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Abstract

Let G = (V, E) be a simple connected graph with vertex set V
and edge set E. The Wiener index of G is defined by W(G) =
E{z,y}gv d(z,y), where d(z,y) is the length of the shortest path
from z to y. The Szeged index of G is defined by S2(G) =3, _,,ex M
(e|G)nv(e|G), where ny(e]|G) (resp.nv(e|G)) is the number of vertices
of G closer to u(resp. v) than v(resp. u). The Padmakar-Ivan index
of G is defined by PI(G) = 3. ver[nteu(elG) + neu(e|G)], where
Neu(€|G)(resp.ney(e|G)) is the number of edges of G closer to u (resp.
v) than v (resp. ). In this paper we will consider the graph of a cer-
tain nanostar dendrimer consisting of a chain of hexagons and find
its topological indices such as the Wiener, Szeged, and PI index.

1 Introduction

The graphs considered in this paper are simple and connected. Let G =
(V, E) be a graph with vertex set V and edge set E. We will assume that G
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is a finite graph, i.e. both V and F are finite sets. For u,v € V, the length
of the shortest path from u to v is denoted by d(u,v) and is called the
topological distance between u and v. The Wiener index of G is denoted
by W(G) and is defined by: W(G) = Z{u,o}gv d(u,v).

If for a vertex v € V the sum of distances between v and all other
vertices of G is denoted by d(v), i.e. d(v) =3 _ .y d(v,z), then W(G) =
% Y vev d(¥)-

H. Wiener was the first one who considered the above index in con-
nection with chemical graphs [18]. The Wiener index is one of the oldest
descriptors concerned with the molecular graph and is concerned with the
determination of the boiling points of paraffins. We remark that Wiener
defined this index only for arcylic molecules in a different way, but the de-
finition of W(G) in terms of distances between vertices of a graph G was
first defined by Hosoya in [11).

In mathematical research, the Wiener index has been first studied in
(6], and for a long time mathematicians were not aware of the importance
of the Wiener index in mathematical chemistry. However, because of the
chemical facts about the Wiener index and also because it is an invariant
of the graph, that is: it is invariant under the automorphism of the graph,
hence various researchers found methods to calculate this index. Among
the important works on finding the Wiener index of a general graph the
reader is referred to the papers by Gutman et al. [5], [3], [9], and [10].

In theoretical chemistry molecular structure descriptor, also called topo-
logical indices, are used to understand properties of chemical compounds.
By now there exist many different types of such indices for a general graph
G = (V, E). Here, apart from the Wiener index, we are interested in indices
such as the Szeged and the Padmakar-Ivan index, the so called PI-index of
a graph.

The Szeged index (7], [8], and [13] is a topological index closely related
to the Wiener index of a graph G = (V, E). Let e = uv be an edge of G. By
n,(e]G) we mean the number of vertices lying closer to u than v and simi-
larly we define n,,(e|G). Therefore if we define the following sets: N, (e|G) =
{we V|dw,u) < d(w,v)} and Ny(e|G) = {w € V | d(w,v) < d(w,u)}.
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Then n,(e|G) = | Ny(e|G)| and n,(e|G) = [Ny (e|G)|. The Szeged index of
G is defined by the following formula: Sz(G) = 3_,_,,cg 7u(€lG)ny(e|G).

In [15] basic properties of Szeged index and its analogy to the Wiener
index is discussed. It is proved that for a tree T' the Wiener index of T is
equal to its Szeged index.

Since the Szeged index takes into account how the vertices of the graph
G are distributed, it is natural to define an index that takes into account
the distribution of the edges of G. The padmakar-Ivan (PI) index, [12]
and [14], is another important index which is assigned to a graph G and
takes into account the distribution of edges of the graph and therefore
complements the Szeged index in a certain sense. Let the number of edges
in the graphs induced by Ny(e|G) and N,(e|G) be denoted by ne.(e|G)
and n.,(e|G), respectively. The PI index of G is defined by: PI(G) =
Yeck (Neu(€lG) + nev(elG)) .

We remark that the edges equidistant from both ends of the edge uv
are not counted in the above expression for PI{G). It is easy to see that if
N(e) denotes the number of all the edges equidistance from e, then N(e) +
Neu(€|lG) + nev(e|G) = |E|, hence we have: PI(G) = 3 .(E — N(e)) =
|E? - 2-cce N(e). Therefore to compute PI(G) it is enough to know the
number of edges of G and the numbers N(e) for each edge e of G.

All the indices mentioned above, when applied to chemical graphs have
many chemical applications and it was shown that the PI index is related
to the Szeged and the Wiener index of a graph, and all of them have con-
nections with the physicochemical properties of many complex compounds.

For the topological indices associated to a graph two groups of problems
can be distinguished in the theory of topological indices. One is to ask the
dependence of the index to the graph and the other is the calculation of
these indices efficiently. The greatest progress in solving the above problems
was made for trees and hexagonal systems by Gutman et al. in (3] and [5).
Because of the importance of the above indices important methods have
been developed to compute them. For example one can refer to (1], [2], [4],
[16], and [17].

In this paper we will consider the graph of a certain nanostar dendrimer
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consisting of a chain of hexagons and find its topological indices such as the
Wiener, Szeged, and PI indices. A dendrimer is an artificially manufactured
or synthesized molecule built up from branched units called monomers. The
nanostar dendrimer is part of a new group of molecules that appears to be
photon funnels just like artificial antennas.

2 Preliminaries

Let G = (V, E) be a simple connected graph with vertex set V' and edge set
E. We recall that the distance between two vertices u and v is denoted by
d(u,v) and it is the length of the shortest path from u to v. If we want to
specify the graph in question then the distance between u and v is denoted
by dg(u,v). If H is a subgraph of G, then this fact is denoted by the symbol
H < G and H is called an isometric subgraph if dg(u,v) = dg(u,v) for all
vertices u and v of H, and if this is the case then we write H << G.

Let V; and V; be non-empty subsets of the vertex set V of G. The
distance between V; and V; is denoted by dg(V1,V2) and is defined as
follows dg(V1,V2) = YL.ev, vev, do(4,v). I Vo = V then we write
dg(V1,V) = d(V4, G). With this notation the Wiener index of the graph G
can be written as W(G) = 3dg(V, G).

If {F:}i_, is a partition of the vertex set V, then it is easy to see
that: W(G) =3 X1, 2;-=1 de(F;, Fj). Also if H << G, then: W(H) =
1dg(V(H),V(H)) and W(G) = 1d(V(G),G), where V(H) and V(G) de-
note the vertex sets of H and G, respectively.

The graph we will consider in this paper is denoted by G(n), n > 0,
which is a kind of nanostar dendrimer. In the following we draw the picture
for G(2). O, and O are the initial vertices which are joined by an edge.
Then two isomorphic graphs Li(n) and La(n) consisting of hexagons are
built as above. The following facts can be proved by induction.

IV(G(®))| = 12(2**! — 1), [V(L1(n))| = [V(Z2(n))| = 62"+ — 1),
|E(G(n))] = 7.2"+2 — 15. The number of edges of G(n) not contained in a

hexagon is 2"+2 — 3.
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Figure 1

3 Main results

Let us fix the notations used so far. In this section first of all we will
compute the Wiener index of the graph G(n) in terms of a function of n.
To start we will prove some auxiliary lemmas.

Lemma 1 W(G(r)) = 2W(L1(n))+2|V(L1(n))| d(O1, L1 (n))+|V (L1 (n)) 2.

Proof. Referring to the graph G(n) at stage n it is clear that L,(n) <<
G(n) and La(n) << G(n). Since V(L1(n)) and V(La(n)) are partitions of
V(G(n)) and the graphs L;(n) and La(n) are isomorphic we can write:
W(G(n)) = dg(V(L1(n)), V(L2(n))) + da(V(L1(n)), V(L1(n)))+
da(V(L2(n)), V(L2(n))) = da(V(L1(n)), V(L2(n)))+2W(L1(n)). (1)
If u € V(Li1(n)) and v € V(L2(n)), then dg(u,v) = dp,(n)(u, O1)+
dg(01,02) + dp, (n)(02,v) = di, (n) (1, O1)+ dp,(n)(O2,v) + 1.
Therefore de(V (L1(n)), V(L2(n))) = Luev(L,(n)) Lvev(La(ny) 96 (4 )
= Y ueV(Li(n)) 2oveV(La(n)) @Ly(n) (% O1) + dLy(n) (O2,v) +1) =
Yuev(z () (V(Z2(n)) dry(n) (1, O1) + d(O2, La(n)) + |V (L2(n))]) =
[V(L2(n))l di, (n) (01, L1 (n)) + [V (L1(n))| d(O2, L2(n))+
[V(Li(a)] [V (L2(n))] = 2|V (L1(n))| d(Os, L1 (n)) + [V (La (). (2)
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Now if we substitute the equality (2) in (1) we will obtain the formula
stated in the lemma. ®

Lemma 2 W(L;(n)) = 432n.4™ + 216n.2™ — 792.4" +810.2" + 9, n > 0.

Proof. We consider the binary tree T,, n > 0, whose shape is drawn as
follows at the stage n = 2:

T(2) G(2)
Figure 2

Now we may replace each vertex of T, by a hexagon Cg so that to obtain
Ly(n) or La(n). In this case the Cg corresponding to a vertex v of Ty, is
denoted by C,. It is easy to prove the following equality for all distinct
u,v € V(T,):

dy,(n)(Cu, Cy) = 36(dr, (v, v) +2(dr, (v, v) — 1)) +108 = 108dT, (u,v)+
36, and also dy, ()(Cy,Cy) = 2T7.

Since {V(Cy)}vev(t,) is & partition of the set of vertices of L;(n), we
have:

W(Li(n) = Lupyev(tn) Ain) (V(Cu), V(C) + Xuev(r,) 27 =

2 {uw)ev(T.)(108dT, (v, v) + 36) + 27 |V(T,)| =

108W(T,) + 36("V T~ + 27|V(Tn))| 3)

But we have [V(T,)| = Y1 2 =21 - 1.

Since the Wiener index of a tree is equal to its Szeged index we can
compute W(Ty,) as follows:

W(Tn) = 52(Tn) = 2e=uv€E(T..) nu(e|Tn)nv(e|Tn) =

Yo 2 WV (Tn- )l (IV(Tn)| = [V (Tn-s)l) =
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Shp2i(@nti-t —1)(2nt! — 2nH 1) = 4n gt 4+ 2n.2" — 8.4 + 8.27.

Now substituting the value of W(T3) in (3) we obtain: W(Ly(n)) =
432n.4™ 4 216n.2™ — 792.4™ 4 810.2" + 9, for all n > 0, and the lemma is
proved. =

Lemma 3 d(0;, L;(n)) = 36n.2" — 18.2" + 27.

Proof. With regard to the construction of G(n) from 7, mentioned in
Lemma 2 we can write: dz,(n)(01,Cu) = 6(2dr, (O1,4)+dr, (01,u))+9 =
18dr, (01, u) + 9. But it easy to calculate that:

(01, L1(n)) = Lev(r.) 9L1(n) (01, Cu)

= 2 uev(t.) (1847, (01, u) +9)

=18d(01,Tn) + 9|V (T%)| @)

But is can be shown that: d(0y,Tn) = Y i 12! = 2n.2" — 2.2" + 2,
and substituting the value in (4) we will obtain:

d(01, L1(n)) = 18(2n.2" —2.2" +2) + 9(2*+! — 1) = 36n.2" —18.2" + 27
|

Theorem 1 W(G(n)) = (1728n — 1872)4™ + 2340.2" — 270, n > 0.

Proof. By Lemma 1 we have:

W(G(n)) = 2W (L1 (n)) + 2|V (L1(n))| d(O1, L1 (n)) + V(L1 (m))[*.

Now by Lemmas 2 and 3 the values of W(L;(n)) and d(Oy, L1 (n)) are
known, and since |V(L1(n))| = 6(2"*! — 1), we will obtain the value of
W(G(n)) as written in the theorem. m

Next we calculate the Pl-index of G(n).

Theorem 2 PI(G(n)) = 784.4™ — 852.2™ +232, n > 0.

Proof. By definition of the PI-index, as indicated in the introduction, we
can write: PI(G) = |E(G(n))|* — X.cx N(e), where N(e) is the number
of edges of G(n) equidistance from e. Now it is easy to see that if e is
an edge of a hexagon, then N(e) = 2, and if e is an edge joining any two
hexagons, then N(e) = 1. But the number of hexagons in G(n) is equal to
2(2"*1 — 1) and the number of edges of G(n) not contained in a hexagon
is 2"+2 _— 3. Therefore:
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PI(G) = (7.2"*2-15)2-2.2(2"*+1 1) - (2"*2 - 3) = 784.4" —852.2" +
232 as required. ®
Finally we will compute the Szeged index of G(n).

Theorem 3 Sz(G(n)) = (2880n — 3024)4" + 3816.2" — 432, n. > 0.

Proof. As we mentioned in the introduction the Szeged index of a graph,
say G(n), is defined by: Sz(G) = }_,_, g nu(elG(n))n.(e]G(n)), where
ny(e|G(n)) is the number of vertices of G(n) lying closer to u than v. The
number n,(e|G(n)) is defined similarly.

Since no two vertices of each two hexagons Cg are involved in a circuit,
the graph G(n) should be bipartite. Now for every bipartite graph G for
an edge e = uv we have:

nu(€lG) + nu(elG) = [V(G)I (6)

Now for each edge e = uv of G(n) which is not involved in a circuit,
using (5), we obtain:

nu(e|G(n))nu(elG(n)) = |V(L1(n - 1))|.(IV(G())| = [V(L1(n — 1))]).
But the number of such edges is 2.2 for 1 < i < n, and is 1 for i = 0. If
we consider an arbitrary Cg as in Fig. 3.

2
3 1

3
2

Figure 3

Then for each parallel arbitrary edges e = uv and f = ab, because of their
symmetry we can write: n,(f|G(n))ns(fIG(n)) = nu(e|G(n))ny(e|G(n)).
On the other hand we can see easily that for edges numbered 2 in Fig. 3, us-
ing (3) we obtain: nu(e|G(n))n,(e|G(n)) = (|V(L1(n —2))|-3)(|V(G(n))|-
|[V(Ly(n —%))| + 3). And for edges numbered 1 and 3, using (5) we obtain
n4(e|G(n))nu(e|G(n)) = (IV(L1(n — i = 1)|+3)(IV(G(m)|—|V(La(n —9))|
—3) where the number of such edges in G(n) is 2.2 for 0 < i < n. Therefore:
52(G(n)) = [V(L1(n)) P+ Ti; IV (La(r — )] (IV(La ()| =V (L1 (n — 5))]
)22 + Y0, 2.2H{(IV(La(n — 9))| = 3)(IV(G())| = [V(La(n - 9))] + 3) +
2(lV(L1(n — i = 1)) + 3)(IV(G(n))| = [V(L1(n —i - 1))| - 3)}-
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Taking into account the fact that V(L,(n)) = 6(2"*!—1), and summing
up the expressions in (2) we obtain the formula stated in the theorem for

5z(G(n)). m
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