QUALITATIVE BEHAVIOR OF A RATIONAL DIFFERENCE EQUATION

RAMAZAN KARATAS¹ AND ALI GELIŞKEN²

^{1,2}Department of Mathematics, A. Kelesoglu Education Faculty, Selcuk University, Meram Yeni Yol, Konya, TURKIYE

> ¹rkaratas@selcuk.edu.tr ²aligelisken@yahoo.com.tr

ABSTRACT

In this paper we study the global behavior of the nonnegative equilibrium points of the difference equation

$$x_{n+1} = \frac{ax_{n-k}}{b + cx_{n-k}^r x_{n-(2k+1)}^s}, \quad n = 0, 1, \dots$$

where a, b, c are nonnegative parameters, initial conditions are nonnegative real numbers, k is a nonnegative integer and $r, s \ge 1$. Keywords: Difference Equation, Globally Asymptotically, Boundedness.

1. Introduction

Difference equations play an important role in the analysis of the mathematical models of biology, physics and engineering. Qualitative analysis of rational difference equations is a fertile research area. Recently there has been a lot of work concerning the global asymptotic behavior of solutions of rational difference equations. For example see Refs. [1-18].

Hamza et al. [1] studied the asymptotic stability of the nonnegative equilibrium point of the difference equation

$$x_{n+1} = \frac{Ax_{n-1}}{B + C \prod_{i=1}^k x_{n-2i}}.$$

Also Hamza [2] investigated the global stability, periodic nature, oscilation and the boundedness of the difference equation

$$x_{n+1} = \frac{A \prod_{i=l}^{k} x_{n-2i-1}}{B + C \prod_{i=l}^{k-1} x_{n-2i}}.$$

Elabbasy et al. [6] investigated some qualitative behavior of the solutions of the recursive sequence

$$x_{n+1} = \frac{\alpha x_{n-k}}{\beta + \gamma \prod_{i=0}^{k} x_{n-i}}.$$

El-Owaidy et al. [9] studied the dynamics of the recurcive sequence

$$x_{n+1} = \frac{\alpha x_{n-1}}{\beta + \gamma x_{n-2}^p}.$$

Karatas [16] studied the global behavior of the nonnegative equilibrium points of the difference equation

$$x_{n+1} = \frac{Ax_{n-2l}}{B + C \prod_{i=0}^{2k} x_{n-i}}.$$

Cinar [4] investigated the global asymptotic stability of all positive solutions of the rational difference equation

$$x_{n+1} = \frac{ax_{n-1}}{1 + bx_n x_{n-1}}.$$

Yalcinkaya [10] studied the global behaviour of the rational difference equation

$$x_{n+1} = \alpha + \frac{x_{n-m}}{x_n^k}.$$

Elsayed [7] investigated the qualitative behavior of the solution of the difference equation

$$x_{n+1} = ax_n + \frac{bx_n x_{n-1}}{cx_n + dx_{n-1}}.$$

In this paper we study the behavior of the positive solutions of the following difference equation

(1.1)
$$x_{n+1} = \frac{ax_{n-k}}{b + cx_{n-k}^r x_{n-(2k+1)}^s}, \quad n = 0, 1, \dots$$

where a, b, c are nonnegative real numbers, initial conditions are nonnegative, k is a nonnegative integer and $r, s \ge 1$.

2. Preliminaries

Let I be some interval of real numbers and let $f: I^{k+1} \rightarrow I$ be a continuously differentiable function. Then for every set of initial conditions $x_{-k}, x_{-k+1}, ..., x_0 \in I$, the difference equation

$$x_{n+1} = f(x_n, x_{n-1}, ..., x_{n-k}), n = 0, 1, ...$$

has a unique solution $\{x_n\}_{n=-k}^{\infty}$.

Definition 1. An equilibrium point for Eq.(2.1) is a point $\overline{x} \in I$ such that $\overline{x} = f(\overline{x}, \overline{x}, ..., \overline{x}).$

Definition 2. A sequence $\{x_n\}_{n=-k}^{\infty}$ is said to be periodic with period p if $x_{n+p} = x_n \text{ for all } n \ge -k$.

Definition 3. (i) An equilibrium point \overline{x} for Eq.(2.1) is called locally stable if for every $\epsilon > 0$, there exists a $\delta > 0$ such that every solution $\{x_n\}$ with initial conditions $x_{-k}, x_{-k+1}, ..., x_0 \in]\overline{x} - \delta, \overline{x} + \delta[$ is such that $x_n \in$ $|\overline{x} - \epsilon, \overline{x} + \epsilon|$ for all $n \in \mathbb{N}$. Otherwise \overline{x} is said to be unstable.

(ii) The equilibrium point \overline{x} of Eq.(2.1) is called locally asymptotically stable if it is locally stable and there exists $\gamma > 0$ such that for any initial conditions $x_{-k}, x_{-k+1}, ..., x_0 \in]\overline{x} - \gamma, \overline{x} + \gamma[$, the corresponding solution $\{x_n\}$ tends to \overline{x} .

(iii) An equilibrium point \overline{x} for Eq.(2.1) is called a global attractor if every solution $\{x_n\}$ converges to \overline{x} as $n \to \infty$.

(iv) The equilibrium point \overline{x} of Eq.(2.1) is called globally asymptotically stable if it is locally asymptotically stable and is a global attractor.

Let

$$c_i = \frac{\partial f}{\partial x_{n-i}}(\overline{x},...,\overline{x}), \quad \text{for } i = 0, 1,...,k$$

 $c_i = \frac{\partial f}{\partial x_{n-i}}(\overline{x},...,\overline{x}), \quad \text{for } i = 0,1,...,k$ denote the partial derivatives of $f(x_n,x_{n-1},...,x_{n-k})$ with respect to x_{n-i} evaluated at the equilibrium point \overline{x} of Eq.(2.1). Then the equation

(2.2)
$$y_{n+1} = \sum_{i=0}^{k} c_i y_{n-i}, \quad n = 0, 1, \dots$$

is called the linearized equation associated with Eq.(2.1) about the equilibrium point \overline{x} .

The characteristic equation associated with Eq.(2.2) is

(2.3)
$$\lambda^{k+1} - \sum_{i=0}^{k} c_i \lambda^{k-i} = 0.$$

Theorem 1. [17] Assume that f is a C^1 function and let \overline{x} be an equilibrium point of Eq.(2.1). Then the following statements are true.

(i) If all roots of Eq.(2.3) lie in open disk $|\lambda| < 1$, then \overline{x} is locally asymptotically stable.

(ii) If at least one root of Eq.(2.3) has absolute value greater than one, then \overline{x} is unstable.

In this section, we study the dynamics of Eq.(1.1).

The change of variables $x_n = \left(\frac{b}{c}\right)^{\frac{1}{r+s}} y_n$ reduces Eq.(1.1) to the difference equation

(3.1)
$$y_{n+1} = \frac{py_{n-k}}{1 + y_{n-k}^r y_{n-(2k+1)}^s}, \ n = 0, 1, \dots$$

where $p=\frac{a}{b}$. We can see that Eq.(3.1) has two nonnegative equilibrium points $\overline{y}_1=0$ and $\overline{y}_2=(p-1)^{\frac{1}{r+s}}$ when p>1 and the zero equilibrium point only when $p\leq 1$.

The linearized equation associated with Eq.(3.1) about \overline{y} is

$$z_{n+1} = \frac{p + (1-r) p \overline{y}^{r+s}}{\left(1 + \overline{y}^{r+s}\right)^2} z_{n-k} - \frac{p s \overline{y}^{r+s}}{\left(1 + \overline{y}^{r+s}\right)^2} z_{n-(2k+1)}, \quad n = 0, 1, \dots$$

The characteristic equation associated with this equation is

$$\lambda^{2k+2} - \frac{p + (1-r) p \overline{y}^{r+s}}{\left(1 + \overline{y}^{r+s}\right)^2} \lambda^{k+1} + \frac{p s \overline{y}^{r+s}}{\left(1 + \overline{y}^{r+s}\right)^2} = 0.$$

Theorem 2. The following statements are true:

- (i) If p < 1, then the equilibrium point $\overline{y}_1 = 0$ of Eq.(3.1) is locally asymptotically stable,
- (ii) If p > 1, then the equilibrium points $\overline{y}_1 = 0$ and $\overline{y}_2 = (p-1)^{\frac{1}{r+s}}$ of Eq.(3.1) are unstable.

Proof. The linearized equation of Eq.(3.1) about the equilibrium point $\overline{y}_1=0$ is

$$z_{n+1} - pz_{n-k} = 0, \quad n = 0, 1, \dots$$

The characteristic equation of Eq.(3.1) about the equilibrium point $\overline{y}_1=0$ is

$$\lambda^{k+1}\left(\lambda^{k+1}-p\right)=0.$$

So

 $\lambda = 0$ and $\lambda = p^{\frac{1}{k+1}}$. In view of Theorem 1:

If p < 1, then $|\lambda| < 1$ for all roots and the equilibrium point $\overline{y}_1 = 0$ is locally asymptotically stable.

If p > 1, it follows that the equilibrium point $\overline{y}_1 = 0$ is unstable.

The linearized equation of Eq.(3.1) about the equilibrium point $\overline{y}_2 = (p-1)^{\frac{1}{r+s}}$ is

$$z_{n+1} = \frac{p+r-pr}{p} z_{n-k} - \frac{sp-s}{p} z_{n-(2k+1)}, \quad n = 0, 1, \dots$$

The associated characteristic equation is

$$\lambda^{2k+2} - \frac{p+r-rp}{p} \lambda^{k+1} + \frac{sp-s}{p} = 0.$$

In view of Theorem 1 it follows that the equilibrium point $\overline{y}_2 = (p-1)^{\frac{1}{r+s}}$ is unstable.

Theorem 3. Assume that p < 1, then the equilibrium point $\overline{y}_1 = 0$ of Eq.(3.1) is globally asymptotically stable.

Proof. Let $\{y_n\}_{n=-(2k+1)}^{\infty}$ be a solution of Eq.(3.1). From Theorem 2 we know that the equilibrium point $\overline{y}_1 = 0$ of Eq.(3.1) is locally asymptotically stable. So it suffices to show that

$$\lim_{n\to\infty}y_n=0.$$

We get

$$y_{n+1} \le p y_{n-k}$$

from Eq.(3.1). Then it can be written for t = 0, 1, ...

$$(3.2) y_{t(k+1)+i} \le p^{t+1} y_{-(k+1-i)}, i = 1, 2, ..., k+1$$

If p < 1, then $\lim_{t \to \infty} p^{t+1} = 0$

and

$$\lim_{n\to\infty}y_n=0.$$

The proof is complete.

Theorem 4. The following statements are true:

- (i) If p = 1, then every solution of Eq.(3.1) is bounded.
- (ii) If p > 1, then every solution of Eq.(3.1) is unbounded.

Proof. (i) Let $\{y_n\}_{n=-(2k+1)}^{\infty}$ be a solution of Eq.(3.1). It follows from Eq.(3.1) that

$$y_{n+1} = \frac{y_{n-k}}{1 + y_{n-k}^r y_{n-(2k+1)}^s} \le y_{n-k}$$

Then from inequality (3.2) we have for t = 0, 1, ...

$$y_{t(k+1)+1} \leq y_{-k},$$

$$y_{t(k+1)+2} \leq y_{-k+1}$$

. . .

$$y_{t(k+1)+k+1} \leq y_0.$$

So every solution of Eq.(3.1) is bounded from above by $A = \max\{y_{-k}, y_{-k+1}, ..., y_0\}$.

(ii) Similarly from inequality (3.2) we have for t = 0, 1, ...

$$y_{t(k+1)+1} \le p^{t+1}y_{-k}, \ y_{t(k+1)+2} \le p^{t+1}y_{-k+1}, ..., \ y_{t(k+1)+k+1} \le p^{t+1}y_0.$$

So every solution of $Eq.(3.1)$ is unbounded when $p > 1$.

REFERENCES

- A. E. Hamza and R. K. Allah, Global behavior of a higher order difference equation, Journal of Mathematics and Statistics, 3(1) (2007), 17-20.
- [2] A. E. Hamza and R. K. Allah, On the recursive sequence $x_{n+1} = A \prod_{i=l}^{k} x_{n-2i-1} / \left(B + C \prod_{i=l}^{k-1} x_{n-2i}\right)$, Comput. Math. Appl., 56 (2008), 1726-1731.
- [3] A. E. Hamza and A. Morsy, On the recursive sequence $x_{n+1} = \alpha + \frac{x_{n-1}}{x_n^k}$, Appl. Math. Lett., 22 (2009), 91-95.
- [4] C. Cinar, On the positive solutions of the difference equation $x_{n+1} = \frac{ax_{n-1}}{1+bx_nx_{n-1}}$, Appl. Math. Comput., 156 (2004), 587-590.
- [5] D. Simsek, C. Cinar and İ. Yalcinkaya, On the recursive sequence, Taiwanese Journal of Mathematics, 12(5) (2008), 1087-1099.
- [6] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, On the difference equation $x_{n+1} = \frac{\alpha x_{n-k}}{\beta + \gamma \prod_{i=0}^{k} x_{n-i}}$, J. Conc. Appl. Math. 5(2) (2007), 101-113.
- [7] E. M. Elsayed, Qualitative behavior of a rational recursive sequence, Indag. Mathem., N.S., 19(2) (2008), 189-201.
- [8] E. M. Elsayed, Qualitative behavior of difference equation of order two, Math. Comput. Model., 50 (2009),1130-1141.
- [9] H. M. El-Owaidy, A. M. Ahmet and A. M. Youssef, On the dynamics of the recursive sequence $x_{n+1} = \frac{\alpha x_{n-1}}{\beta + \gamma x_{n-2}^{p}}$, Appl. Math. Lett., 18(9) (2005), 1013-1018.
- [10] İ. Yalcınkaya, On the difference equation $x_{n+1} = \alpha + \frac{x_{n-m}}{x_n^k}$, Discrete Dyn. Nat. Soc., Article ID 805460, 2008, 8 pages, doi: 10.1155/2008/805460.
- [11] İ. Yalcinkaya, C. Çinar and M. Atalay, On the solutions of systems of difference equations, Adv. Differ. Equ-Ny., Vol. 2008, Article ID 143943, 2008, 9 pages.
- [12] M. Aloqeili, Dynamics of a rational difference equation, Appl. Math. Comput., 176(2) (2006), 768-774.
- [13] M. Dehghan, R. Mazrooei-Sebdani, Dynamics of $x_{n+1} = \frac{x_{n-2k+1}}{x_{n-2k+1} + \alpha x_{n-2l}}$, Appl. Math. Comput., 185 (2007), 464-472.
- [14] R. Abu-Saris, C. Çinar and I. Yalçinkaya, On the asymptotic stability of $x_{n+1} = \frac{a+x_nx_{n-k}}{x_n+x_{n-k}}$, Comput. Math. Appl., 56 (2008), 1172-1175.
- [15] R. Karatas, Global behavior of a higher order difference equation, Comput. Math. Appl., 60 (2010) 830-839.
- [16] R. Karatas, Global behavior of a higher order difference equation, ARS Combinatoria, 96 (2010) 145-160.
- [17] V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of High Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.
- [18] Y. Yang and X. Yang, On the difference equation $x_{n+1} = \frac{px_{n-s} + x_{n-t}}{qx_{n-s} + x_{n-t}}$, Appl. Math. Comput., 203 (2008), 903-907.