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ABSTRACT

In this paper we study the global behavior of the nonnegative equilibrium
points of the difference equation

n-k n=0,1
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where a, b, c are nonnegative parameters, initial conditions are nonneg-
ative real numbers, k is a nonnegative integer and r,s > 1.
Keywords: Difference Equation, Globally Asymptotically, Boundedness.

1. INTRODUCTION

Difference equations play an important role in the analysis of the math-
ematical models of biology, physics and engineering. Qualitative analysis
of rational difference equations is a fertile research area. Recently there has
been a lot of work concerning the global asymptotic behavior of solutions
of rational difference equations. For example see Refs. [1-18].

Hamza et al. [1] studied the asymptotic stability of the nonnegative
equilibrium point of the difference equation
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Also Hamza [2] investigated the global stability, periodic nature, oscila-
tion and the boundedness of the difference equation
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Elabbasy et al. [6] investigated some qualitative behavior of the solutions
of the recursive sequence
QTn—k

e
B+~ n Tn—i

i=0

Tpnyl =

El-Owaidy et al. [9] studied the dynamics of the recurcive sequence
z _ O0Tn—1
T+ VTh_g
Karatas [16] studied the global behavior of the nonnegative equilibrium
points of the difference equation
Azp_o
2k .
B+ C H Tn—i
=0
Cinar [4] investigated the global asymptotic stability of all positive so-
lutions of the rational difference equation
aTn—1
14+ bz,2n1 )
Yalcinkaya [10] studied the global behaviour of the rational difference
equation

Tntl =

Tnyl =

Tn—m
Tpnt1 =0 + :Ek
n

Elsayed [7] investigated the qualitative behavior of the solution of the
difference equation

b2y 2n—1
CIn +dTn_y
In this paper we study the behavior of the positive solutions of the following
difference equation

Zn41 = ATy +

ATpn—k
, n=0,1,...

(11) Tn4l =
" b+exy _xTn_(2ks1)

where qa, b, ¢ are nonnegative real numbers, initial conditions are nonneg-
ative, k is a nonnegative integer and r,s > 1.
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2. PRELIMINARIES

Let I be some interval of real numbers and let f : I**! — I be a
continuously differentiable function. Then for every set of initial conditions
T fyTmk+1, -+ To € I, the difference equation

Znt1 = (T, Tn-1yyTn-k), n=0,1,...
has a unique solution {z,}e _, .
Definition 1. An equilibrium point for Eq.(2.1) is a point T € I such that
Z=f(Z,%,...T).
Definition 2. A sequence {x,,}ﬁi_k 18 said to be periodic with period p if
Tnyp = ZTn for alln > —k.

Definition 3. () An equilibrium point T for Eq.(2.1) i3 called locally stable
if for every € > 0, there exists a § > 0 such that every solution {z,}
with initial conditions T_x,T_k41,...,Z0 € |E — 6,% + 4| is such that z, €
| — €,T + €[ for alln € N. Otherwise T is said to be unstable.

(#i) The eguilibrium point T of Eq.(2.1) is called locally asymptotically
stable if it is locally stable and there exists v > 0 such that for any initial
conditions T_x,T—k41,---, %0 € JT— 7, T+ 7], the corresponding solution
{zn} tends to Z.

(iii) An equilibrium point T for Eq.(2.1) is called a global attractor if
every solution {z,} converges to T as n — oo.

(iv) The equilibrium point T of Eq.(2.1) is called globally asymptotically
stable if it is locally asymptotically stable and is a global attractor.

Let

=52 (z,..,7), fori=0,1,..,k

denote the partial derivatives of f(Zn,Zn—1,...,Tn—k) with respect to

ZTn—; evaluated at the equilibn'um point Tof Fq.(2.1). Then the equation

(2.2) Ynp1 = Zc,yn_., n=0,1,..
=0

15 called the linearized equation associated with Eq.(2.1) about the equi-
librium point T.
The characteristic equation associated with Eq.(2.2) is

k
(2.3) ANkt =0,
=0

Theorem 1. [17] Assume that f is a C? function and let T be an equilib-
rium point of Eq.(2.1). Then the following statements are true.

(i) If all roots of Eq.(2.3) lie in open disk |A\| < 1, then T is locally
asymptotically stable.
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(%) If at least one root of Eq.(2.3) has absolute value greater than one,
then T is unstable.

3. DYNAMICS OF EqQ.(1.1)

In this section, we study the dynamics of Eq.(1.1).
1

The change of variables z,, = (2) ™ y, reduces Eq.(1.1) to the difference
equation
(31) Y41 = T Lonk

n=01,..
L+ 9y ¥n—(2k+1) ’ T

where p = §. We can see that Eq¢.(3.1) has two nonnegative equilibrium
points j; = 0 and 5, = (p— 1)$ when p > 1 and the zero equilibrium
point only when p < 1. -
The linearized equation associated with Eq.(3.1) about 7 is
+(1-r —r+s Y i
pt( _r_),_fyz Zn—k — _p_!i—r‘:fzn—(2k+1)a n=0,1,...
(1+77+) 1+7™)

The characteristic equation associated with this equation is

Znt+1 =

A2k+2 _ p+(1—r)pg*e PR psy e =0
(1 +y-r+s)2 (1 +yr+s)2 ’

Theorem 2. The following statements are true:

(i) If p < 1, then the equilibrium point G, = 0 of Eq.(3.1) is locally
asymptotically stable,

(ii) If p > 1, then the equilibrium points J, = 0 and Jp = (p— 1)™7 of
Eq.(3.1) are unstable.

Proof. The linearized equation of E'q.(3.1) about the equilibrium point §; =
0is
Zntl1 = P2k =0, n=0,1,...

The characteristic equation of Eq.(3.1) about the equilibrium point 7; =
0is
Ak+1 ()‘k+1 —p) =0.

So

A=0and A= p?-h. In view of Theorem 1:

If p < 1, then |A| < 1 for all roots and the equilibrium point 7; = 0 is
locally asymptotically stable.

If p > 1, it follows that the equilibrium point 7; = 0 is unstable.
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The linearized equation of Eq.(3.1) about the equilibrium point 7, =

(-1 is
+r— sp—38
Zn41 = %‘r‘zﬂ—k - pp Zn—(2k+1)y N = 0,1,...

The associated characteristic equation is
22k+2 _ P+7‘—"'P)\k+1+ P8 .
P p

In view of Theorem 1 it follows that the equilibrium point 7, = (p — 1)#7
is unstable.

Theorem 3. Assume that p < 1, then the equilibrium point §; = 0 of
Eq.(3.1) is globally asymptotically stable.

a
Proof. Let {yn}:;-(zk +1) be a solution of Eq.(3.1). From Theorem 2 we

know that the equilibrium point 7; = 0 of Eq.(3.1) is locally asymptotically
stable. So it suffices to show that

lim y, = 0.
n—00
We get
Yn+1 < PYn—k
from Eq.(3.1). Then it can be written for t =0,1,...
(3.2) Yen)+i <P et1-9)y 1=1,2,.,k+1
If p< 1, then tlim pttl =0
and
lim y, = 0.
n—o0
The proof is complete. O

Theorem 4. The following statements are true:
(i) If p = 1, then every solution of Eq.(3.1) is bounded.
(i) If p > 1, then every solution of Eq.(3.1) is unbounded.
Proof. (i) Let {yn};__(3¢+1) be & solution of Eq.(3.1). It follows from

Eq.(3.1) that
Yn—k

1+ 9 k¥n—(2k+1)
Then from inequalitiy (3.2) we have for t =0, 1, ...

Ynt1 = < Un—k

Ye(k+1)+1 S Y=k
Ye(k+1)42 < Ymit1,
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Ye(k+1)+k+1 < Yo-
So every solution of Eq.(3.1) is bounded from above by
A = max {y—ky Y—kt1s 00y yO}

(ii) Similarly from mequlmy (3.2) we have for t = 0,1, ...

Yeer1)+1 < PPk Yeoeanyae S P Wokits o Begern)rer < PP 0.
So every solution of Eq.(3.1) is unbounded when p > 1. 0
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