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Abstract

Let Ix be the symmetric inverse semigroup on a finite nonempty set
X, and let A be a subset of Ix = Zx \ {0}. Let Cay(Tx, A) be the graph
obtained by deleting vertex O from the Cayley graph Cay(Zx, A). We ob-
tain conditions on Cay(Zx, A) for it to be ColAut 4(Z% )-vertex-transitive
and Aut4 (T )-vertex-transitive. The basic structure of vertex transitive
Cay(Tx, A) is characterized. We also investigate the undirected Cayley
graphs of symmetric inverse semigroups, and prove that the generalized
Petersen graph can be constructed as a connected component of a Cay-
ley graph of a symmetric inverse semigroup, by choosing an appropriate
connecting set.
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1 Introduction and Preliminaries

The definition of a Cayley graph was introduced by Arthur Cayley in 1878 to ex-
plain the concept of abstract groups which are described by a set of generators.
Cayley graphs of groups have received serious attention, and many algebraic
and combinatorial properties have been actively investigated (see, in particular,
(3, 14]). Let S be a semigroup, and A a subset of S. The Cayley graph Cay(S, A)
of S with respect to A is defined as the graph with vertex set S and edge set
E(Cay(S, A)) consisting of those ordered pairs (z,y), where sz = y for some
s € A. The set A is called the connecting set of Cay(S, A). Cayley graphs of
semigroups are generalizations of Cayley graphs of groups. One of the earliest
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references on this subject is [1]; see also {17] for another example of early work.
The whole Section 2.4 of the book [9] is devoted to the Cayley graphs of semi-
groups. All vertex-transitive Cayley graphs produced by periodic semigroups are
characterized in [11]. A combinatorial property of infinite semigroups defined
in terms of Cayley graphs has been investigated (see (4, 12, 16]). In particular,
the Cayley graphs of certain classes of semigroups have been studied, and the
combinatorial properties of these Cayley graphs have been described. In [10],
Kelarev studied the Cayley graphs of inverse semigroups. In [2], a complete
description of all vertex transitive Cayley graphs of bands was obtained. The
undirected Cayley graphs of right groups are investigated in [5]. We also refer
to [13] for a survey of recent results on the Cayley graphs of semigroups.

In this paper, we obtain the conditions on graph Cay(Z%,A), which is
obtained by deleting vertex 0 from the Cayley graph of symmetric inverse
semigroup Zx with respect to A, to be ColAut4(Z%) -vertex-transitive and
Aut o (T )-vertex-transitive, respectively. The basic structure of vertex-transitive
Cay(Z%, A) is also characterized. We investigate the undirected Cayley graphs
of symmetric inverse semigroups, and give a method to construct the general-
ized Petersen graph, which can not be obtained from Cayley graphs of groups,
as a component of the Cayley graphs of symmetric inverse semigroups.

Graphs considered in this paper are finite directed graphs without multiple
edges but possibly with loops. For a graph I', denote by V(I') and E(T') C
V(T) x V(I') the vertex set and edge set of ', respectively. Let D(V, E) be a
graph with vertex set V and edge set E C V x V. A bijection¢:V — V' is
called an automorphism of the graph D if (¢(u), #(v)) € E for all (u,v) € E. A
graph D(V, E) is said to be vertez-transitive if, for any two vertices z, y € V,
there exists an automorphism ® € Aut(D) such that z@ = y. All Cayley
graphs of groups are vertex-transitive, since the group on which the Cayley
graph is defined acts by right multiplication as a vertex-transitive group of
automorphisms. If S is a semigroup and A C 3, then the automorphism group
of Cay(S, A) is denoted by Aut4(S). Cay(S, A) is said to be Auta(S)-vertez-
transitive if, for any two vertices z, y € Cay(S, A), there exists & €Auts(S)
such that 2® = y. An element ® €Aut4(S) will be called a color preserving
automorphism if sz = y implies s(z®) = y®, for every z, y € Sand s € A. If
we regard an edge (z, sz), for s € A, as having color s, so that the elements of
A are thought of as colors associated with the edges of the Cayley graph, then
every color-preserving automorphism maps each edge to an edge of the same
color. Denote by ColAut 4(S) the sets of all color-preserving automorphisms of
Cay(S, A). Cay(S, A) is said to be ColAuta(S)-vertez-transitive if, for any two
vertices z, y € S, there exists an ® €ColAut4(S) such that zd = y.

The following theorem due to A.V. Kelarev and C.E. Praeger makes a natural
assumption of a finiteness condition on a semigroup S and gives a description
of all semigroups S of this sort with properties of the Cayley graphs enjoying a
complete analogy with the known properties of the Cayley graphs of groups.

Theorem 1.1 ([11]) Let S be a semigroup, and let A be a subset of S which
generates a subsemigroup (A) such that all principal left ideals of (A) are finite.
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Then, the Cayley graph Cay(S, A) is ColAut,(S)-vertez-transitive if and only if
the following conditions hold:'
(a) eS =S, for alla € A;
(b) (A) is isomorphic to a direct product of a right zero band and a group;
(c) |(A)s| is independent of the choice of s€ S. O

The next theorem reduces the problem of describing all automorphism vertex-
transitive Cayley graphs of semigroups to the special case of completely simple
semigroups.

Theorem 1.2 ([11]) Let S be a semigroup, and let A be a subset of S such that
all principal left ideals of the subsemigroup (A) are finite. Then, the Cayley
graph Cay(S, A) is Auts(S)-vertez-transitive if and only if the following condi-
tions hold:

(a) AS = 5;

(b) {A) is a completely simple semigroup;

(c) the Cayley graph Cay({A), A) is Auta((A))-vertez-transitive;

(d) [(A)s| is independent of the choice of s € S. O

Recall that the symmetric inverse semigroup Ix is the set consisting of all
partial one-one maps of X with respect to the standard operation o of compo-
sition of relations: if a, 8 € Ty, then (z,y) € a o 8 if and only if there exists
z in X such that (z,z) € « and (2,y) € 8. Thus z = za and y = 28, and so
y = (za)B. Notice also that = € dom(af) if and only if there exist z and y such
that (z,z) € ¢ and (z,y) € B. Thus z € imanNdomf, and so

dom(af) = (imaNdomB)e?!, im(aB) = (ima N dompB)P.

If ima N domB = B, then it is said to be af = 0, the empty map, which we
denote by 0. Hence a0 = 0 = 0, for any o € Tx.

Then we have the following theorem:
Theorem 1.3 ([6], Theorem 5.1.5) Ix is an inverse semigroup. O

Now we show the analogue of Cayley’s Theorem, a result due to Vagner and
(independently) to Preston.

Theorem 1.4 ([6]) Let S be an inverse semigroup. Then there exists a sym-
metric inverse semigroup Ix and a monomorphism ¢ from S to Ix. O

Let S be a semigroup which contains 0, and A be a subset of S. It is ob-
vious that if Cay(S, A) is ColAut 4(S)-vertex-transitive (resp., Aut4(S)-vertex-
transitive), then

E(Cay(S, A)) = {(z,z) | z € S}

by Theorem 1.1 (resp., Theorem 1.2). We denote by Z% the set Zx \ {0} and
let A be a subset of Zx. In this paper, we consider the vertex-transitive Cayley
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graph Cay(Z%, A), which is the graph produced by deleting the vertex 0 and
the edges adjacent to 0 from Cay(Zx, A).

Recall that the permutation group S, is the group of all bijections X,, — X,
where X, = {1,2,...,n}. The elements of S, are called permutations. Obvi-

ously, S, is a subgroup of symmetric inverse semigroup Tx, . Let ¢3,12,...,1,,
(r < n) be distinct elements of X, = {1,2,...,n}. Then (ijé2::-4;) denotes
the permutation that maps iy — i3, i3 — i3,...,%r-1 — ir, and i, — ¢;, and

maps every other element of X,, onto itself. The permutation (i1ég:--4,) is
called a cycle of length r or an r-cycle; a 2-cycle is called a transposition. The
permutations oy, 09, . ..,0, of S, are said to be disjoint provided that for each
1< i<, and every k € X,,, (k)o; # k implies (k)o; = k for all j # i. Denote
by e the identity of S,. A nontrival subgroup G of permutation group S, is
said to be semiregular on X,, if no nonidentity element of G fixes an element of
Xn.

Theorem 1.5 ([7]) Every nonidentity permutation in S, is a product of disjoint
cycles, each of which has length at least 2. This product is unique up to the order
of factors. (]

For terminology and notation not defined in this paper, we refer the reader
to [6], [7] and [15].

2 Vertex-transitive Cayley Graph Cay(Z%, A)
Now we give the main result of this section.

Theorem 2.1 Let X be a finite nonempty set with | X| = n, Ix the symmetric
inverse semigroup on X, and A be a subset of I . Then the following statements
are equivalent,

(i) Cay(Tx, A) is ColAuts(T% )-vertez-transitive;

(i) Cay(Tx,A) is Aut 4(Ty)-vertez-transitive;

(iii) A C S, C Ix, and (A) is semiregular on X.

Firstly, some lemmas are given which will be used in the proof of the main
result. We define that T} =1 U, U+ U I, where Iy = {& € Tx | |[doma| =
|ima| = k}, k=1,2,...,n. It is obvious that I, = S, the permutation group
on X

Lemma 2.2 Let X be a finite nonempty set with | X| = n, Ix the symmetric
inverse semigroup on X, and A be a subset of Iy. If Cay(T%, A) is Auts(Ix)-
vertez-transitive, then AC S, C Ix.

Proof. Suppose by contradiction that there exists a € A, such that ima =
{a1,a2,...,ax}, where k < n. We may choose v € I} with domyNima = §.
It follows that ay = 0. On the other hand, for any é € S, C I%, ad # O for all
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a € I, thus 0 ¢ Ad. It implies that the out-degree of a is less than the out-
degree of ¢ in Cay(Z%, A). Then there is no & €Aut4(Z%), such that (a)® = 5.
It contradicts the fact that the Cay(Z%, A) is Aut4(Z%)-vertex-transitive. [

Remark. Let X be a finite nonempty set with |X| = n, and let Zx be the
symmetric inverse semigroup on X with a subset A. From the definition of
Cayley graph and the above discussion, there is no edge from v to 0if AC S,, C
Ix, for all v € T}.

Lemma 2.3 Let X be a finite nonempty set with |X| = n, Tx the symmetric
inverse semigroup on X, and let A C S, C Ix, where S, is the permutation
group on X. Then the following statements are equivalent,

(i) [(A)a| is independent of the choice of o« € T;

(ii) (A) is semiregular on X.

Proof. (i)=>(ii). Take any o € S, C Iy, then |{A)a| = |(4)|. Hence we
conclude that for any a € I, |(A)a| = |{4)|. Suppose by contradiction that
there exists ¢ € X and § € (A) \ {e}, such that (i)é = (i)e = i. We take
(#) € Ix. Then é(;) = e(;) = (;). Since & # e, then [(A)(})] < |(4)], a
contradiction. Hence (A) is semiregular on X.

(ii)=>(i). Take any o = (3} 3 :;’:) €Ix%. f k=n, then a € Sy, and it is
obvious that |(A)a| = |{4)]. If1 < k < n, then we suppose by contradiction that
[{A)a] < |{A)| (Zx is finite). It follows that there exist 3, v € (4A) with 8 # v,
such that Ba = ya. It implies that (i;)87! = (i;)y~!, j = 1,2,...,k, then
(4;)8~y =14;. Since 8~1v # e, it contradicts the fact that (A) is semiregular.
Hence |(A)a| is independent of the choice of & in T}. O

Lemma 2.4 Let X be a finite nonempty set with |X| = n, ITx the symmetric
inverse semigroup on X, and let A C S, C Iy, where S, is the permuta-
tion group on X. Then {(A)a is equal to the strongly connected component of
Cay(Ix,A) containing o, for each a € Ik.

Proof. For any edge (a,f) of Cay(Z%, A), there exists y € A C (A) C S,
such that B = ya. It implies that « = y~18, where v~ € (4) C S,. Hence
there exist 41,72,...,7 € A, such that y™! = y;yy--- 9% € (4), thus a =
172 -+ -1 B- It follows that (8, veB), (V&8s Ye—17kB),- - » (Y2 - - - 1&B, @) are edges
of Cay(Z%, A). Therefore, there exists a path from 8 to a. Since («, ) was
chosen arbitrarily, then every connected component of Cay(Z%, A) is strongly
connected.

Let C be the set of vertices of a connected component of Cay(Z%, 4), and let
a € C. Since ea = a for any a € T and identity e € Sy, and {A) is a subgroup
of T%, then @ = ex € (A)a. Since C is strongly connected and {A)c is the set
of all vertices & of the Cayley graph Cay(Z%, A) such that there exists a path
from a to 4, then (A)a C C, thus (A}a = C, which completes the proof. 0

Now we are in a position to give the proof of Theorem 2.1.

Proof of Theorem 2.1. (i)=(ii) is obvious.
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(ii)=(iii). Suppose that Cay(Zk,A) is Auta(Z})-vertex-transitive, then
A C S, C Ix by Lemma 2.2. Since the vertex sets of all connected com-
ponents of a vertex-transitive graph have the same cardinality, then |{A)a] is
independent of the choice of & € T} by Lemma 2.4. Therefore (A4) is semiregular
on X by Lemma 2.3.

(iii)=>(i). For any o, B € I, we define a mapping ®: Ty — I such that
(a)® = B, and show that @ is a color preserving automorphism of Cay(Zk, A).
It follows from Lemma 2.4 that a, 8 belong to the connected component (A)a
and (A)p, respectively. If (A)an{A)B # 0, then ya = 4B, for some 7, 7' € {A).
For any 6 € (A)a, § = v"a = ¥"'y~1+'F € (A)B, for some 4" € (A). Similerly,
(A)B C (A)a. Therefore {A)a = (A)B. It follows that T% is a disjoint union of
(A)a for all & € T%. Consider two cases.

Case 1. (A)a # (A)B. Then, for v € T}, we define

08 if v = 0 for some 8 € (A);
(7)®@ =4 0a ify=00 for some 8 € (A);

v ify ¢ ({Aau(4)s.

Then @ is well defined and is a bijection, since |[(A)a| = |(A)B|. Take any
v €I%,6 € A If y =0a € (A)a, then &y € (A)a. Therefore the edge (-, %)
is mapped by @ to ((7)®, (67)®) = (68,68) = ((7)®,6((7)®)). An analogous
property holds if v € (4)8. Also, ® leaves invariant all edges involving vertices
of Iy \ ({(A)a U (A)B). Thus (8v)® = &((v)®), i.e. @ is a color-preserving
automorphism of Cay(Z%, A).
Case 2. (A)a = (A}B. Then, for v € T, we define

_[ 06 y=bac(d)e
me={ ¥ 1L et

Then ® is well defined and is a bijection. Take any y € I, d € A. If vy =
fa € (A)a, then 60 € {A) and 6y € (A)a. Therefore (6v)@ = §68, and so
(67)® = 8((7)®). On the other hand, if v ¢ (A)a, then év ¢ (A)a. Therefore
(67)® = oy = 6((7)®). It follows that @ is a color-preserving automorphism of
Cay(Zyx, A).

Thus we have verified that Cay(Zy, A) is ColAut 4(Z% )-vertex-transitive. O

Corollary 2.5 Let X be a finite nonempty set with |X| = n, Ix the sym-
metric inverse semigroup on X, and let A be a subset of T%. If Cayley graph
Cay(Ty, A) is Col Aut 4(T)-vertez-transitive, then for any o € A C S,,, one of
the following cases holds,

(i) a is a n-cycle, or

(ii) « is a product of r disjoint s-cycles, where rs =n.

Moreover, if A contains a n-cycle, then A is a subset of a cyclic group of
order n.

Proof. Since the Cayley graph Cay(T%, A) is ColAut4(Z )-vertex-transitive,
then A C S, € I by Theorem 2.1. For any a € A and a # e, we suppose
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that « is not a n-cycle. Since ({)a # i for all i € X by Lemma 2.3, then «
is a product of disjoint cycles whose total length is n by Theorem 1.5. We
may suppose by contradiction that & = (i192 - - - 4, )(Erp1tip2 * - i) -+ (*  4)
where 7 < s. It implies that (ix)a" = i for k=1,2,...,7, and (ix)a” # ik for
=r+1,r+2,...,r+3 Since a" € (4)\ {e}, then (A) is not semiregular
on X. It contradicts the fact that Cay(ZI%, A) is ColAut 4(Z% )-vertex-transitive
by Theorem 2.1. Hence « is a product of r disjoint cycles with equal length s,
where rs = n.
If A contains a n-cycle a, then {a) = Z,. It is easy to see that Z,, is isomor-
phic to a maximal semiregular subgroup of S,,. Also since (A) is semiregular on
X, then AC {a) = Z,. a

Lemma 2.6 Let X be a finite nonempty set with | X| = n, Ix the symmetric
inverse semigroup on X, and let A C S, C Ix, where S, is the pennutatwn
group on X. For any o, B € Ix, where a = (z,‘:,’ "‘) and B = b'b' b,
(a,8) € E(Cay(Tx, A)) if and only if l = m = k, a; = (b;)y for some v € A
and a} = b}, fori=1,2,...,k

Proof. For any o, B € Ix, we get
(o, 8) € E(Cay(Tx, A)) & there exists y € A, such that ya = 8

o (al)'y’l...(a;)'y‘l - by...bm
a, ... aq b ...,

& l=m=k,a; = (b;)y, for some v € A and
a;=1bj, fori=1,2,...,k,

as required. 0O

Lemma 2.7 ([6]) Let X be a finite nonempty set with | X| = n, and let Tx be
the symmetric inverse semigroup on X. Then

=3 ()

k=1
a

Let X be a finite nonempty set, Zx the symmetric inverse semigroup on X,
and let A be a subset of ZTx. We define I'(X, A) to be a graph whose vertex
set is X and edge set E(I'(X, A)) = {(,5) | (j)a = i for some o € A}. Now
we are in a position to give the structure of Aut4(Z% )-vertex-transitive Cayley
graph Cay(T}, A).

Proposition 2.8 Let X be a finite nonempty set with | X| = n, Ix the sym-
metric inverse semigroup on X, and let A be a subset of I. If Cay(Ty, A) is

Auty (I3 )-vertez-transitive, then Cay(Ty, A) = NT(X, A), where N = —"‘L'—K—L
that is, Cay(Z%, A) is isomorphic to a disjoint union of N copies of I'(X, A)
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Proof. Forany Iy C Iy, given any k—subset of X, denoted by R = {ry,72,...,7k},
we define .

Sp = {a € Ix | (a;)a =r; for all (a1,az,...,ax) € X*, i= 1,2,...,k}.

It implies that |Sg| = (;:) k! by Lemma 2.7. We can denote the elements of Sg by
the k—ordered arrays (a1, @z,...,ax). For any (a1, az,...,ax), (b1,bs,...,b) €
Sg, it follows that

((01,02, e »ak)v(blbey .. ’tbk)) € E(Cay(I:Y!A))

if and only if (a;)a = b; for some a € A4,i=1,2,...,k, by Lemma 2.6.
We define a relation 8 on Sr as

(al, ag,... ,ak)ﬁ(bl,bz, .. .bk) if (al,ag, e ,ak) € (bl,bz, v ,bk)(A)

It follows that 3 is an equivalence relation on Sr. Since (A) is semiregular on
X, then |((a1,a2,...,ax))(A})| = |(4)|, for any (a1, as,...,ax) € Sr. Further-
more, B(q, az,....a;) iS €qual to the connected component of Cay(Z%, A) contain-
ing {(ay,a2,...,ar) by Lemma 2.4.

We also define a relation v on X as iyj if ¢ € (j)(A). It implies that +
is an equivalence relation on X. On the other hand, since {A) is semiregular
on X, then |(?)(A)| = |(A)|, for any ¢ € X. Here ~; is equal to the connected
component of I'(X, A) containing ¢ by the definition of I'(X, A).

Denote by Dg the connected component of Cay(Z%, A), which is induced
by B(ay,as,...ax)- For any a; € {a1,az,...,ax}, denote by D, the connected
component of I'(X, A), which is induced by <,,. Define &: Dg — D, by
(@1,a2,...,ak) = a;. Since |8, a,,....ax)l = 1Ya:| = [(A)|, and b; # ¢; for any
distinct two (b, be,...,bx), (€1,€2,-- -, Ck) € B(ay a.....ax)» then @ is a bijection.
Let (a1,a2,-.-,ak), (b1,b2,...,bx) € Ba, a3,....ax)- Then

((alr az,... )ak)9 (blyb2: cee :bk)) € E(Cay(I)'(, A))
&a; = (b)a,i=1,2,...,k, forsomea€ A
(a;, b;) € E(I(X, A))
«(®((a1,a2,...,ak)), ®((b1,b2,...,bx))) € E(I'(X, A)).
Therefore @ is an isomorphism from Dg to D..
Ify; # v; for some 1, 5 € X. We show that D., = D.,,, where D, (resp. D,,)
is the subgraph of I'(X, A) induced by «; (resp. ;). Define A: D,, — D
by ((i)a)A = (j)e, for some a € {A). Since |vi| = |v;| = |(A)|, then A is a
bijection, and we have that
((i)a, (3)B) € E(D.,), for some a, € (A) & (i)a = (i)808’, for some §' € A
& fp'a"! = e, since (A) is semiregular
& ()Bfal =j & (j)a= ()88
& ((§)e, (7)B) € E(D.,)
& (((B))A, ((1)B)A) € E(Ds,).
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Therefore, A is a isomorphism from Do, to D,,, thus there are %y isomorphic

connected components in I'(X, A), and %’;} isomorphic connected components
in the subgraph induced by Sg by Lemma 2.4 and Theorem 2.1. Then the
subgraph of Cay(Z%, A) induced by Sg is isomorphic to

R/ _ (K

n/|(4)] n

ny2
copies of I'(X, A). Moreover, the subgraph induced by I, is isomorphic to gﬁ%ﬂ
copies of I'( X, A) by Lemma 2.7 and the fact that Cay(Z%, A) is ColAut4(ZT%)-

n n\3
vertex-transitive. Therefore, Cay(ZTy, A) & NT'(X, A), where N = gﬁéﬁ)ﬂ,g

We consider the strongly connected component of Cay(Z%, A) induced by
(A)e = (A), where e is the identity of S,, C Tx. It is obvious that this connected
component is a Cayley graph of group (A) with respect to A. If Cay(Z%, A) is
Aut 4 (T )-vertex-transitive, then its connected components are isomorphic to
each other. Therefore,

n o (my2,,
Cey(z )& Zeot gy (),
by Lemma 2.7. On the other hand, it is well known that the Cayley graphs
of groups are vertex-transitive, so are the disjoint union of Cayley graphs of
groups. Hence we have the second main result of this paper which is a stronger
version of Theorem 2.1. It shows that any Aut,(Z%)-vertex-transitive graph
Cay(Zy, A) is a disjoint union of Cayley graphs of some group.

Corollary 2.9 Let X be a finite nonempty set with |X| = n, Ix the symmetric
inverse semigroup on X, and let A be a subset of Ty. Then the following
statements are equivalent,

(i) Cay(Tx,A) is ColAut4(Ty)-vertez-transitive;

(ii) Cay(Zx,A) is Aut4(Ty)-vertez-transitive;

(iii) A C S, C Ix, and (A) is semiregular on X;

(iv) Cay(Ty, A) = E_Zﬂﬁz(},ﬁcay((A),A). 0

Example 2.10 Let X = {1,2,3,4,5,6,7,8,9}, and let Zx be the symmetric
inverse semigroup on X. Put A = {(123)(456)(789), (147)(258)(369)} C Ss. It
is routine to verify that (A) is semiregular on X. Then Cay(Z%, A) is a disjoint

] 932
union of Mﬂgi‘m copies of I'(X, A) (Illustrated by Figure 1). a
The following result is a special case of Corrollary 2.9. It gives a complete

description of the Auta(Z%)-vertex-transitive graph Cay(Z%, A) when |X]| is a
prime.
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’%A,

Figure 1: T'(X, A)

Corollary 2.11 Let X be a finite nonempty set with |X| = p, where p is a
prime, Ix the symmetric inverse semigroup on X, and let A be a subset of T%.
Then the following statements are equivalent,

(i) Cay(Zx, A) is Col Aut (T )-vertez-transitive;

(ii) Cay(ZTx, A) is Auts(Ty)-vertez-transitive;

2

(ifi) Cay(Ty, A) = Zk=tE¥ ay(z,,8(4)), where & is an isomorphism
from (A) to Z,. O
Proof. (i)= (ii) and (iii)=>(i) are obvious. We only need to show that (ii)
implies (iii). Let Cay(Z%, A) be Aut4(T%)-vertex-transitive, we have A C S, C
Z% by Theorem 2.1. Since p is a prime, then each nonidentity element of A is
a p-cycle. Also since that (A) is semiregular on X, then (A) = Z,. We may
suppose that X = {0,1,...,p—1},and a = (01---p — 1) € A, thus (4) = (a),
Define a mapping from (A) to Z, by

o: (4) — 2,

(i1 ip-1) — 31 — %5, e D.
It is easy to verify that @ is an isomorphism. We define a bijection as follows,
A: X —Zp; i
It follows that

(i,7) € E(T) & i = (j)a, for some a € A
S7-1i€d(A)
& (i,7) € E(Cay(Z,, ®(A)).

We conclude that A is an isomorphism from I'(X.A) to Cay(Z,, ®(A)). Hence
(iii) holds by Proposition 2.8 and Corollary 2.9. O
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3 Undirected Cayley Graphs and Generalized
Petersen Graph

In this section, we investigate the undirected Cayley graphs of symmetric in-
verse semigroups, and construct the generalized Petersen graph as a connected
component of the Cayley graph of the symmetric inverse semigroup. The fol-
lowing lemma was produced by A.V. Kelarev which characterizes all undirected
Cayley graphs of semigroups.

Lemma 3.1 ([8]) Let S be a finite semigroup, A a subset of S. Then Cayley
graph Cay(S, A) is undirected if and only if the following conditions hold,

(1) AS=S;

(ii) (A) = M[G; I,A; P] is a completely simple semigroup;

(iii) for any (i,9,)) € A, j € I, there ezists p € A such that (5, PM 9Py )
belongs to A. O

Here we give the complete description of all undirected Cayley graphs of
symmetric inverse semigroup.

Theorem 3.2 Let X be a finite nonempty set, Tx the symmetric inverse semi-
group on X , and let A be a subset of Ix. Then Cayley graph Cay(Tx,A) is
undirected if and only if AC S, CIx, and A~ = A.

Proof. Necessity. We suppose that there exists 8 € A, such that |im8| =
|domB| = k < n. We may choose a € Ix, such that im8 Ndoma = @, thus
Ba =0, that is (a,0) € E(Cay(Zx, A)). On the other hand, there is no directed
edge from O to any non-zero vertex. It contradicts the fact that Cay(Zx, A)
is undirected. It shows that for any 8 € A, |imB| = |domf| = n. Therefore
ACS,cT X

For any o € Ix, v € A, we have (a,va) € E(Cay(Zx, A)), then (ya,c) €
E(Cay(Zx, A)). It implies that o = v/ya, for some 7' € A. Since A C S,, then
7'y =e. Hence 4’ and y~! € A. It follows that A C A~!. The converse case is
obviously. Therefore 4= = A.

Sufficiency. Since A C S, C Zx, then ATx = Ix. The condition (ii) and
(iii) of Lemma 3.1 hold since {A)} is a group. Therefore Cayley graph Cay(Zx, A)
is undirected.

Let k and n be positive integers with n > 2k. The generalized Petersen graph
Py is the simple graph with vertices i, ..., %n, %1, ..., ¥n and undirected edges
(zis Tiv1)y (¥, Yitr), (Ti, %), i = 1,2,...,n, indices being taken modulo n (Note
that P, 5 is the Petersen graph). It is known that the generalized Petersen graph
can not be obtained as the Cayley graphs of groups (see [3]).

Let Tx be the symmetric inverse semigroup on a finite nonempty set X, and
A be a subset of Ix. We put I) = {& € Ix | |doma| = |ima| = 1}, and define
T’ be the subgraph of Cay(Z%, A) induced by I;. The following result shows
that I' is a disjoint union of the generalized Petersen graphs via constructing a
appropriate set A.
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Theorem 3.3 Let X = {z1,Z2,...,Zn,¥1,¥2,...,Yn} be a finite nonempty set,
Ix be the symmetric inverse semigroup on X, take S = {(z1z2 - Tn),
(192 -yn)¥, (z191)(2292) - - (Tnyn)} and A=SUS1. Then T = 2Py .

Proof. Let V(Pin) = {Z1,%2,...,%n,¥1,¥2, - - -, Un}s (i, Tiv1), (¥i,¥i+x) and
(2, y:) are undirected edges, for i = 1,2,...,n, indices being taken modulo n.
For any z; € X, we define IT* = {a € I | ima = {=z;}}, and define a map

é; : Ii"-‘ N V(Pk.n) by (::) - ;.

It is obvious that @; is a bijection. Let u, v € I If u = (¥'), v = (%), for
some i, Tm € X, where [, m are taken modulo n. Then
(u,v) € E(T) & l=m=x1, by (z122---z,) € A and Lemma 2.6
& (z1,2m) € E(Pi,n)
< (¢i(u), #i(v)) € E(Pi,n).

Ifu= (%), v= (%), for some y, ym € X, where |, m are taken modulo n.
Then

(u,v) € E(T) & l=m £k, by (1132 ¥n)* € A and Lemma 2.6
& (Y1,ym) € E(Pen)
& (¢i(u), ¢i(v)) € E(Pe,n).

Ifu= (%), v= (%), for some zi, ym € X, where |, m are taken modulo n.
Then

(u,v) € E(T) & Il =m, by (z11 }(Z2y2) * ** (Tayn) € A and Lemma 2.6
& (mbym) € E(Pk,n)
 (¢i(u), 6i(v)) € E(Pre,n).
Therefore, the subgraph of T induced by If* is isomorphic to Py,. On the other
hand, for any i, j € {1,2,...,n} and i # j, it is obvious that the subgraphs of
T induced by I, I7?, I} and I}’ are isomorphic to each other by Lemma. 2.6.

It follows that the subgraph induced by I; is isomorphic to 2nPx ,. Therefore
I 2 2n Py », as required. (]
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