On (l, m)-Walk-regular Digraphs *

Wen Liu

a. College of Mathematics and Information Science,
 Hebei Normal University, Shijiazhuang, 050016, China;
 b. Hebei Mathematics Research Center, Shijiazhuang, 050016, China

Abstract

In this paper, we introduce a class of digraphs called (l, m)-walk-regular digraphs, a common generalization of both weakly distance-regular digraphs[1] and k-walk-regular digraphs[3] and give several characterization of them about their regularity properties that are related to distance and about the number of walks of given length between vertices at a given distance.

1 Introduction

Let $\Gamma=(V,E)$ be a digraph with the vertex set V and the arc set E. If $(u,v)\in E$, we say that u dominates v. The set of vertices of Γ dominated by u is said to be the out-neighbors of u, denoted by $\Gamma_1^+(u)$. The set of vertices of Γ dominating u is said to be the in-neighbors of u, denoted by $\Gamma_1^-(u)$. A digraph is said to be out(in)-regular if the number of out(in)-neighbors of u, $|\Gamma_1^+(u)|(|\Gamma_1^-(u)|)$, is independent of u for any $u\in V$ and the digraph is said to be regular if $|\Gamma_1^+(u)|=|\Gamma_1^-(u)|$ for every $u\in V$. A walk of length t in Γ is a sequence $(u_0,u_1,...,u_t)$ of vertices such that $(u_{i-1},u_i)\in E,\ i=1,2,...,t$. The number of arcs traversed in a shortest walk from u to v is called the distance from u to v in Γ , denoted by $\partial(u,v)$. The maximum value of the distance function in Γ is called the diameter of Γ . A digraph Γ is said to be strongly connected if, for any two distinct vertices u and v, there is a walk from u to v. The distance—k digraph Γ_k is the digraph with vertex set V and where there is an arc from u to v if and only if $\partial(u,v)=k$ in Γ for any vertices u and v.

Let Γ be a digraph with diameter D. For $0 \le k \le D$, the distance-k matrix A_k , is defined by

^{*}Research supported by National Natural Science Fund of China(10771051,10971052) and Science Foundation of Hebei Education Department(2009134).

$$(A_k)_{uv} := \left\{ egin{array}{ll} 1 & ext{if } \partial(u,v) = k, \\ 0 & ext{otherwise.} \end{array} \right.$$

In particular, $A_0 = I$, $A_1 = A$ is called the adjacency matrix of Γ and A_k is the Γ_k 's adjacency matrix.

The spectrum of the digraph Γ , consisting of the eigenvalues of A together with their multiplicities, is denoted by $\operatorname{sp}\Gamma$: $\operatorname{sp}\Gamma=\{\lambda_0^{m_0},\lambda_1^{m_1},\cdots,\lambda_d^{m_d}\}$. Thus m(x), the minimal polynomial of Γ can be described as $m(x)=(x-\lambda_0)^{r_0}(x-\lambda_1)^{r_1}\cdots(x-\lambda_d)^{r_d}$, where $r_i\leq m_i,\ i=0,1,\cdots,d$, with degree $\sum_{i=0}^d r_i\triangleq t+1\geq d+1$ since A may not be a symmetric matrix.

Let $\overline{\mathcal{A}(\Gamma)}$ be the adjacency algebra of Γ , that is, $\mathcal{A}(\Gamma)$ is the algebra spanned by A in \mathbb{C} . It is known that $\{I, A, \dots, A^t\}$ is a basis of $\mathcal{A}(\Gamma)$ and $\mathcal{A}(\Gamma) \cong \mathbb{C}_t[A] = span\{I, A, A^2, \dots, A^t\}$. It is immediate that $t \geq D$ if we notice that the powers I, A, A^2, \dots, A^D are linearly independent.

If $AA^* = A^*A$, where A^* is the transpose of A's conjugate, then A is said to be normal and the digraph with A as its adjacency matrix is said to be a normal digraph. About normal matrices, there are the following properties:

Proposition 1.1 ([1]) Let A be an $n \times n$ complex matrix with eigenvalues $\lambda_0, \lambda_1, \ldots, \lambda_{n-1}$. Then A is normal if and only if any of the following assertions holds:

- (a) $U^*AU = D$ for some matrix U such that $UU^* = I$, and $D = \operatorname{diag}(\lambda_0, \lambda_1, \dots, \lambda_{n-1})$.
- (b) $A^* = p(A)$ for some polynomial $p \in \mathbb{C}[x]$.
- (c) $tr(AA^*) = \sum_{i=0}^{n-1} |\lambda_i|^2$.

If Γ is normal, then $r_i = 1$, $(i = 0, 1, \dots, d)$, t = d and from Proposition 1.1(a), we know that the eigenvectors of a normal $n \times n$ square matrix constitute an orthogonal basis of the vector space \mathbb{C}^n . Notice that If Γ is a normal digraph, then for any vertex u, we have $|\Gamma_1^+(u)| = (AA^*)_{uu} = (A^*A)_{uu} = |\Gamma_1^-(u)|$ and then

Proposition 1.2 A normal digraph Γ is out-regular if and only if Γ is in-regular, further a normal digraph Γ is regular if and only if Γ is out(in)-regular.

In the next section, we will introduce the definition of (l,m)-walk-regular digraphs, which is a generalization of weakly distance-regular digraphs[1], a class of digraphs different with those defined in [2] by K.Wang and H.Suzuki, and also a generalization of m-walk-regular digraphs[3]. The following are the definitions about weakly distance-regular digraphs and m-walk-regular digraphs.

Definition 1.1 ([1]) A digraph Γ of diameter D is weakly distance-regular if, for each nonnegative integer $l \leq D$, the number a_{uv}^l of walks of length l from vertex u to vertex v only depends on their distance $\partial(u,v) = k$, for any $l = 0, 1, \dots, D$. In this case we write $a_{uv}^l = a_k^l, 0 \leq k, l \leq D$.

Definition 1.2 ([3]) $\Gamma = (V, E)$ is said to be a k-walk-regular digraph if, for a given integer k, $(0 \le k \le D)$, the number of walks of length l, $a_{uv}^l = (A^l)_{uv}$, from vertex u to vertex v only depends on the distance from u to v, provided that this distance does not exceed k. In this case we just denote the number by a_k^l .

2 Main Results

Definition 2.1 Let Γ be a strongly connected digraph with diameter D and d+1 distinct eigenvalues. Γ is said to be (l,m)-walk-regular if the number of walks of length $i \leq l$ from u to v with $\partial(u,v) = k \leq m$, $a^i_{uv} = (A^i)_{uv}$ does not depend on such vertices u and v, but depends only on i and k, where $l \leq t$ and $m \leq D$ satisfying $l \geq m$ are two given integers. In this case we just denote the number by a^i_k .

It is easy to see that if Γ is (l,m)-walk-regular and " o " is the Hadamard-entrywise-product of matrices, then for each $0 \le i \le l$ and $0 \le j \le m$, we have $A^i \circ A_j = \left\{ \begin{array}{ll} a_j^i A_j & if \quad i \ge j \\ 0 & otherwise \end{array} \right.$ Also the (l,m)-walk-regular digraphs must be (l',m')-walk-regular for any positive integers l',m' with $l' \le l$ and $m' \le m$. And this concept does generalize the concepts of weakly distance-regular digraphs and m-walk-regular digraphs. In fact, (t,m)-walk-regular digraphs coincide with the m-walk-regular digraphs, and (D,D)-walk-regular digraphs are exactly the weakly distance-regular digraphs.

Theorem 2.1 Let Γ be a strongly connected digraph with diameter D and distance matrices $\{A_k\}_{k=0}^D$. Let m be an integer with $0 \le m \le D$. Then the following is equivalent.

- (i) Γ is (m, m)-walk-regular;
- (ii) The distance matrices A_k , $k = 0, 1, \dots, m$, is a polynomial of degree k in the adjacency matrix A; that is, $A_k = p_k(A)$, for each $k = 0, 1, \dots, m$, where $p_k \in \mathbb{C}[x]$;
 - (iii) For each pair of $i, k, 0 \le k \le m, 0 \le i \le m-1$, the number

$$p_{i,1}^k(u,v) = |P_{i,1}^k(u,v)| = |\Gamma_i^+(u) \cap \Gamma_1^-(v)|$$

is a constant for all u, v such that $\partial(u, v) = k$.

(iv) For each triple of $i,j,k,0 \le i,j,k \le m$ and $i+j \le m$, the number, $p_{i,j}^k(u,v) := |P_{i,j}^k(u,v)| := |\Gamma_i^+(u) \cap \Gamma_j^-(v)|$, is a constant for all u,v such that $\partial(u,v) = k$.

Proof. (i) \Longrightarrow (ii): Suppose for any nonnegative integer $i \leq m$, the number a_{uv}^i only depends on the distance from u to v. Then

$$A^{i} = a_{0}^{i}I + a_{1}^{i}A + a_{2}^{i}A_{2} + \dots + a_{i}^{i}A_{i}, (0 \le i \le m), \tag{1}$$

where, necessarily, $a_i^i \neq 0$ and $a_k^i = 0$ for any k > l. In matrix form

$$\begin{pmatrix} I \\ A \\ A^{2} \\ \vdots \\ A^{m} \end{pmatrix} = \begin{pmatrix} a_{0}^{0} & 0 & 0 & 0 & \dots & 0 \\ a_{0}^{1} & a_{1}^{1} & 0 & 0 & \dots & 0 \\ a_{0}^{2} & a_{1}^{2} & a_{2}^{2} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{0}^{m} & a_{1}^{m} & a_{2}^{m} & a_{3}^{m} & \dots & a_{t}^{t} \end{pmatrix} \begin{pmatrix} I \\ A \\ A_{2} \\ \vdots \\ A_{m} \end{pmatrix}, \quad (2)$$

where $C := (a_k^i)$ is a lower triangular matrix. Since $a_i^i > 0$ for any $0 \le i \le m$, the matrix C is non-singular and its inverse C^{-1} is also a lower triangular matrix. Hence A_k is a polynomial of degree of k in A for any $0 \le k \le m$:

$$A_k = p_k(A) = \alpha_0^k I + \alpha_1^k A + \alpha_2^k A^2 + \dots + \alpha_k^k A^k, (0 \le k \le m),$$
 (3)

where $\alpha_k^k \neq 0$, as desired.

(ii) \Longrightarrow (i): Let us assume that there are constants α_i^k , with $\alpha_k^k \neq 0$, $(0 \leq k, i \leq m)$ satisfying (3). This implies that Equations (2) and (1) hold with $C = (a_k^i)$ being the inverse matrix of $C^{-1} = (\alpha_k^i)$, and, hence the number of walks of length i $(0 \leq i \leq m)$ from one vertex to another vertex only depends on their distance.

(ii) \Longrightarrow (iv) Suppose $A_k = p_k(A)$, for $k = 0, 1, \dots, m$, is a polynomial of degree k in A. Set $\mathcal{M} = \{f(A)|f(A) \in \mathcal{A}(\Gamma), deg(f) \leq m\}$. Then \mathcal{M} is a subspace of $\mathcal{A}(\Gamma)$ and $\{I, A, \dots, A_m\}$ is a basis of \mathcal{M} . Thus for any i, j, k such that $0 \leq i, j, k \leq m$ and $0 \leq i + j \leq m$,

$$A_i A_j = p_i(A) p_j(A) = \sum_{k=0}^m \gamma_{i,j}^k A_k.$$

Let u and v be two vertices of digraph Γ such that $\partial(u,v)=k$ $(0 \le k \le m)$. Notice that the number $p_{i,j}^k(u,v)$ representing the number of vertices at distance i from u and at distance j to v, coincides with the (u,v)-th entry of the matrix A_iA_j , we have $p_{i,j}^k(u,v)=\gamma_{i,j}^k=p_{i,j}^k,\ 0 \le i,j,k \le m,0 \le i+j \le m$, for any two vertices u,v at distance k. (iv) \Longrightarrow (iii) is obvious so it suffices to prove (iii) \Longrightarrow (ii).

If for $0 \le i \le m-1$,

$$A_i A_1 = \sum_{k=0}^{i+1} p_{i,1}^k A_k.$$

We can use an inductive argument starting from $A_0 = I$, $A_1 = A$ to deduce that the distance matrix A_k $(0 \le k \le t)$ is indeed a polynomial of degree k in the adjacency matrix A. \square

For a given digraph Γ with adjacency matrix A, we consider the following scalar product in $\mathbb{C}[x]$:(see [1])

$$\langle p, q \rangle = \frac{1}{n} tr(p(A)q(A)^*)$$

It is obvious that the product is well defined in the quotient ring $\mathbb{C}[x]/(m(x))$. Notice that $1, x, x^2, \dots, x^t$ are linear independent in $\mathbb{C}_t[x]$, then by using the Gram-Schmidt method and normalizing appropriately, it is immediate to prove the existence and the uniqueness of the orthogonal system of polynomials $\{p_k\}_{0 \leq k \leq t}$ called predistance polynomials, which, for any $0 \leq h, k \leq t$, satisfy:

- (1) $deg(p_k) = k$;
- (2) $\langle p_h, p_k \rangle = 0$, if $h \neq k$;
- (3) $||p_k||^2 = p_k(\lambda_0)$.

Recall that, in a weakly distance-regular digraph, we have D=d=t([1], Theorem 2.2) and such polynomials satisfy $p_k(A)=A_k, \ 0 \leq k \leq d$. If the d+1 distinct eigenvalues $\lambda_0, \lambda_1, \ldots, \lambda_d$ satisfy the condition that $|\lambda_0| \geq |\lambda_1| \geq \ldots \geq |\lambda_d|$, then by the Perron-Frobenius theorem, λ_0 is simple and has a positive eigenvector \mathbf{v} . Further if Γ is k-regular, then we may pick $\mathbf{v}=\mathbf{j}$, where \mathbf{j} denotes the all 1- vector, and $\lambda_0=k$. Consequently, if Γ is regular and (m,m)-walk-regular, $A_k\mathbf{j}=p_k(A)\mathbf{j}=p_k(\lambda_0)\mathbf{j}$. So the number n_k of vertices at distance k from any given vertex is equal to $p_k(\lambda_0)$, for each $k=0,1,\cdots,m$. In the following we will give some characterization of (l,m)-walk-regular digraphs,

Lemma 2.2 Let Γ be a (l,m)-walk-regular digraph, then for any $p \in A_l$ with $deg(p) = h \leq l$ and any integer j with $0 \leq j \leq m$, $p(A) \circ A_j = r_j(p)A_j$, where $r_j(p)$ is a real number depending only on the polynomial p and the integer j.

Proof. Let
$$p(x) = a_0 + a_1x + \cdots + a_hx^h$$
. Then

$$p(A) \circ A_j = (a_0 I + a_1 A + \cdots + a_h A^h) \circ A_j$$

$$=(a_0I)\circ A_j+(a_1A)\circ A_j+\cdots+(a_hA^h)\circ A_j=\sum_{i=j}^ha_ia_j^iA_j=(\sum_{i=j}^ha_ia_j^i)A_j\triangleq r_j(p)A_j,$$

where $r_j(p) = \sum_{i=1}^h a_i a_i^i$, a real number depending only on p and j. \square

Theorem 2.3 Let Γ be a regular digraph with predistance polynomials p_0, p_1, \dots, p_t . Then the following statements are equivalent.

(i) Γ is (l, m)-walk-regular;

(ii)
$$p_i(A) \circ A_j = \delta_{ij}A_i$$
, $0 \le i \le l$, $0 \le j \le m$.

Proof. (i) \Rightarrow (ii). Suppose that Γ is (l, m)-walk-regular, we have that $p_i(A) = A_i$, $0 \le i \le m$ by Theorem 2.1. It is obvious that $p_i(A) \circ A_j = \delta_{ij}A_i$ for $0 \le i, j \le m$.

For $m+1 \le i \le l$, $0 \le j \le m$, $p_i(A) \circ A_j = r_j(p_i)A_j$ from the Lemma above. Notice that Γ is regular and (l,m)-walk-regular we have $p_j(\lambda_0) = \frac{1}{n}Sum(A_j) = \frac{1}{n}Sum(p_j(A))$. So

$$\begin{split} r_j(p_i) \cdot p_j(\lambda_0) &= r_j(p_i) \cdot \frac{1}{n} Sum(p_j(A)) = \frac{1}{n} Sum(r_j(p_i)p_j(A)) \\ &= \frac{1}{n} Sum(r_j(p_i)A_j) = \frac{1}{n} Sum(p_i(A) \circ A_j) = \frac{1}{n} Sum(p_i(A) \circ p_j(A)) \\ &= \frac{1}{n} Sum(p_i(A) \circ \overline{p_j(A)}) = \frac{1}{n} tr(p_i(A)p_j(A)^*) = \langle p_i, p_j \rangle = 0. \end{split}$$

Thus $r_j(p_i) = 0$ for $p_j(\lambda_0) \neq 0$. Therefore $p_i(A) \circ A_j = 0$, as desired.

(ii) \Rightarrow (i). Let $x^h = \sum_{i=0}^h a_i^h p_i$ for $h \le l$. Then for each pair of vertices u, v with $\partial(u, v) = j \le m$ and $h \le l$ we have

$$(A^h)_{uv} = (A^h \circ A_j)_{uv} = \sum_{i=0}^h a_i^h (p_i(A) \circ A_j)_{uv} = a_j^h.$$

Consequently, Γ is (l, m)-walk-regular. \square

We define the preintersection number in the same way as in [4]:

$$\xi_{ij}^{k} = \frac{\langle p_i p_j, p_k \rangle}{\|p_k\|^2} = \frac{1}{n \|p_k\|^2} tr(p_i(A) p_j(A) p_k(A)^*).$$

Proposition 2.4 Let $t \geq l \geq m \leq D$, Γ be a (l,m)-walk-regular digraph, and let $i,j,k \leq m$. If $i+j \leq l$, then the preintersection numbers ξ_{ij}^k equals the well defined intersection numbers p_{ij}^k . If $i+j \geq l+1$, then the preintersection numbers equal the average \overline{p}_{ij}^k of the values $p_{ij}^k(u,v) = |\Gamma_i^+(u) \cap \Gamma_j^-(v)|$ over all vertices u,v with $\partial(u,v) = k$.

Proof. For $i + j \le l$,

$$\xi_{ij}^{k} = \frac{1}{n \|p_{k}\|^{2}} tr(p_{i}(A)p_{j}(A)p_{k}(A)^{*}) = \frac{1}{n p_{k}(\lambda_{0})} Sum(p_{i}(A)p_{j}(A) \circ \overline{p_{k}(A)})$$

$$= \frac{1}{np_k(\lambda_0)} Sum(p_i(A)p_j(A) \circ p_k(A)) = \frac{1}{np_k(\lambda_0)} Sum(A_iA_j \circ A_k)$$

$$= \frac{1}{np_k(\lambda_0)} \sum_{\partial(u,v)=k} (A_iA_j)_{uv} = \frac{1}{nn_k} \sum_{\partial(u,v)=k} \sum_{w} (A_i)_{uw}(A_j)_{wv}$$

$$= \frac{1}{nn_k} \sum_{\partial(u,v)=k} |\Gamma_i^+(u) \cap \Gamma_j^-(v)| = |\Gamma_i^+(u) \cap \Gamma_j^-(v)|$$

with $\partial(u, v) = k$ and the number is p_{ij}^k . For $i + j \ge l + 1$,

$$\xi_{ij}^k = \frac{1}{np_k(\lambda_0)} Sum(A_i A_j \circ A_k) = \frac{1}{np_k(\lambda_0)} \sum_{\partial(u,v)=k} (A_i A_j)_{uv}$$

$$= \frac{1}{nn_k} \sum_{\partial(u,v)=k} \sum_{w} (A_i)_{uw} (A_j)_{wv} = \frac{1}{nn_k} \sum_{\partial(u,v)=k} |\Gamma_i^+(u) \cap \Gamma_j^-(v)| = \overline{p}_{ij}^k.$$

References

- [1] F.Comellas, M.A.Fiol, J.Gimbert and M.Mitjana, Weakly distance-regular digraphs, J. Combin. Theory Ser. B 90(2004), 233-255.
- [2] K.S.Wang and H.Suzuki, Weakly distance-regular digraphs, Discrete Mathematics 264(2003)225-236.
- [3] Wen Liu, k-walk-regular Digraphs, to appear in Journal of Mathematical Research and Exposition.
- [4] C.Dalfoa, E.R.Van Damb, M.A. Fiol, E.Garriga, and B.L.Gorissenb, On almost distance-regular graphs, Journal of Combinatorial Theory, Series A(2010), doi:10.1016/j.jcta.2010.10.005.
- [5] C.Dalfoa, M.A. Fiol and E.Garriga, Characterizing (l, m)-walk-regular graphs, Linear Algebra and Its Applications, 433(2010), 1821-1826.