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Abstract

In this paper, we study the edge deletion preserving the diam-
eter of the Johnson graph J(n,k). Let un~(G) be the maximum
number of edges of a graph G whose removal maintains its diam-
eter. For Johnson graph J(n,k), we give upper and lower bounds
to the number un™(J(n,k)), namely: (§)(,%,) < un~(J(n,k)) <

I Gerd) =T+ FN(E) = DY, forn 2 2k > 2.
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1 Introduction

Let n and & be fixed positive integers with n > k. The vertices of Johnson
graph J(n, k) are the k-subsets of Q = {1,2,---,n} £ [n], and two such
subsets are adjacent if and only if their intersection has size k — 1. Then
J(n,k) is a k(n — k)-regular graph with (}) vertices. In particular, J(n,1)
is a complete graph K, with n vertices, and J(n,n) is only one vertex.
Further J(n,k) 2 J(n,n — k) [6]. So we may suppose that n > 2k. For
convenience, we always denote the smallest element of a k-subset a of [n]
by a. For the notation and terminology not defined here, we refer to [1].
For a graph G, we use d(z, y) to denote the distance between the vertices
z and y. Then the diameter of G is denoted by d(G) = max{d(z,y) | z,y €
V(G)}. Pizaiia [9] showed that the diameter of J(n, k) is min{k,n—k}. For
given integers n and d, what is the minimum number of edges of a graph
on n vertices with the property that after deleting any edge, the remaining
graph has diameter no more than d? This problem was first proposed by
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Vijayan and Murty [12]. About diameter vulnerability of graphs after edge
deletion and edge addition, see refs. [3]-[5] and [7]-[15].

Graham and Harary [7] used un~(G) to denote the maximum number
of edges of the graph G whose removal maintains the diameter. Bounds
on un~(Q,) were given [2]. In this paper we use a similar way to consider
J(n, k) by constructing a spanning subgraph G of small size and diameter
k. In the next section, we prove that un=(J(n,k)) > iﬁ|E(J(n, k)| =
(g) (kil). In Section 3, we give an upper bound to un™(J(n, k)).

2 A spanning subgraph of J(n,k) of diameter

k and small size
In this section, we construct a spanning subgraph G of J(n, k) with diam-
eter k and size at most ﬁT]E(J(n, k))| for k > 2.

We partition the vertex-set V(J(n,k)) into n — k + 1 disjoint sets
Li,La, -+, Ln_k41 by the different choice of the smallest element a: L; =
{k-subset a of [n] : a; = i}, where ¢t = 1,2,...,n — k + 1. If we denote the
graph induced by the vertices of L; by J[L;], then J[L;] = J(n — i,k — 1).

Ln-k+1 --
Ln-k <=
Ln-2k+4

Ln-2k+3 Q"%

Ln-2k+2 3.~

Ln-2k+1 il

Lz

L1

Fig. 1. The vertex partition of J(n, k) and the matching given by Lemma
2:1.
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We can obtain a bipartite graph G; = (L;, Liy1) foreach 1 <i < n—k:
Its vertices are ones of L; U L;4; and its edges are ones of J(n, k) joining
vertices of L; to vertices of L;+;. For any vertex a € Liy1, a1 = ¢+ 1.
We can obtain a new vertex b from a by replacing a; by i. Then b € L;
and ab € E(G;). By this way, we give a matching M; in G; which satu-
rates all the vertices of L; 4 for any 1 < ¢ < n—k. So we have the following.

Lemma 2.1 For any 1 < i < n—k, M; is a matching of G; which saturates
all the vertices of L;;;. O

Now we give two remarks about the lemma:

Remark 1. Let us denote the set of vertices in L; which are saturated by
M; in Lemma 2.1 by N; for 1 € i <n — k. Then N; consists of vertices in
L; that do not contain element ¢ + 1 and |N;| = |L;1,|. Let R; = L; \ NV;.
So |Ri| = |Li| — INi| = (32}) = (":531) = (":33Y)- The three following
assertions hold for 1 < i < n — k: Each vertex in L;;, has k neighbors in
L;, namely k —1 neighbors in R; and one neighbor in N;; Each vertex in N;
has one neighbor in L;;; and each vertex in R; has n — k — i + 1 neighbors
in L¢+1.

Remark 2. The matchings M), Mz, -+ , My, form |L,| disjoint paths P;,
1 < i < |Ly|. Note that the vertices on each P; are adjacent to each other
in J(n, k), that is, the graph induced by the vertices on each P, is a clique
C;. If we denote C = {C;|1 < i < |L2l}, then there are (";7;') elements
in C with size j, where 2<j<n-k+1.

Lemma 2.2 If a semi-regular bipartite graph G = (X,Y) has |X| < |Y]
and edges, then G contains a matching which saturates X.

Proof. Let dx (respectively dy) be the degree of each vertex in X (respec-
tively Y). Since |X| < |Y|, we have dx > dy > 0. For any subset S C X,
let m be the number of edges from S to N(S). Then these m edges are inci-
dent to vertices in N(S). Since G is semi-regular, m = dx-|S| < dy-|N(S)|.
This implies that |S| < % -|N(S)| < |N(S)|. By Hall’s Theorem, we know
that G has a matching which saturates all the vertices of X. a

Lemma 2.3 For & > 2, the bipartite graph G; = (Li41, R;) is semi-
regular and contains a matching which saturates all the vertices of R; for
1 < i< n-—2k+2, a matching which saturates all the vertices of Ly for
n—2k+2<i<n-k, and a perfect matching for i =n — 2k + 2.

Proof. By Remark 1, we know that G; is semi-regular and |L;41| = (",::'l' 1) ,

|Ri| = (",:; 1) for 1 < ¢ £ n—k. By the unimodality of binomial coeflicients
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we have |Liy1| > |Ri| for 1 £i<n—2k+2, |Liy1] < |Ri| for n—2k+2 <
i <n—k,and |Liyy| = |R;| for i =n — 2k +2. Hence the remaining of the
lemma follows by Lemma 2.2. O

In the following, let Iy = [n — 2k + 3], [ = [n—k+ 1]\ [n — 2k + 3],
Iy=L\{n—-2k+2}, Iy =[n—2k+1]and Ly, = J;¢;, Li for 1 < t < 4.
Now we construct a spanning subgraph of J(n, k) by choosing the following
four types of edges:

¢ By = Uiy, E(J'[L;]), where J'[L;] is a spanning subgraph of J[L]
with the same diameter of J[L;] having as minimal number of edges
as possible for i € I3.

e E; is the set of edges in each clique in C' with one endvertex in Ly,
and the other one in Ly,.

o Ej is the set of edges in each clique in C with endvertices in Ly, .

e E, is the perfect matching in G,,_,;,, which we obtained in Lemma
23.

We can see that E;(E; =@ for ¢ # j and 4,5 € {1,2,3,4}. It follows that
|B2l = |Lpl(n—2k+2)= (2’°,;32(n -2k +2),
IBs| = i ()6 + ) (7T, and
|E4l = 2::13)'

Let G be the spanning subgraph of J(n, k) with edge-set Uf=1 E;. For
example, the spanning subgraph G of J(4,2) is shown in Figure 2 and
has diameter 2, where B, = {{14,13}, {14,12},{13,12}}, F; = 2,E3 =
{{14,24}, {14, 34}, {24, 34}, {13,23}}, E4 = {{23,34}}.

Fig. 2. A spanning subgraph G of J(4,2) with diameter 2.
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Next we shall verify that G has diameter k and |E(G)| < E—ffl |E(J(n, k)|,
where

|E(J(n, k)| = k(n; u (:) = k_(%ﬁ:_irzlc (k : 1) - (k er 1) (k % 1))'
1

Lemma 2.4 For n > 2k > 2, the spanning subgraph G of J(n,k) has
diameter k.

Proof. For k = 1, we have I) = [n], Ey = E3 = E; = 0 and E3 =
E(J(n,1)). Hence G = J(n,1) = K,, and the lemma is true. For 1 <i <
n—k+1, JIL;) = J(n —i,k—1), and d(J[L;]) = d(J'[L;]) = min{k —
I,n—k—i+1}<k-1. Fork=2,wehave I; =[n—1] and I, = . Let
vy € L;,vp € Lj, where 1 <i < j <n-—k+1. We will check dg(vy,v2) < k
for any v1,v2 € V(G) by considering the three following cases.

Case 1 : i,j € I3. We can find two edges in E; which join v; and v,
to vertices in L, _gk+3 respectively. Since d(J'[Lyn—2k+3]) = k — 2, we have
dg(v1,v2) < k.

Case 2: i€ I,j € I,. If i =n—2k+2, then we can find an edge in E,
joining v and a vertex in L,_sk+3, and an edge in E3 or E4 joining v; and
a vertex in L,_sk43 since M,,_ok42 together with a perfect matching of
G, _sk4o saturate all vertices in Ln_gk42. Hence dg(vi,v2) < k; If i € I,
we can find an edge in Es joining v, to a vertex in L;. Since d(G' [Li]) < k-1
for i € I3, we have dg(v1,v2) < k.

Case 3: i,j € I. If i = j # n—2k+2, we have dg(v1,v3) < d(J'[Ls]) <
k—-1;If i =j = n— 2k + 2, similar to the reason in Case 2 we can find
two edges in E3 or F4 joining v; and v, to vertices in Ly,_ok4+3 respectively.
Hence dg(vy,v2) < k; If n — 2k +2 =1 < 4, we can find an edge in E3 or
E4 joining v, to a vertex in L,_gk43. That implies that dg(v;,v2) < k—1;
For the remaining case, i.e. n —2k+2 #i < j < n—2k + 3, we can find
an edge in E3 joining v, to a vertex in L;. Hence dg(v;,v2) < k.

Hence d(G) < k. On the other hand, d(G) > d(J(n,k)) = k. That is,
d(G) = k. O

Lemma 2.5 The spanning subgraph G of J(n, k) has the following bound
on the number of edges: |E(G)| < g25|E(J(n, k)| = k(,},) for n > 2.

Proof. We proceed by induction on the diameter k of J(n,k). For k =1,
we have G = J(n,1). Fork =2, wehave ), = [n-1), I, = @, I3 =
[n—1]\ {n -2} and Iy = [n — 3]. J[L;] is a complete graph for i € Is.
The diameter of J[L;] will be changed if we delete any one edge. Hence
J' (L) = J(Ls), and |Ex} = 3iep, |EVILD] = Fiep, [E(J(n —4,1))| =
Tier, ("2) = (3) — 1 |1Ba = 0, |Bs| = T3 (75%) = (5) and |y = 1.
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So [E(G)| = Ti1 |Ei| = 2(8) = 2|E(J(n,2))|. Hence in the two trivial
cases, the lemma is true.

In the following let k£ > 3. The diameter of J[L;] is k —1 for ¢ € I4 and
k — 2 for i = n — 2k + 3. By induction hypothesis, we have

|B1l = Tier, |EJ L))
< Ve, %IE(J (L] + 27| E(J[Ln-2k+3])|
=Yier, #IE(J(n =i,k — 1)) + g2 |E(J(2k - 3,k - 2))|
- Z: 2 Sk— !(ﬂ—t) +r_!k- 2!':—2!(21: 3) (by Eq (1))

i€l k

= Zier (k- 1)(“"‘) +(k-2)(35).

Since (k —1)(%73) — (k —=1)(3}) <0, we have

|Br| + |Bel < Tigr, (k- 1) + (k= 2) () + B
=k-DICN+ )+ + CEN+ k- DE
= k=D + )+ + O+ G
~(k=-1)ED + k-1
= (k - 1)(1:?-1) - (k - 1) 2:-:11) + (k -1) (%—3
<(k- 1)(1:11)'

We now estimate |E2| + |E3| in an another way. For any vertex a € L;,
a; = i. We can obtain exactly k vertices of L; by replacing each a; by j
for1 <l <kandl<j<i-1. Thatis, each vertex of L; has exactly k
neighbors in each L; for 1 < j < i — 1. Those edges and the edges of J[L;]
for 1 < i< n-—k+1 constitute the edges of J(n,k). In E; and E3, we
just remain at most one edge incident with a for any a € L; and the other
endpointin Lj for2<i<n—k+1 and1<;,<z— .

By using the known combinatorial formula: 37, (;) = (R1;), we have

SIBULD) = D B =ik = 1))

t"“l )
= Lo L () = HEEL (), @

i=1

Hence we obtain that k“
|E2| + B3| < x[lE(J(n, k) -2 1B(J(n— i,k —-1))]]

< 1[‘('2—z (k30 — ﬂk__—)'(k+1)] = (k11)-
Hence |[E(G)| = Xi., |Ei| < k(uf) = 7c_|E(J("’ k)|- o

Theorem 2.6 The maximum number of edges of J(n, k) whose removal

leaves the diameter unchanged is bounded by
un—(J(n,k)) > £ |E(J(n k)| = (2) (k+1) for n > 2k > 2.

Proof. By Lemmas 2.4 and 2.5, we have un~(J(n,k)) > |E(J(n,k))| —
|B(G)] 2 511 E(J (n, K))|. O
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The following immediate consequence is a particular case of the well-
known Vandermonde convolution.

Corollary 2.7 E:'_—zk“ (i— 1)(::: = (kil)-

Proof. From the proof of Lemma 2.5, we know that each vertex of L; has
exactly k neighbors in each Lj for 1 < j<i—-1and2<i<n-k+1
Those edges and the edges of each J[L;] for 1 < i < n — k + 1 constitute
the edges of J(n,k). So we obtain a formula as following: > .., Pt k(i —

1(eoy) + SEHEJLY)| = ¥R (7). By inserting Eq.(2) into the

=1

above equation and by a simple computation, we obtain the lemma. O

3 An upper bound to un~(J(n,k))
In this section, we give an upper bound to un=(J(n, k)).

Lemma 3.1 Let G be a spanning subgraph of J(n,k) of diameter k for
n > 2k > 2. Then every edge e of G is in a cycle of length at most 2k + 1.

Proof. Let e = ab be an edge of G. Let us partition V(G) according to
their distances to a and b. Let M;(a), for 0 < i < k, be the set of vertices
at distance i from a; We define similarly M;(b), for 0 < ¢ < k. Since
dg(a,b) = 1, we have that M;(b) C M;_1(a) U M;(a) U Mi+1(a) for each
0 < i < k. Put Li(a) := M;(a)(\ Mi+1(b) and L;(b) := M;(b) (" Mis1(a)
for 0 <i< k-1, and L.(a,b) = M(a)ﬂMi(b) for 1 < i < k. Then
V(G) = U Li(a) U UF Li(b) U UL, Li(a, b), where Lo(a) = {a} and
Lo(b) = {b}. We proceed by distinguishing the following two cases.

Case 1. n > 2k + 1. One can choose a k-subset ¢ in [n] \ (¢ U b) since
|aub| = k+1. Then d;(a,c) = dj(b,c) = k. Since G is a spanning subgraph
of J(n, k) with diameter k, we have k > dg(a,c) > ds(e,c) = k. Socis an
antipodal vertex of both @ and b, and ¢ € L(a,b). Hence shortest paths
between ¢ and a and between ¢ and b (not passing through ab), and the
edge ab constitute a graph that contains a cycle of length at most 2k + 1,
passing through e.

Case 2. n = 2k. If Ly(a,b) # @ for some d < k, then there is a vertex
z € Ly(a,b) for some d < k. Similar to Case 1, G has a cycle of length at
most 2d + 1 which contains e.

If La(a,b) = @ for all d < k, let @ = [n] \ a and b = [n] \ b. Then
@ and b are antipodal vertices of a and b in G respectively by the same
reason as Case 1; namely, @ € Mi(a) and b € My(b). Since @ ¢ Mi(b),
k-1 =d;(@,b) < dg(a,b) < k. Hence dg(b,@) = k—1, that is,a € Lk_1(b)
Similarly we have that b € Li_;(a). Since V(G) = U,_0 Li(a )UU‘_0 Li(b)
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is a partition, a shortest path in G between @ and b must pass through
an edge between z € Ly(a) and y € La(b) for some d < k — 1, since there
are no edges between L;(a) and L;(b) for j # i. Further d > 1 since
1 = d;(a,b) < dg(a,b) < k. Then the edge zy, two shortest paths between
z and e and between y and b (not passing through ab), and the edge ab
form a cycle of length at most 2d 4+ 2 < 2k which contains e. O

Lemma 3.2 [2] Let G be a connected multigraph. If every edge of Gisin a
cycle of length at most ! then G has at least |V(G)|-1+[(|V (G)|-1)/(1-1)]
edges.

Theorem 3.3 For n > 2k > 2, the maximum number of edges of J(n, k)
whose removal does not alter the diameter is bounded by

un”(J(n, k) < (*37) () — T+ 20)((2) - D1

Proof. For any spanning subgraph G of J(n, k) of diameter k, by Lemmas
3.1 and 3.2 we have that |E(G)| = |V (J(n, k)| -1+[(|V(J(n, k))|—-1)/2k].
Hence un=(J(n, k)) < |E(J(n,k))| — |E(G)| and the theorem follows. [J

4 Conclusion

By Theorems 2.6 and 3.3, we conclude that, for n > 2k > 2

(’;) (k " 1) <un—(J(n, k) < (’° : 1) (k " 1) ~[(1+5) ((;;) _1)(1).

Our result about the lower bound is optimal for k = 1. For k = 2, we
find a spanning subgraph G of J(4,2) with diameter 2 and size 7, see Figure
3. Hence 5 < un~(J(4,2)). By Eq. (3) we have that 4 < un~(J(4,2)) <5
and the upper bound can be achieved.

,4

Fig. 3. The spanning subgraph of J(4,2) with diameter 2 and size 7.
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