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Abstract

Let G be a connected simple graph. The hyper-Wiener index
WW(G) is defined as WW(G) = } 0, ,ev (g (d(u,v) + d*(x,v)),
with the summation going over all pairs of vertices in G. In this pa-
per, we determine the extremal unicyclic graphs with given matching
number and minimal hyper-Wiener index.

1 Introduction

Let G = (V, E) be a simple graph with vertex set V(G) and edge set E(G).
The Wiener index, defined as W(G) = Eu,vev(c) d(u,v), is perhaps the
most studied topological index from application and theoretical viewpoints
[2]. The hyper-Wiener index of acyclic graphs was introduced by Milan
Randié in 1993 [12]). Then Klein et al. [10] extend Randié’s definition for all
connected graphs as a generalization of the Wiener index. In parallel with
the symbol W for the Wiener index, the hyper-Wiener index is traditionally
denoted by WW. The hyper-Wiener indez of a graph G is defined as

—_ 1 1 2
WW(G) = 5 u’vez‘;(c) d(u,v) + 5 mg;(a) d*(u,v),

where and hereafter the summation going over all pairs of vertices in G.
Set S(G) = 2w vevie) d?(u,v). Then WW(G) = -21- W(G)+ 35(G). We
denote by De(u) = ¥ cv () @), DDg(u) = X\cy (g 42 (4, v), then

1 1
W(G) = Eue;(a) Dg(u), S(G)= 5%;0) DDg(u).
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We encourage the reader to consult [3, 5, 6, 7, 10, 11, 14, 15] and the
references therein for the mathematical properties of hyper-Wiener index
and its applications in chemistry.

A matching M of the graph G is a subset of F(G) such that no two
edges in M share a common vertex. A matching M of G is said to be
maximum, if for any other matching M’ of G, |M’| < |M|. The matching
number of G is the number of edges of a maximum matching in G. If M is a
matching of a graph G and vertex v € V(G) is incident with an edge of M,
then v is said to be M-saturated, and if every vertex of G is M-saturated,
then M is a perfect matching.

A unicyclic graph is a connected graph which has equal vertex number
and edge number. For u € V(G), let dg(u) be the degree of u in G, and
the eccentricity of u, denoted by ecc(u), is the maximum distance from
u to all other vertices in G. A pendent vertex is a vertex of degree one.
Let C,, be a cycle with n vertices. For a unicyclic graph G with cycle C;,
the forest formed from G by deleting the edges of C, consists of s vertex
disjoint subtrees, each containing a vertex on C,, which is called the root
of this tree in G. These subtrees are called the branches of G.

For integers n and m with 1 < m < |2], let U(n,m) be the set of
unicyclic graphs with n vertices and matching number m. Obviously, if
G € U(n,1), then G is the triangle. In the following we assume that
2 <m < |3]. Let Uy be the unicyclic graph obtained by attaching a
pendent vertex to m—2 noncentral vertices and adding an edge between two
other noncentral vertices of the star Sp—m42. Obviously, Up m € U(n, m).

T AN

~n-2m+1 Us 3
Un,m

Figure 1. The unicyclic graph Uy, .

It can be checked that WW (U, ) = 3(3n? +6mn—19n+m?—23m+42)
and WW (Uzm,m) = £(25m? — 61m + 42).

Recently, the hyper-Wiener index of trees with various parameters and
unicyclic graphs with given girth was studied in [14] and [5], respectively.
In this paper, we completely determine the extremal unicyclic graphs with
given matching number and minimal hyper-Wiener index.

2 Some Lemmas

Lemma 2.1 [1] Let G € U(2m,m), where m > 3, and let T be a branch
of G with root r. If u € V(T) is a pendent verter furthest from the root v
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with dg(u,r) > 2, then u is adjacent to a vertez of degree two.

Lemma 2.2 [13] Let G € U(n,m) where n > 2m, and G # C,. Then
there is a maximum matching M and o pendent vertex u of G such that u
is not M-saturated.

Lemma 2.3 Let H be a connected graph. Let X andY be two stars, with
centers v' € V(X) and v’ € V(Y). Suppose that u and v are two vertices
from H. Let G be the graph obtained from H, X, Y by identifying v with
v' and u with v/, respectively. Let G' be the graph obtained from H, X, Y
by identifying the vertices v,v',u’, and G" be the graph obtained from H,
X, Y by identifying the vertices u,v’,u’. Then we have
(i). [5] either S(G') < S(G) or S(G") < S(G) holds.
(4). [4] either W(G') < W(G) or W(G") < W(G) holds.
Lemma 2.4 Let G be an n-vertexr connected graph with a pendent vertex
u being adjacent to vertezr v, and let w be a neighbor of v different from
u, where n > 4. Then WW(G) — WW(G — u) > —3dg(v) + 6n — 8, with
equality if and only if ecc(v) = 2.

Moreover, if dg(v) = 2, then WW(G) —WW (G —u—v) > —Tdg(w) +
16n — 36, with equality if and only if ecc(w) = 2.
Proof. From the definition, we have
WW(G) = WW(G - u) + } Toev(g-w (4w, 2) + P(u,2)) = WW(G -

W)+ Caev(omu (34(0,8) +d(v,2)+2) = WW(G—u)+1 (3DG_,, (v)+
DDg_y(v) +2(n — 1)) =WW(G - u)+3}(3Dc(v) + DDg(v)) +n—3>
WW(G—u)+%(3(dc(v)+2(n—1—da(v))) +(da(v)+4(n—1—dg(v)))) +
n—3 = WW(G ~u)—3dg(v)+6n—8, with equality if and only if ecc(v) = 2.

Similarly, we have WW (G) = WW/(G—u—v)+3 [ eV (G-umn (4:2)
+(,2)) + Ty (Gmses (40,2) + P(0,7)) +2| = WW(G —u—v) +
3 Zeevicmuv (8d(w, ) + 2d%(w, ) + 8) + 2] = WW(G -u-1v)+
4DG—y—o(w) + DDg—y—y(w) + 4(n —2) +1 = WW(G —u—v) +4Dg(w) +
DDg(w) +4n—24 > WW(G — u—v) + 4(da(w) +2n—-1- dc,-(w))) +
(dg(w)+4(n—1—dc;('w))) +4n—24 = WW(G—u—v) —Tdg(w)+16n—36,
with equality if and only if ecc(w) = 2. B
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3 Main results
For a vertex u € V(Cy) (see [9]), we have D¢, (u) = I.';—QJ, and

X (k%2 +2), ifkis even;
={ 12 ' ;
DDe, (w) { E(k2-1), if kis odd.

We denote by H,, x the graph obtained from Ci = v; ... vv; by adding
n — k pendent vertices to a vertex of C. Then it is shown in [5] that

if k is even, WW (H,z) = r‘%{727;2 + (2K + 18k2 — 92k — 72)n — (k¢ +
15k — 222 — 72k)};
if kis odd, WW (Hy, ;) = -413{72n2+ (2k3 +18k2 — 98k —90)n — (k* +15k% —

25k2 — 87k)}.

Let U,n(k) be the unicyclic graph obtained from Cx = v;...vkv; by
attaching a pendent vertex and n — k — 1 pendent vertices to vx and v,
respectively, where 3 < k < n — 2. It can be checked that WW (U, (k)) =

WW(Hn_l,k) + %(DDC,, (vl) +3Dc¢, (vl) +2k + 12(11 -k - 1))
Hence, if k is even, WW (Un(k)) = (72n2+ (2k3 +18Kk2 — 92k +72)n —

(k% + 15k% — 22k2 + 72k + 144)). If k is odd, WW (Un(k)) = %(nnz +
(2k3 + 18k2 — 98k + 54)n — (k* + 15k3 — 25k2 + 57k + 144)).

Lemma 3.1 Suppose that m+1 < k <2m—2. Ifm > 5 or (m,k) = (4,6),
then WW (Uam (k) > 3(25m? — 61m + 42).

Proof. If k is even, then WW (Uzm(k)) = f(k), where f(k) = & (288m2 +

(4k3 + 36Kk2 — 184k + 144)m — (k* + 15k3 — 22k2 + 72k + 144)).
It is easy to check that
§'(k) = 35 (1262 + 72k — 184)m — (4k® + 45K* — a4k + 72)),

7(k) = 3 ((24k +72)m — (12K + 90k — 1)),

7"(k) = 35 (24m — (24k +90)), FO(k) = & ( - 24) < 0. So f"(k) <
f"(m+1) < 0, —4(15m — 44) = f"(2m - 2) < f'(k) < f"(m +1) =
2(6m? — 9m — 29).

Let ko be the positive root of f”(k) = 0. It can be checked that ko >
m+1. Then f”(k) is positive in (m+1, ko), negative in (ko,2m —2). Hence
f'(k) is increasing in (m+1, ko) and decreasing in (ko, 2m —2). Thus, f'(k)
takes its minimal value at k=m +1or k =2m - 2.

fi(m+1) = A (8m3® +39m? —158m —77) > 0 for m > 4. f'(2m—2) =
L (4m® — 9m? +18m — 77) > 0 for m > 4.
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So we get that f/(k) > O for m+1 < k < 2m — 2. So we have
f(k) = f(m +1).
It is easy to see that f(m+1)—3(25m?~61m+42) = L (3m4+29m3+

159m? — 77m — 210) — }(25m? — 61m + 42) = J(m — 3) (3m3 +38m? —

327m + 406).

Let g(m) = 3m® 4 38m? — 327m + 406. Then g’(m) = 9m? + 76m — 327,
g’'(m) = 18m + 76 > 0 for m > 4, thus g’(m) is strictly increasing for
m > 4. Note that g’(4) = 121 > 0, so g(mm) is strictly increasing for m > 4.
since g(5) = 96 > 0, so g(m) > 0 for m > 5.

Similarly, if & is odd and m > 6, we can also get the result.

If m =5, then 6 < k < 8. Hence k = 7 since it is odd. For (m,k) =
(5,7), then WW (Upm (k) = 202 > WW Uz m) = 181.

If (m, k) = (4,6), then it can be checked that WW (Upp,(k)) = 106 >
WW(Uzm,m) = 99.

Combining the above cases, we complete the proof.

For integer m > 3, let Uy (m) be the set of graphs in U(2m, m) containing
a pendent vertex whose neighbor is of degree two. Let Up(m) = U(2m,m)\
U;(m). Let Hg be the graph obtained by attaching three pendent vertices
to three consecutive vertices of Cs. It is easy to see that WW (Hg) = 99.

Lemma 3.2 Let G € Uy(m) withm > 4. If G = Hg, then WW(G) =99 =
1(25m? —61m+42), and if G # Hs, then WW(G) > 1(25m? - 61m +42).

Proof. If G = Hg, then the result follows easily. If G # Hjg, then by Lemma
2.1, G € Uz(m) implies that G = Cap, or G is a graph of maximum degree
three obtained by attaching some pendent vertices to a cycle. If G = Cy,y,,
then from (10}, WW(Com) = L(2m* + 3m3 + m?) > 1 (25m —61lm +42).

Suppose that G # Cyp,,. Then G is a graph of maximum degree three
obtained by attaching some pendent vertices to a cycle Cx, where m < k <
2m - 1.

If & = m, then every vertex on the cycle has degree three, and for any
pendent vertex z and its neighbor y :

if m > 4is even, then WW(G) = 2 (DG($)+DG(y)+DDG(:c)+DDa(y)) =
-';l(-;-(m2 +6m — 4) + 3(m? + 2m) + §(m3 + 9Im? + 32m — 24) + {(m3 +
3m? + sm)) = 5 (m* + 9m3 + 32m? — 18m) > 1(25m? — 61m + 42).

If m > 5 is odd, then as above WW(G) = -’4'-'(—21-(m2 + 6m — 5) +
1(m? + 2m — 1) + (m® + 9m? + 29m — 33) + 1(m® + 3m? + 5m — 3)) -
15(m® + 9m3 + 20m? — 27m) > 1(25m? — 61m + 42).
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Ifm+4+1<k<2m-2, then m > 5 or (m, k) = (4,6) since G # Hg, by
Lemmas 2.3 and 3.2, for some Uy, (k), we have WW(G) > WW (Uay, (k)) >
3(25m? — 61m + 42).

If k = 2m — 1, then G is the graph obtained from Cj by attaching a
pendent vertex, By direct computation, we have WW(G) = (2m* +m? +
4m? +5m — 6) > 1(26m? —6lm +42) for m > 4. B

In the following, if G is a graph in U;(m) with a perfect matching M,
then u is a pendent vertex whose neighbor v is of degree two in G, and w
is the neighbor of v different from u. Obviously, uv € M. Since |M| =m,
we have dg(w) <m +1.

Let Hg be the graph obtained by attaching a pendent vertex to Cs. Let
Hg be the graph obtained by attaching a pendent vertex to every vertex of
a triangle. Let H{ be the graph obtained by attaching two pendent vertices
to two adjacent vertices of a quadrangle. It may be easily verified that the
following lemma holds.

Lemma 3.3 Among the graphs in U(6,3), Hg is the unique graph with
minimum hyper-Wiener index 39, and Hg, Hf, Ugs and Cg are the only
graphs with the second minimum hyper- Wiener indez 42.

Lemma 3.4 Let G € U(8,4). Then WW(G) > 99 with equality if and
only if G = Hg or Ug 4.

Proof. If G € Uy(4), then by Lemma 3.2, WW(G) > 99 with equality if
and only if G = Hj.

If G € Uy (4), then G—u—v € U(6,3). If G~u—v # Hg, then by Lemma
24 WW(G) > WW(G—u—v)—Tdg(w)+16n—36 > 42—35+128—36 = 99,
with equality if and only if G — v — v = Hg, H{, Ug 3 or Cg, dg(w) = 5,
ecc(w) =2, i.e.,, G =Ug 4.

If G — u — v = Hg, then dg(w) < 4, and by Lemma 2.4, WW(G) >
WW (Hs) — Tde(w) +16n — 36 > 39 — 28+ 128 — 36 = 103 > 99. The result
follows. B

Lemma 3.5 Let G € U(10,5). Then WW(G) > 181 with equality if and
only if G = Uyp 5.

Proof. If G € Uy(5), then by Lemma 3.2, WW(G) > 181. If G € U;(5).
Then G —u — v € U(8,4). By Lemma 2.4 WW(G) > WW(G —u —v) —
7dg(w) + 16n — 36 > 99 — 42 + 160 — 36 = 181, with equality if and only if
G-u—v= U3,4, d(;(‘w) = 6, ecc(w) = 2, i.e., G= Uloys. |

Theorem 3.6 Let G € U(2m,m), where m > 2.
(i) If m = 3, then WW(G) > 39 with equality if and only if G = Hs.
(i) If m # 3, then WW(G) 2> 1(25m? — 61m + 42) with equality if and
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only if G = Cy, Uy form = 2; G = Hg, Ug 4 for m =4; and G = Uppym
form > 5.

Proof. The case m = 2 is obvious since U(4,2) = {Cy,Us 2}, WW(Cy) =
WW (Uy,2) = 10. The cases m = 3 and m = 4 follow from Lemmas 3.3 and
3.4, respectively.

Suppose that m > 5. Let g(m) = %(25m2 — 61m + 42). We prove the
result by induction on m. If m = 5, then the result follows from Lemma 3.5.
Suppose that m > 6 and the result holds for graphs in U(2m — 2,m — 1).
Let G € U(2m,m). If G € Uy(m), then by Lemma 3.2, WW(G) > g(m).
If G € Uy(m), then G — v —v € U(2m — 2,m — 1), and thus by Lemma 2.4
and the induction hypothesis, it is easily seen that WW(G) > WW (G —
u—v)—Tdg(w)+16n—36 > g(m —1) — 7(m+1) + 32m — 36 = g(m), with
equality if and only if G —u—v = Uppn_1),m-1, do(w) = m+1, ecc(w) = 2,
ie,G= Uzm,m. [ ]

Let H7 be the graph obtained by attaching two pendent vertices to a
vertex of Cs.

Theorem 3.7 Let G € U(n, m), where2 <m < |Z].
(i) If (n,m) = (6,3), then WW(G) > 39 with equality if and only if G =
H

6-
(ii) If (n,m) # (6,3), then WW(G) > 1(3n?+6mn—19n+m? —23m +42)
with equality if and only if G = Cp, Upn 2 for (n,m) = (4,2),(5,2); G = Hy,
Uz 3 for (n,m) = (7,3); G = Hg, Ug4 for (n,m) = (8,4); and G = U,y
for m > 5.

Proof. The case (n,m) = (6,3) follows from Lemma 3.3. Suppose that
(n,m) # (6,3). Let g(n,m) = 1(3n% 4 6mn — 19n + m? — 23m + 42).

For C%, we have WW (C7) = 70 > ¢(7,3) = 61. For C, with n > 8,
we have either n = 2m, bear in mind that (n,m) # (6,3), WW(C,) =
@mt +3m® + m?) > g(n,m) = 1(25m? — 61m + 42); or n = 2m + 1,
WW(Cy) = §(2m* + Tm® + Tm? + 2m) > g(n, m) = 1(25m? — 43m + 26).

If G # C, with n > 2m, then by Lemma 2.2, there exists a pendent
vertex z and a maximum matching M such that z is not M-saturated in G,
and thus G —z € U(n — 1, m). Let y be the unique neighbor of z. Since M
contains one edge incident with y, and there are n — m edges of G outside
M, we have dg(y) < n—m+1.

Case 1. m = 2. The result for n = 4 is obvious as in previous theo-
rem. The result for n = 5 may be checked directly as there are only five
possibilities for G. For n > 6, it is known in [5] that Uy 2 is the unique
unicyclic graph on n vertices with minimum hyper-Wiener index, and thus
the unique graph in U(n,2) with minimum hyper-Wiener index.

Case 2. m =3. If n =7, then G —z € U(6,3). If G — z = Hg, then
dc(y) < 4, and by Lemma 2.4, WW(G) > WW (G —z) —3de(y) +6n—8 >
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39—12+442—8 = 61, with equalities if and only if da(y) = 4 and ece(y) = 2,
i.e., G= H7.

If G — = # Hg, then by Lemma 2.4 we have WW(G) > WW(G — z) —
3dg(y) + 6n — 8 > 42 — 15 + 42 — 8 = 61, with equalities if and only if
G —z = H}, Hf, Us3 or Cs. dc(y) =5 and ecc(y) = 2, i.e., G = Ups.
Thus, for n = 7, we have WW(G) > 61 with equality if and only if G = H7
or U7’3.

For n > 8, we prove the result by induction on n. If n = 8, then
G-z € U(7,3). By Lemma 2.4, WW(G) > WW(G—z)—3dg(y)+6n—8 >
61 — 18 + 48 — 8 = 83, with equalities if and only if G — z = Hz or Uz 3,
de(y) = 6 and ecc(y) =2, i.e., G = Uss.

Suppose that n > 9 and the result holds for graphs in U(n — 1,3).
By Lemma 2.4 and the induction hypothesis, WW(G) > WW(G - z) —
3dg(y) +6n—8 > 3(3n? —Tn—14) — 3(n— 2) + 6n— 8 = 1(3n® —n - 18),
with equalities if and only if G —z = Up_1,3, da(y) = n—2 and ecc(y) = 2,
ie, G=Uyga.

Case 3. m = 4. The case n = 8 follows from Lemma 3.4. For n > 9,
we prove the result by induction on n. If n = 9, then G — z € U(8,4),
and by Lemmas 3.4 and 2.4, WW(G) > WW(G —z) — 3de(y) + 6n—8 >
99 — 18 + 54 — 8 = 127, with equalities if and only if G — z = Hg or Ugg,
dg(y) = 6 and ecc(y) = 2, i.e., G =Uyy.

Suppose that n > 10 and the result holds for graphs in U(n — 1,4).
By Lemma 2.4 and the induction hypothesis, WW(G) > WW(G - z) —
3dg(y) +6n — 8 > 1(3n? —n —36) — 3(n = 3) + 6n — 8 = 3(3n® + 5n — 34),
with equalities if and only if G —z = Up_1 4, de(y) = n—3 and ecc(y) = 2,
i.e., G= Un,4.

Case 4. m > 5. We prove the result by induction on n. If n = 2m,
then the result follows from Theorem 3.6. Suppose that n > 2m and the
result holds for graphs in U(n — 1,m). Let G € U(n,m). By Lemma 2.4
and the induction hypothesis, it is easily seen that WW(G) > WW (G —
z) —3de(y) +6n—8 > g(n—1,m) — 3(n—m+1) +6n — 8 = g(n, m), with
equality if and only if G —z = Up—1,m, da(y) =n—m+1, ecc(y) =2, i.e,
G=Upm B
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