APPLICATIONS OF LIU’S ¢-SERIES EXPANSION
FORMULA

GAOWEN XI

ABSTRACT. In this paper, we show new proofs of some important
formulas by means of the Liu's expansion formula. Our results in-
clude a new proof of identity for sums of two squares, a new proof of
Gauss's identity, a new proof of Euler’s identity and a new proof of
the identity for sums of four squares.

1. Introduction '

We shall follow the notation and terminology in [3]. For two complex ¢
and z, the shifted factorial of order n with base g is defined by:

1, =0,
@ D= { {{ - o)1 - s)a =) (1 -2, b, 0D
(%5 @)oo = lim (z; q)n = [J(1-2¢*), lql< 1. (1.2)
k=0

Where | g |< 1 in order for the infinite products to be convergent. It is
easy to check that the shifted factorial whit negative integer order is give

by
(—q/z)"q""~1/2
(a/z; @)n

The product and fractional forms of shifted factorial are abbreviated
compactly to

(@8, 171 Dn = (@) (B;@)n - (1:@)n-

(1.3)

(7 @-n=
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Following Bailey [2] and Slater [6], the basic hypergeometric series 4195
is defined by

+l¢ ap, ai, -+, @Gr
T by, -+, bs

[ <]
ap, @1, ***, QG
ozl =

x ((-1ymge/2) T on (La)

The g-differential operator about z is defined by
z)— f(z
D, +{f(z)} = 1B 1ED), (15)

By convention, D , is understood as the identity.
The Leibniz rule for Dy,  is the following identity {5, p.233]

D, Ag@ha)} = Lo 2] Db (oD D F et (1)

k=0
It is easy verify the following property of Dy, ;:
(tz; q)oo} (td"z; 9)oo
Dr {20 L gh(tfs; gt 1.7
@ {(sz; 9)oo /% Dz Dew (L.7)
On stetting t = 0, we have
1 s"
D? { } = . 1.8
“* 0% 0= ) ~ % O (49)

In [4], Zhi-Guo Liu utilizes Leibniz formula for the g-difference operator
to obtain the following g-expansion formula:

X (1 — ag®™)(ag/b; q)nb"

) = 3 E=H R (07 (1) Do g (19
where f(b) is a formal series in b. This expansion formula leads to new
proofs of the Rogers-Fine identity, the nonterminating ¢¢s summation for-
mula, and Watson’s g-analog of Whipple’s theorem. Andrew’s identities
for sums of three squares and suns of three triangular numbers are also
derived, etc.

By Jacobi’s triple product identity and Ramanujan’s 11;-bilateral for-
mula, the identities for sums of two squares and sums of four square are
proved [3]. In this paper, we shall derive two g-expansion formulas using
(1.9). By these new g-expansion formulas, we will provide new proofs of
identity for sums of two squares, Gauss's identity , Euler’s identity and
identity for sums of four squares. By these g-expansion formulas, we give

also g@4-series, 7¢s-series summation formulas.
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2. New Proof of Identity for Sums of Two Squares

By the definition of D, ; and the g-expansion formula (1.9), we imme-
diately have the following lemma.

Lemma 2.1.

(bt’mI; Q)oo =°° (1 a'qzn)(a’aq/b tq ™ ‘I)nbn n(n=1) (2 1)
(b, atq; g)oo (1-a)(g,b,atg; q)n '

n=0
Proof. Now, we apply (1.9) to the function

(%; @)oo

1) = G (2.2)
Using (1.7) , we find that
(D} AF(2)(@; Q)ne1}emaq = [ D, {(_qutz_lz)%;}L
= [q"("_l) (tg'™™; @)n H} omag

— (088 Doola8; D1t G -1y,
(ag; g)eo(atq; g)n

Substituting this into (1.9), we obtain (2.1). O

Now we give our new proof of the identity for sums of two squares.

Theorem 2.2. (Identity for sums of two squares [1])

oo [= ] 2
S (~1)rra(n)g” = [ ) (-1)“qﬂ’]
n=0 n=—00

_ & 9%
(-¢; 9%
n n(n+l)/2
—1+4Z( 1)1+q . (2.3)
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Proof. In (2.1), settinga =1, t = -1, b= —q, we have

(3 9% (1 - ¢*)(g, @)n-1(=1,~-¢*"" @)n
[ +,; (4,-0:—9; 9n

(—¢; @)n—1 2
=1 +4Z n(n—l)’/2(_q. Dn (-1)"¢"

(_q)nqn(n—l)

_ ( l)n n(n+1)/2
1+4Z i

Hence Theorem 2.2 is proved. [

3. New Proofs of Gauss’s Identity and Euler’s Identity

In (2.1), setting t = 0, then

(ag; @)oo (1 _aq2n) (a,a9/b; @n,p n(n-1)
& Do > T-a@bhon ¢ 31)

Hence, we have

n=0

Theorem 3.1. (Gauss’s identity [1])

(qi Q)OO z ( l)n n? (32)

"q Q)oo n=—oo

Proof. In (3.1), setting a =1, b = —q, we have

(q, q)oo —14 Z (1-g¢ "L(Iq,_ ?n;)l(-l; Qn (=g

=1 +2Z(—1)"q"’

n=1

+o00 2
= Y (-1)g™.

n=-00

Or, in (2.1), setting @ = q, t = —g~1, letting b — 0, we have

260



(@ Qoo _ §= (1= a")(gs (=g Qul=D)"g" 2 oy
(-4 Do = (1-9)(g:—9 9)n
_ Z (1 _ 2n+1)(_q; q)n(_l)nq—n(n+1)/2qn(n+3)/2
(1-9)~g; 9)n
( l)n(l_ 2n+1)
_Z (1-4q)

1 +00

=1—¢ > (-1

n=-00

qn(n—l)

q

Hence Theorem 3.1 is proved. [
Theorem 3.2. (Euler’s identity [3])

(@ Qoo = i (~1)ngn@n+i/2, (3.3)

n=—00

Proof. In (3.1), setting a = g, b — 0, we have

2 _ = (A=) (g g)a(=1)gnntI2
(@ Qe = (1-9)(g 9)n 1

n=0

n-1)

_ i (1- ‘12"+1)(-1)"qn(3n+1)/2
n=0 (1 -

= E ( l)n n(3n+1)/2

ﬂ.-——m

Hence Theorem 3.2 is proved. [

4. New Proof of Identity for Sums of Four Squares

In this section, we will provide a new proof of the identities for sums of
four squares. First,we have the following lemma.

Lemma 4.1.
(B¢, bu, ag, avg; g)oo _ i (1—ag®")(a,aq/b; g)nb" i n
(b, bv, atg, aug; g)eo (1-a)(gboug; 9)n  Z LK

x(tql " avg; q)k(u/v; @n—k k(n—l)vn—k (4.1)
(atq, q)k

n=0
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Proof Now, we apply (1.9) to the function

_ (bt, bu; q)oo
T0 = &0 9 (42

Taking
(@ Dn-1(t7; Qoo _ _(t7; Qoo (u%; @)oo
= = , h = ————
o(=) (2; @)oo (2"~} @)oo (=) (vz; 9)oo
in the Leibniz formula and using (1.7), we find that
n . _ = [n] kte=m) o (tz; @)oo
[Dq, 1f(@)(Z; @)n-1}z=aq = Lgo [k] q Dq, z {(zqn—l; oo

x Dp=k {%ﬂ——%;: }] z=ag

tT; @)oo 1)l (te*z; @)oo
Dk { ( }] = [ k(n—-1) t 1 n; _\Yd <y 4)00
% =\ (zg™1; oo s—ag q (tq Dk (4™ 1; @)oo smag

_ (atg; @)oo(ag; @)n-1(tg"~"; @)k 5D (4.3)
(ag; 9)o(aty; q)k

k. 7 e
Dn__.,k {(uq T; @)oo }] = [,vn-k k(n=k) (4 [oy; —x (ug"z; ‘I)oo]
[ 27\ (v¢*2; @)oo J ] rmaq 1 (/v @) (vq*Z; 9)oo ] zag

_ (oug; g)oo(avg; Q)(u/v; @)n-tk
(evq; @)oo(aug; ¢)n

Xy =k gk(n=k) (4.4)
So
n . _ IS~ 7] jkk-m pr (tz; 9)oo
[Dq, z{f(x)(z! Q)n—l}]:::aq [kzr—o [k] q Dq, z {(an—l; Q)oo }

nek [ (ug*Z; @)oo
X Do’z {(vq"z; ?oo }L=aq
= zn: [n (atg, aug; @)oo(ag; @)n-1(ta*~"; @)x(avg; @)i(u/v; @n—k
k (ag,avg; g)oo(atq; @)x(aug; g)n

k=0
xq
Substituting this into (1.9), we obtain (4.1). O

k(n—1),n—k
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Theorem 4.2. (Identity for sums of four squares [3)])

00 ‘o0 4
Y (-Drra(n)g” = {Z (-D"q’*’]
n=0 Nn=—00

(¢; 9)%

(-¢; 9)%

= 148) ((1;41_)%;. (4.5)

n=1

Proof In (4.1),settinga=v=1, t=u= -1, b= —q, we have
6% _ . i (1= *)(g; Dn-1(=1; Qn(—9)"
-o 9% = (0.-9, - 9)n

y i [n] (g, -¢'™™ Dr(=1; Qn—r =D

=Lk (—¢ O

_1+4§( —)"e" 5 H(q’-QH;q)k(—q;q)n_k'lq"‘"‘”
(g 9)m 2- (—g;9)x
k=0

n=1

o o)
(0, =" (=G Dn—k_k(k-1)/2
— 1 4 1 n_.n )/
* z( y'a ;[ T e

_ (=1)"q" (@ Dk k17
1+4Z T+q" & { Caal (46)

n=1

We now apply the ¢-Chu-Vandermonde identity (3]

L@ e ae e
k=0 n

In (4.7), taking ¢ = —q,b = g, then

3 {6 Dk k-2 _ _2
kz:%[ ] @ D" “ire (4.8)

On substituting (4.8) into (4.6), We obtain (4.5). Hence Theorem 4.2 is
proved. O

In (2.1), replacing ¢ by /g, by (1.4) we obtain a summation formula for
7¢s-series.
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Corollary 4.3.

o VaG, —vag ayalb, t02 - - |

765 [ NCT Vegq a\/\/q_a/’ Q_ﬁ’ b atyd I VG —b]
—_ (bt!a‘\/a; \/6)00 (4 9)
B (b,at\/Ei; \/6)00' )

In (3.1), replacing q by /g, by (1.4) we obtain also a summation formula
for g¢4-series.

Corollary 4.4.

o G Ly IV

_ _<"(f;f;/)‘7l°°. (4.10)
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