On edge cover coloring of join graphs *

Jinbo Li, Guizhen Liu[†], Bin Liu School of Mathematics, Shandong University Jinan, P.R. China, 250100

Abstract A join graph is the complete union of two arbitrary graphs. An edge cover coloring is a coloring of edges of E(G) such that each color appears at each vertex $v \in V(G)$ at least one time. The maximum number of colors needed to edge cover color G is called the edge cover chromatic index of G and denoted by $\chi'_c(G)$. It is well known that any simple graph G has the edge cover chromatic index equal to $\delta(G)$ or $\delta(G) - 1$, where $\delta(G)$ is the minimum degree of G. If $\chi'_c(G) = \delta(G)$, then G is of C1-class, otherwise G is of C2-class. In this paper we give some sufficient conditions for a join graph to be of C1-class.

Keywords: edge coloring; edge cover coloring; classification of graphs; join graphs.

AMS subject classification (2000): 05C15, 05C25

1 Introduction

Our terminology and notation will be standard. The reader is referred to [1] for the undefined terms. The graphs in this paper are simple, that is they have no loops or multiple edges. Let G = (V, E) be a graph; the degree of a vertex v, denoted by $d_G(v)$, is the number of edges incident to v; the minimum degree of G, denoted by $\delta(G)$, is the minimum vertex degree in G; G is regular if the degree of every vertex is the same.

^{*}This work is supported by GIIFSDU (yzc09073), NSFC (10871119, 10901097), RFDP (200804220001) of China and NSF of Shandong Province(Y2008A20).

[†]The corresponding author: Guizhen Liu, email: gzliu@sdu.edu.cn, mail address: School of Mathematics, Shandong University, Jinan, Shandong, P. R. China, 250100

An edge coloring Φ of a graph G=(V,E) is an assignment of colors to its edges. The coloring Φ is proper if no two adjacent edges have the same color. The chromatic index of G, denoted by $\chi'(G)$, is the least k for which G has a proper edge coloring with k colors. In [5] it was show that every graph G with m edges and $\chi'(G) \leq k$ has an equalized k edge coloring Φ : each color a_i in Φ appears on exactly either $\lfloor m/k \rfloor$ or $\lceil m/k \rceil$ edges. Unless otherwise stated, the edge coloring of graphs in this paper are not necessarily proper.

An edge cover of G is a subset S of E that saturates every vertex of G, i.e., every vertex of G is an end vertex of an edge in S. An edge cover coloring of G is an edge coloring such that the edges assigned the same color formed an edge cover of G. Clearly, the edge cover coloring may not be proper.

The edge cover chromatic index $\chi'_{c}(G)$ of G is the maximum size of a partition of E into edge covers of G. G is said to be k-edge cover colorable if there is an edge cover coloring of G with k colors. On the edge cover chromatic index of a graph, Gupta [2] gave the following result.

Theorem 1.1. Let G be a graph. Then

$$\delta - 1 \leq \chi'_{c}(G) \leq \delta.$$

From the above result, we can see that the edge cover chromatic index of any graph must be equal to δ or $\delta-1$, this immediately gives us a simple way of classifying graphs into two types according to $\chi_c'(G)$. More precisely, we say that G is of C1-class if $\chi_c'(G) = \delta$, and that G is of C2-class if $\chi_c'(G) = \delta-1$. The graphs that are C1-class are also known as (1,d)-factorizable graphs. In general, the problem of determining the edge cover chromatic index of graphs is NP-hard because deciding whether a 3-connected 3-regular graph G is proper 3-edge colorable is NP-complete [4], which is the special case of our general problem.

Hilton generalized the edge cover coloring and obtained many interesting results, the following theorem can be found in [3].

Theorem 1.2. If G is a bipartite multigraph, then G has a k-edge coloring such that the number of distinct colors represented at v is min $\{k, d(v)\}$ for each $v \in V(G)$.

By theorem 1.2, for any bipartite graph G with minimum degree δ , it must have a δ -edge cover coloring. So, we can see that all bipartite graphs are of C1-class.

Miao [6] considered the classification on edge cover coloring of graphs and gave some sufficient conditions for a graph G to be of C2-class. Song

[8] considered the properties of C2-class graphs and studied the relation of edge cover chromatic index between the graph G and its complement graph G^c . Wang [9] discuss the classification problem of nearly bipartite graphs and gave some sufficient conditions for a nearly graph G to be of C1-class.

The goal of this paper is to find sufficient conditions for a join graph to be C1-class.

2 The join graph

Let G = (V, E) be a graph with n vertices. We say that G is a join graph if G is the complete union of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$. In other words, $V = V_1 \cup V_2$ and $E = E_1 \cup E_2 \cup \{uv : u \in V_1, v \in V_2\}$. If G is the join graph of G_1 and G_2 , we shall write $G = G_1 + G_2$. Simone and de Mello [7] considered the edge coloring of join graphs and gave some sufficient conditions for a join graph to be Class 1. We adopt some techniques similar to Simone and de Mello and gave some results on edge cover coloring of join graphs.

Write $n_1 = |V_1|$, $n_2 = |V_2|$, $\delta_1 = \delta(G_1)$ and $\delta_2 = \delta(G_2)$. Clearly, $n = n_1 + n_2$ and $\delta(G) = min\{n_1 + \delta_2, n_2 + \delta_1\}$. Without loss of generality we shall assume that $n_1 \leq n_2$.

To every join graph $G = G_1 + G_2$ we shall associate the complete bipartite graph B_G obtained from G by removing all edges of G_1 and G_2 . For every minimum edge cover L in B_G , let G_L denote the subgraph of G obtained by removing all edges of B_G but the edges in L. Figure 2 shows two G_L for the graph G in Figure 1.

Figure 1: G.

We have the following key lemma.

Lemma 2.1. Let $G = G_1 + G_2$ be a join graph with $n_1 \le n_2$ such that $\delta_1 \ge \delta_2$, or such that $\delta_1 < \delta_2$ and $n_1 = n_2$. If there exists a minimum edge

Figure 2: Two G_L for the graph G.

cover L in B_G such that the corresponding graph G_L is C1-class, then G is C1-class.

Proof. Let L be a minimum edge cover of B_G such that $\chi'_c(G_L) = \delta(G_L)$ and let B' be the bipartite graph obtained from B_G by removing all edges in L. Note that $\chi'_c(G) \geq \chi'_c(G_L) + \chi'_c(B')$, and that $\chi'_c(B') = \delta(B') = n_1 - 1$ (because $n_1 \leq n_2$). If $\delta_1 \geq \delta_2$, then $\delta(G) = \delta_2 + n_1$ and $\delta(G_L) = \delta_2 + 1$ and so $\chi'_c(G) \geq \delta(G)$. If $\delta_1 < \delta_2$ and $n_1 = n_2$, then $\delta(G) = \delta_1 + n_1$ and $\delta(G_L) = \delta_1 + 1$, and so $\chi'_c(G) \geq \delta(G)$.

If some assumption in Lemma 2.1 does not hold, then G could be C2-class even though G_L is C1-class for every minimum edge cover L. For instance, the case of graph $G = G_1 + G_2$ when $G_1 = K_2$ and $G_2 = K_3$ (here $n_1 < n_2$ and $\delta_1 < \delta_2$).

Let $G = G_1 + G_2$ be a join graph with $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ such that $n_1 \leq n_2$. In view of Lemma 2.1, it is natural to ask when there exists a minimum edge cover L of B_G such that the corresponding graph G_L is C1-class. We have the following result.

Theorem 2.2. Let $G = G_1 + G_2$ be a join graph with $n_1 \leq n_2$. If $\delta_1 \geq \delta_2$ and G_2 is C1-class, then for every minimum edge cover L of B_G , the corresponding graph G_L is C1-class.

Proof. Since $\delta_1 \geq \delta_2$ and G_2 is C1-class, G_2 is δ_2 -edge cover colorable with colors $a_0, a_1, \dots, a_{\delta_2-1}$. Suppose L is a minimum edge cover of B_G , we can give all the edges in L the color a_{δ_2} . This is an edge cover coloring of G_L with $\delta_2 + 1$ colors. By assumption, $\delta_{G_L} = \delta_2 + 1$, so the corresponding graph G_L is C1-class.

An instant corollary of Theorem 2.2 and Lemma 2.1 is as follows.

Corollary 2.3. Let $G = G_1 + G_2$ be a join graph with $n_1 \le n_2$. If $\delta_1 \ge \delta_2$ and G_2 is C1-class, then $\chi'_{c}(G) = \delta(G)$.

Let $G = G_1 + G_2$ be a join graph with $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ such that $n_1 \leq n_2$. Assume that $\delta_1 = \delta_2$, it is natural to ask when there exists a minimum edge cover L of B_G such that the corresponding graph G_L is C1-class. It follows that we can still make use of Lemma 2.1 by finding sufficient conditions for the existence of edge cover L.

Theorem 2.4. Let $G = G_1 + G_2$ be a join graph with $\delta_1 = \delta_2$. If one of the following two conditions hold,

- (a) Both G_1 and G_2 are C1-class;
- (b) Both G₁ and G₂ are disjoint unions of cliques;

then there exists a minimum edge cover L of B_G such that the corresponding graph G_L is C1-class.

Proof. Without loss of generality, we can assume that $n_1 \leq n_2$.

First, assume that (a) holds. Let L be an arbitrary minimum edge cover of B_G . Since G_1 and G_2 are C1-class, and since $\delta_1 = \delta_2$, it follows that we can give an edge cover color G_1 and G_2 with δ_1 colors. If we use an extra color to color all the edges in L, then $\chi'_c(G_L) \geq \delta_1 + 1 = \delta(G_L)$, and so G_L is C1-class.

Secondly, assume that (b) holds. Order the vertices of G_1, u_1, \dots, u_{n_1} , so that all the vertices in a same connected component of G_1 are consecutive, and such that if u_i belongs to a clique K_t and u_j belongs to a clique K_s with t > s then i > j. Similarly, we can order the vertices of G_2 , v_1, \dots, v_{n_2} , so that all the vertices in a same connected component of G_2 are consecutive, and such that if v_i belongs to a clique K_t and v_j belongs to a clique K_s with t > s, then i > j.

Let $\Phi = \{a_0, \dots, a_{\delta_1}\}$ be the $\delta_1 + 1$ edge coloring of G_1 obtained in the following way: to every edge $u_i u_j$ assign color a_h with $h = (i+j) \mod (\delta_1 + 1)$. To show that each vertex misses at most one color, we only need verify that at least δ_1 colors presented at each vertex.

For this purpose, assume that the edges u_iu_j and u_ju_k (with $i \neq k$) have been assigned the same color a_h . Then, by construction, $h = (i + j) \mod (\delta_1 + 1)$ and $h = (j+k) \mod (\delta_1 + 1)$. It follows that $|k-i| = t(\delta_1 + 1)$ for some integer t, which implies that $|k-i| \geq \delta_1 + 1$. On the other hand, the chosen ordering of the vertices of G_1 implies that u_iu_j and u_ju_k (with $i \neq k$) will be assigned different colors if $|k-i| \leq \delta_1$. So there are at least δ_1 colors presented at each vertex of G_1 .

Note that, by construction, for every $i=1,\dots,n_1$, vertex u_i misses color $a_{(2i) \mod (\delta_1+1)}$. Since $\delta_1=\delta_2$, we can color the edges of G_2 in a similar way using the same colors in Φ : to every edge v_iv_j of G_2 , assign color a_h with $h=(i+j) \mod (\delta_1+1)$. By construction, for every $i=1,\dots,n_2$, vertex v_i misses color $a_{(2i) \mod (\delta_1+1)}$.

Now we are ready to choose the desired minimum edge cover L of B_G : $L=\{u_iv_i, i=1,\cdots,n_1\}$ when $n_1=n_2$

or $L = \{u_i v_i, i = 1, \dots, n_1\} \bigcup \{u_{(i \mod n_1)+1} v_i, i = n_1\}$

 n_1+1, \dots, n_2 when $n_1 < n_2$. Indeed, for every $i=1, \dots, n_2$, we can assign to edge incident to v_i in L the color $a_{(2i) \mod (\delta_1+1)}$. Thus, G_L is C1-class and the theorem follows.

By Theorem 2.4, it is easy to verify the following results.

Corollary 2.5. Let $G = G_1 + G_2$ be a join graph with $\delta_1 = \delta_2$. If both G_1 and G_2 are C1-class, or if both G_1 and G_2 are disjoint unions of cliques, then $\chi_c(G) = \delta(G)$.

Corollary 2.6. Let G be a complete graph with an even number of vertices. Then $\chi'_c(G) = \delta(G)$.

Now we show that, if G is a regular join graph with $\delta_1 = \delta_2$, then for every minimum edge cover L of B_G , the corresponding graph G_L is C1-class, and so G is C1-class.

Theorem 2.7. Every regular join graph $G = G_1 + G_2$ with $\delta_1 = \delta_2$ is C1-class.

Proof. Let m_i denote the number of edges of G_i , i=1,2. Since G is regular and that $\delta_1=\delta_2$, it follows that $n_1=n_2$ and $m_1=m_2$. Let $\Phi_1=\{a_1,\cdots,a_{\delta_1+1}\}$ be an equalized edge coloring of G_1 ; and let $\Phi_2=\{b_1,\cdots,b_{\delta_2+1}\}$ be an equalized edge coloring of G_2 . Since Φ_1 is equalized, each color a_i , $(i=1,\cdots,\delta_1+1)$ is missed by exactly $n_1-2\lfloor m_1/(\delta_1+1)\rfloor$ or $n_1-2\lceil m_1/(\delta_1+1)\rceil$ vertices of G_1 ; similarly, each color b_i , $(i=1,\cdots,\delta_2+1)$ is missed by exactly $n_2-2\lfloor m_2/(\delta_2+1)\rfloor$ or $n_2-2\lceil m_2/(\delta_2+1)\rceil$ vertices of G_2 .

Without loss of generality, we can assume that colors a_1, \dots, a_p are missed by exactly $n_1 - 2\lfloor m_1/(\delta_1 + 1) \rfloor$ vertices of G_1 , that colors $a_{p+1}, \dots, a_{\delta_1 + 1}$ are missed by exactly $n_1 - 2\lceil m_1/(\delta_1 + 1) \rceil$ vertices of G_1 , that colors b_1, \dots, b_q are missed by exactly $n_2 - 2\lfloor m_2/(\delta_2 + 1) \rfloor$ vertices of G_2 , that colors $b_{q+1}, \dots, b_{\delta_2 + 1}$ are missed by exactly $n_2 - 2\lceil m_2/(\delta_2 + 1) \rceil$ vertices of G_2 .

It is easy to verify that G_1 is δ_1 -regular and that G_2 is δ_2 -regular, and so each vertex u_i of G_1 misses exactly one color a_j and each vertex v_i of G_2 misses exactly one color b_h . So, we have

$$p(n_1 - 2\lfloor m_1/(\delta_1 + 1)\rfloor) + (\delta_1 + 1 - p)(n_1 - 2\lceil m_1/(\delta_1 + 1)\rceil) = n_1,$$

$$q(n_2 - 2\lfloor m_2/(\delta_2 + 1)\rfloor) + (\delta_2 + 1 - q)(n_2 - 2\lceil m_2/(\delta_2 + 1)\rceil) = n_2.$$

Since $m_1 = m_2$ and $n_1 = n_2$, so we have

$$(p-q)(|m_1/(\delta_1+1)|-\lceil m_1/(\delta_1+1)\rceil)=0.$$

But note that $\lfloor m_1/(\delta_1+1)\rfloor = \lceil m_1/(\delta_1+1)\rceil$ implies that p=q. Hence p=q, and we can assume that $a_i=b_i$ for every $i=1,\cdots,\delta_1+1$. Now, let $L=\{u_iv_i:i=1,\cdots,\delta_1+1\}$. For every $i=1,\cdots,\delta_1+1$, we can assign to edge u_iv_i the same color missed at both u_i and v_i . Now we get an edge cover coloring of G_L with δ_1+1 colors, and so G is C1-class.

From the results above, we probably find some general sufficient conditions for the existence of minimum edge cover L of B_G such that the corresponding graph G_L is C1-class, and so the corresponding join graph G is C1-class.

Other interesting results on the edge cover coloring can be found in [6], [8] and [9].

References

- J. A. Bondy and U.S.R. Murty, Graph theory with applications, MacMillan, London, 1976.
- [2] R. P. Gupta, On decompositions of a multigraph into spanning subgraphs, Bull. Amer. Math. Soc. 80(1974), 500-502.
- [3] A. J. W Hilton, Coloring the edges of a multigraph so that each vertex has at most j, or at least j edges of each color on it, J. London Math. Soc., 12(1975), 123-128.
- [4] I. Holyer, The NP-completeness of edge-coloring, SIAM J. Comput. 10(1981), 718-720.
- [5] C. J. H. McDiarmid, The solution of a timetabling problem, J. Inst. Math. Appl. 9(1972)23-34.

- [6] L. Miao, The edge cover coloring of graphs, Ph.D. Thesis of Shandong University, (2000).
- [7] C. D. Simone, C. P. de Mello, Edge-coloring of join graphs, *Theoretical Computer Science* 355(2006) 364-370.
- [8] H. Song, On edge-coloring problems of graphs, Ph.D. Thesis of Shandong University, (2003).
- [9] J. Wang, X. Zhang and G. Liu, Edge covering coloring of nearly bipartite graphs, J. Appl. Math. and Computing, 22(2006), 435-440.