch(m),
we have that cch(r) = (3) — ch(m) = (3) — ch(¢(7)) = cch(¢(n)).

(—1)"2"71! = 2 (_l)maj(rr)(_l)cch(w) = z: (_l)inv(¢(ﬂ))(_l)cch(¢(w))
TESan T€San

- Z (_ l)inu(o) (_ l)cch(o)

Uesﬁn

and
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(—1)"2"11!: Z (_I)maj(rr)(_l)cch(n)= Z (_l)inu(é(n))(_l)cch(da(rr))

TE€S2n41 TESan41

= Z (_l)inv(a)(_l)cch(o) .

0€San41

6 Remarks and Future Work

While our primary objective was to understand the combinatorics of the
fixed point set of the sign-reversing involution in Section 4, recent work
by Barcelo, Reiner and Stanton gives more general results for specializing
bimahonian generating functions at roots of unity [2].

In light of the work of the authors in [2], [6] the results in Section 5
can be given a group theoretic interpretation. Consider the four element
group Zz x Zy generated by the operations on S, ¢ = complement and r =
reverse. It is not difficult to check that the complement operation is simply
multiplication on the left by wp, the longest word in the Coxeter group
with the standard generators. (In permutation terms wo =nn—1 ...21.)
Similarly, the reverse operation is multiplication on the right by wq. Thus
cr = rc is 180 degree rotation and can be thought of as conjugation by wy.

We can now restate our main result in the language of Barcelo, Reiner
and Stanton [2] by noticing that evaluating the bimahonian generating
functions at ¢ = ¢t = —1 is simply verification of the bicyclic sieving phe-
nomenon for

C = Zz X Zz
X = S, with
X(g,t) = flg.t) = Z g?(m)gb(m)

€S

There are several generalizations of the inversion statistic and the major
index for other Coxeter groups that give rise to interesting two-variable
generating functions. We consider specializations ¢ = ¢ = —1 in these
generating functions in another paper.

The authors would like to thank Vic Reiner for several helpful comments
regarding the bicyclic sieving phenomenon.
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