On Diameter Stability of the Johnson Graph*

Ling Wang and Heping Zhang[†]

School of Mathematics and Statistics, Lanzhou University Lanzhou, Gansu 730000, P. R. China E-mail: zhanghp@lzu.edu.cn

Abstract

In this paper, we study the edge deletion preserving the diameter of the Johnson graph J(n,k). Let $un^-(G)$ be the maximum number of edges of a graph G whose removal maintains its diameter. For Johnson graph J(n,k), we give upper and lower bounds to the number $un^-(J(n,k))$, namely: $\binom{k}{2}\binom{n}{k+1} \leq un^-(J(n,k)) \leq \binom{k+1}{2}\binom{n}{k+1} - \lceil (1+\frac{1}{2k})(\binom{n}{k}-1) \rceil$, for $n \geq 2k \geq 2$.

Keywords: Johnson graph; diameter; edge deletion

1 Introduction

Let n and k be fixed positive integers with $n \geq k$. The vertices of Johnson graph J(n,k) are the k-subsets of $\Omega = \{1,2,\cdots,n\} \triangleq [n]$, and two such subsets are adjacent if and only if their intersection has size k-1. Then J(n,k) is a k(n-k)-regular graph with $\binom{n}{k}$ vertices. In particular, J(n,1) is a complete graph K_n with n vertices, and J(n,n) is only one vertex. Further $J(n,k) \cong J(n,n-k)$ [6]. So we may suppose that $n \geq 2k$. For convenience, we always denote the smallest element of a k-subset a of [n] by a_1 . For the notation and terminology not defined here, we refer to [1].

For a graph G, we use d(x, y) to denote the distance between the vertices x and y. Then the diameter of G is denoted by $d(G) = \max\{d(x, y) \mid x, y \in V(G)\}$. Pizaña [9] showed that the diameter of J(n, k) is $\min\{k, n-k\}$. For given integers n and d, what is the minimum number of edges of a graph on n vertices with the property that after deleting any edge, the remaining graph has diameter no more than d? This problem was first proposed by

^{*}This work is supported by NSFC (grant no. 61073046).

[†]The corresponding author.

Vijayan and Murty [12]. About diameter vulnerability of graphs after edge deletion and edge addition, see refs. [3]-[5] and [7]-[15].

Graham and Harary [7] used $un^-(G)$ to denote the maximum number of edges of the graph G whose removal maintains the diameter. Bounds on $un^-(Q_n)$ were given [2]. In this paper we use a similar way to consider J(n,k) by constructing a spanning subgraph G of small size and diameter k. In the next section, we prove that $un^-(J(n,k)) \ge \frac{k-1}{k+1}|E(J(n,k))| = {k \choose 2}{n \choose k+1}$. In Section 3, we give an upper bound to $un^-(J(n,k))$.

2 A spanning subgraph of J(n,k) of diameter k and small size

In this section, we construct a spanning subgraph G of J(n,k) with diameter k and size at most $\frac{2}{k+1}|E(J(n,k))|$ for $k \geq 2$.

We partition the vertex-set V(J(n,k)) into n-k+1 disjoint sets $L_1, L_2, \dots, L_{n-k+1}$ by the different choice of the smallest element $a_1: L_i = \{k\text{-subset } a \text{ of } [n]: a_1 = i\}$, where i = 1, 2, ..., n-k+1. If we denote the graph induced by the vertices of L_i by $J[L_i]$, then $J[L_i] \cong J(n-i, k-1)$.

Fig. 1. The vertex partition of J(n, k) and the matching given by Lemma 2.1.

We can obtain a bipartite graph $G_i = (L_i, L_{i+1})$ for each $1 \le i \le n-k$: Its vertices are ones of $L_i \cup L_{i+1}$ and its edges are ones of J(n,k) joining vertices of L_i to vertices of L_{i+1} . For any vertex $a \in L_{i+1}$, $a_1 = i+1$. We can obtain a new vertex b from a by replacing a_1 by i. Then $b \in L_i$ and $ab \in E(G_i)$. By this way, we give a matching M_i in G_i which saturates all the vertices of L_{i+1} for any $1 \le i \le n-k$. So we have the following.

Lemma 2.1 For any $1 \le i \le n-k$, M_i is a matching of G_i which saturates all the vertices of L_{i+1} .

Now we give two remarks about the lemma:

Remark 1. Let us denote the set of vertices in L_i which are saturated by M_i in Lemma 2.1 by N_i for $1 \le i \le n-k$. Then N_i consists of vertices in L_i that do not contain element i+1 and $|N_i| = |L_{i+1}|$. Let $R_i = L_i \setminus N_i$. So $|R_i| = |L_i| - |N_i| = \binom{n-i}{k-1} - \binom{n-i-1}{k-1} = \binom{n-i-1}{k-2}$. The three following assertions hold for $1 \le i \le n-k$: Each vertex in L_{i+1} has k neighbors in L_i , namely k-1 neighbors in R_i and one neighbor in N_i ; Each vertex in N_i has one neighbor in L_{i+1} ; and each vertex in R_i has n-k-i+1 neighbors in L_{i+1} .

Remark 2. The matchings M_1, M_2, \dots, M_{n-k} form $|L_2|$ disjoint paths P_i , $1 \le i \le |L_2|$. Note that the vertices on each P_i are adjacent to each other in J(n,k), that is, the graph induced by the vertices on each P_i is a clique C_i . If we denote $C = \{C_i | 1 \le i \le |L_2|\}$, then there are $\binom{n-j-1}{k-2}$ elements in C with size j, where $2 \le j \le n-k+1$.

Lemma 2.2 If a semi-regular bipartite graph G = (X, Y) has $|X| \leq |Y|$ and edges, then G contains a matching which saturates X.

Proof. Let d_X (respectively d_Y) be the degree of each vertex in X (respectively Y). Since $|X| \leq |Y|$, we have $d_X \geq d_Y > 0$. For any subset $S \subseteq X$, let m be the number of edges from S to N(S). Then these m edges are incident to vertices in N(S). Since G is semi-regular, $m = d_X \cdot |S| \leq d_Y \cdot |N(S)|$. This implies that $|S| \leq \frac{d_Y}{d_X} \cdot |N(S)| \leq |N(S)|$. By Hall's Theorem, we know that G has a matching which saturates all the vertices of X.

Lemma 2.3 For $k \geq 2$, the bipartite graph $G'_i = (L_{i+1}, R_i)$ is semi-regular and contains a matching which saturates all the vertices of R_i for $1 \leq i \leq n-2k+2$, a matching which saturates all the vertices of L_{i+1} for $n-2k+2 \leq i \leq n-k$, and a perfect matching for i=n-2k+2.

Proof. By Remark 1, we know that G_i' is semi-regular and $|L_{i+1}| = \binom{n-i-1}{k-1}$, $|R_i| = \binom{n-i-1}{k-2}$ for $1 \le i \le n-k$. By the unimodality of binomial coefficients

we have $|L_{i+1}| \ge |R_i|$ for $1 \le i \le n-2k+2$, $|L_{i+1}| \le |R_i|$ for $n-2k+2 \le i \le n-k$, and $|L_{i+1}| = |R_i|$ for i = n-2k+2. Hence the remaining of the lemma follows by Lemma 2.2.

In the following, let $I_1=[n-2k+3],\ I_2=[n-k+1]\setminus [n-2k+3],\ I_3=I_1\setminus \{n-2k+2\},\ I_4=[n-2k+1]$ and $L_{I_t}=\bigcup_{i\in I_t}L_i$ for $1\leq t\leq 4$. Now we construct a spanning subgraph of J(n,k) by choosing the following four types of edges:

- $E_1 = \bigcup_{i \in I_3} E(J'[L_i])$, where $J'[L_i]$ is a spanning subgraph of $J[L_i]$ with the same diameter of $J[L_i]$ having as minimal number of edges as possible for $i \in I_3$.
- E_2 is the set of edges in each clique in C with one endvertex in L_{I_2} and the other one in L_{I_3} .
- E_3 is the set of edges in each clique in C with endvertices in L_{I_1} .
- E_4 is the perfect matching in G'_{n-2k+2} which we obtained in Lemma 2.3.

We can see that $E_i \cap E_j = \emptyset$ for $i \neq j$ and $i, j \in \{1, 2, 3, 4\}$. It follows that $|E_2| = |L_{I_2}|(n-2k+2) = {2k-3 \choose k}(n-2k+2),$ $|E_3| = \sum_{i=2}^{n-2k+2} {n-i-1 \choose k-2} {i \choose k-1} {n-2k+3 \choose k-1},$ and $|E_4| = {2k-3 \choose k-1}.$

Let G be the spanning subgraph of J(n,k) with edge-set $\bigcup_{i=1}^4 E_i$. For example, the spanning subgraph G of J(4,2) is shown in Figure 2 and has diameter 2, where $E_1 = \{\{14,13\},\{14,12\},\{13,12\}\}, E_2 = \varnothing, E_3 = \{\{14,24\},\{14,34\},\{24,34\},\{13,23\}\}, E_4 = \{\{23,34\}\}.$

Fig. 2. A spanning subgraph G of J(4,2) with diameter 2.

Next we shall verify that G has diameter k and $|E(G)| \leq \frac{2}{k+1} |E(J(n,k))|,$ where

$$|E(J(n,k))| = \frac{k(n-k)}{2} \binom{n}{k} = \frac{k(n-k)}{2} \frac{k+1}{n-k} \binom{n}{k+1} = \binom{k+1}{2} \binom{n}{k+1}.$$
(1)

Lemma 2.4 For $n \geq 2k \geq 2$, the spanning subgraph G of J(n,k) has diameter k.

Proof. For k=1, we have $I_1=[n]$, $E_1=E_2=E_4=\emptyset$ and $E_3=E(J(n,1))$. Hence $G=J(n,1)=K_n$ and the lemma is true. For $1\leq i\leq n-k+1$, $J[L_i]\cong J(n-i,k-1)$, and $d(J[L_i])=d(J'[L_i])=\min\{k-1,n-k-i+1\}\leq k-1$. For k=2, we have $I_1=[n-1]$ and $I_2=\emptyset$. Let $v_1\in L_i, v_2\in L_j$, where $1\leq i\leq j\leq n-k+1$. We will check $d_G(v_1,v_2)\leq k$ for any $v_1,v_2\in V(G)$ by considering the three following cases.

Case $1:i,j\in I_2$. We can find two edges in E_2 which join v_1 and v_2 to vertices in L_{n-2k+3} respectively. Since $d(J'[L_{n-2k+3}])=k-2$, we have $d_G(v_1,v_2)\leq k$.

Case 2: $i \in I_1, j \in I_2$. If i = n - 2k + 2, then we can find an edge in E_2 joining v_2 and a vertex in L_{n-2k+3} , and an edge in E_3 or E_4 joining v_1 and a vertex in L_{n-2k+3} since M_{n-2k+2} together with a perfect matching of G'_{n-2k+2} saturate all vertices in L_{n-2k+2} . Hence $d_G(v_1, v_2) \leq k$; If $i \in I_3$, we can find an edge in E_2 joining v_2 to a vertex in L_i . Since $d(G'[L_i]) \leq k-1$ for $i \in I_3$, we have $d_G(v_1, v_2) \leq k$.

Case $3: i, j \in I_1$. If $i = j \neq n-2k+2$, we have $d_G(v_1, v_2) \leq d(J'[L_i]) \leq k-1$; If i = j = n-2k+2, similar to the reason in Case 2 we can find two edges in E_3 or E_4 joining v_1 and v_2 to vertices in L_{n-2k+3} respectively. Hence $d_G(v_1, v_2) \leq k$; If n-2k+2=i < j, we can find an edge in E_3 or E_4 joining v_1 to a vertex in L_{n-2k+3} . That implies that $d_G(v_1, v_2) \leq k-1$; For the remaining case, i.e. $n-2k+2 \neq i < j \leq n-2k+3$, we can find an edge in E_3 joining v_2 to a vertex in L_i . Hence $d_G(v_1, v_2) \leq k$.

Hence $d(G) \leq k$. On the other hand, $d(G) \geq d(J(n,k)) = k$. That is, d(G) = k.

Lemma 2.5 The spanning subgraph G of J(n,k) has the following bound on the number of edges: $|E(G)| \leq \frac{2}{k+1} |E(J(n,k))| = k \binom{n}{k+1}$ for $n \geq 2k$.

Proof. We proceed by induction on the diameter k of J(n,k). For k=1, we have G=J(n,1). For k=2, we have $I_1=[n-1]$, $I_2=\emptyset$, $I_3=[n-1]\setminus\{n-2\}$ and $I_4=[n-3]$. $J[L_i]$ is a complete graph for $i\in I_3$. The diameter of $J[L_i]$ will be changed if we delete any one edge. Hence $J'(L_i)=J(L_i)$, and $|E_1|=\sum_{i\in I_3}|E(J[L_i])|=\sum_{i\in I_3}|E(J(n-i,1))|=\sum_{i\in I_3}\binom{n-i}{2}=\binom{n}{3}-1$, $|E_2|=0$, $|E_3|=\sum_{i=1}^{n-2}\binom{n-i}{2}=\binom{n}{3}$ and $|E_4|=1$.

So $|E(G)| = \sum_{i=1}^4 |E_i| = 2\binom{n}{3} = \frac{2}{3}|E(J(n,2))|$. Hence in the two trivial cases, the lemma is true.

In the following let $k \geq 3$. The diameter of $J[L_i]$ is k-1 for $i \in I_4$ and k-2 for i=n-2k+3. By induction hypothesis, we have

$$\begin{aligned} |E_1| &= \sum_{i \in I_3} |E(J^{'}[L_i])| \\ &\leq \sum_{i \in I_4} \frac{2}{k} |E(J[L_i])| + \frac{2}{k-1} |E(J[L_{n-2k+3}])| \\ &= \sum_{i \in I_4} \frac{2}{k} |E(J(n-i,k-1))| + \frac{2}{k-1} |E(J(2k-3,k-2))| \\ &= \sum_{i \in I_4} \frac{2}{k} \frac{k(k-1)}{2} {n-i \choose k} + \frac{2}{k-1} \frac{(k-1)(k-2)}{2} {2k-3 \choose k-1} \text{ (by Eq. (1))} \\ &= \sum_{i \in I_4} (k-1) {n-i \choose k} + (k-2) {2k-3 \choose k-1}. \end{aligned}$$

Since
$$(k-1)\binom{2k-3}{k-1} - (k-1)\binom{2k-1}{k+1} \le 0$$
, we have

$$\begin{split} |E_1| + |E_4| &\leq \sum_{i \in I_4} (k-1) \binom{n-i}{k} + (k-2) \binom{2k-3}{k-1} + \binom{2k-3}{k-1} \\ &= (k-1) [\binom{n-1}{k} + \binom{n-2}{k} + \dots + \binom{2k-1}{k}] + (k-1) \binom{2k-3}{k-1} \\ &= (k-1) [\binom{n-1}{k} + \binom{n-2}{k} + \dots + \binom{2k-1}{k} + \binom{2k-1}{k+1}] \\ &- (k-1) \binom{2k-1}{k+1} + (k-1) \binom{2k-3}{k-1} \\ &= (k-1) \binom{n}{k+1} - (k-1) \binom{2k-1}{k+1} + (k-1) \binom{2k-3}{k-1} \\ &\leq (k-1) \binom{n}{k+1}. \end{split}$$

We now estimate $|E_2| + |E_3|$ in an another way. For any vertex $a \in L_i$, $a_1 = i$. We can obtain exactly k vertices of L_j by replacing each a_l by j for $1 \le l \le k$ and $1 \le j \le i - 1$. That is, each vertex of L_i has exactly k neighbors in each L_j for $1 \le j \le i - 1$. Those edges and the edges of $J[L_i]$ for $1 \le i \le n - k + 1$ constitute the edges of J(n, k). In E_2 and E_3 , we just remain at most one edge incident with a for any $a \in L_i$ and the other endpoint in L_i for $1 \le i \le n - k + 1$ and $1 \le j \le i - 1$.

endpoint in L_j for $2 \le i \le n-k+1$ and $1 \le j \le i-1$. By using the known combinatorial formula: $\sum_{i=k}^{n} {i \choose k} = {n+1 \choose k+1}$, we have

$$\sum_{i=1}^{n-k+1} |E(J[L_i])| = \sum_{i=1}^{n-k+1} |E(J(n-i,k-1))| = \sum_{i=1}^{n-k} \frac{k(k-1)}{2} \binom{n-i}{k} = \frac{k(k-1)}{2} \binom{n}{k+1}.$$
 (2)

Hence we obtain that

$$|E_2| + |E_3| \le \frac{1}{k} [|E(J(n,k))| - \sum_{i=1}^{n-k+1} |E(J(n-i,k-1))|]$$

$$\le \frac{1}{k} [\frac{k(k+1)}{2} {n \choose k+1} - \frac{k(k-1)}{2} {n \choose k+1}] = {n \choose k+1}.$$
Hence $|E(G)| = \sum_{i=1}^{4} |E_i| \le k {n \choose k+1} = \frac{2}{k+1} |E(J(n,k)|.$

Theorem 2.6 The maximum number of edges of J(n, k) whose removal leaves the diameter unchanged is bounded by

$$un^{-}(J(n,k)) \ge \frac{k-1}{k+1} |E(J(n,k))| = {k \choose 2} {n \choose k+1}, \text{ for } n \ge 2k \ge 2.$$

Proof. By Lemmas 2.4 and 2.5, we have
$$un^{-}(J(n,k)) \geq |E(J(n,k))| - |E(G)| \geq \frac{k-1}{k+1}|E(J(n,k))|$$
.

The following immediate consequence is a particular case of the well-known Vandermonde convolution.

Corollary 2.7
$$\sum_{i=2}^{n-k+1} (i-1) \binom{n-i}{k-1} = \binom{n}{k+1}$$
.

Proof. From the proof of Lemma 2.5, we know that each vertex of L_i has exactly k neighbors in each L_j for $1 \le j \le i-1$ and $2 \le i \le n-k+1$. Those edges and the edges of each $J[L_i]$ for $1 \le i \le n-k+1$ constitute the edges of J(n,k). So we obtain a formula as following: $\sum_{i=2}^{n-k+1} k(i-1)\binom{n-i}{k-1} + \sum_{i=1}^{n-k+1} |E(J[L_i])| = \frac{k(n-k)}{2}\binom{n}{k}$. By inserting Eq.(2) into the above equation and by a simple computation, we obtain the lemma. \square

3 An upper bound to $un^{-}(J(n,k))$

In this section, we give an upper bound to $un^{-}(J(n,k))$.

Lemma 3.1 Let G be a spanning subgraph of J(n,k) of diameter k for $n \ge 2k \ge 2$. Then every edge e of G is in a cycle of length at most 2k + 1.

Proof. Let e=ab be an edge of G. Let us partition V(G) according to their distances to a and b. Let $M_i(a)$, for $0 \le i \le k$, be the set of vertices at distance i from a; We define similarly $M_i(b)$, for $0 \le i \le k$. Since $d_G(a,b)=1$, we have that $M_i(b)\subseteq M_{i-1}(a)\bigcup M_i(a)\bigcup M_{i+1}(a)$ for each 0 < i < k. Put $L_i(a):=M_i(a)\bigcap M_{i+1}(b)$ and $L_i(b):=M_i(b)\bigcap M_{i+1}(a)$ for $0 \le i \le k-1$, and $L_i(a,b):=M_i(a)\bigcap M_i(b)$ for $1 \le i \le k$. Then $V(G)=\bigcup_{i=0}^{k-1}L_i(a)\cup\bigcup_{i=0}^{k-1}L_i(b)\cup\bigcup_{i=1}^kL_i(a,b)$, where $L_0(a)=\{a\}$ and $L_0(b)=\{b\}$. We proceed by distinguishing the following two cases.

Case 1. $n \ge 2k + 1$. One can choose a k-subset c in $[n] \setminus (a \cup b)$ since $|a \cup b| = k + 1$. Then $d_J(a,c) = d_J(b,c) = k$. Since G is a spanning subgraph of J(n,k) with diameter k, we have $k \ge d_G(a,c) \ge d_J(a,c) = k$. So c is an antipodal vertex of both a and b, and $c \in L_k(a,b)$. Hence shortest paths between c and a and between c and b (not passing through ab), and the edge ab constitute a graph that contains a cycle of length at most 2k + 1, passing through e.

Case 2. n = 2k. If $L_d(a, b) \neq \emptyset$ for some $d \leq k$, then there is a vertex $z \in L_d(a, b)$ for some $d \leq k$. Similar to Case 1, G has a cycle of length at most 2d + 1 which contains e.

If $L_d(a,b)=\emptyset$ for all $d\leq k$, let $\bar{a}=[n]\setminus a$ and $\bar{b}=[n]\setminus b$. Then \bar{a} and \bar{b} are antipodal vertices of a and b in G respectively by the same reason as Case 1; namely, $\bar{a}\in M_k(a)$ and $\bar{b}\in M_k(b)$. Since $\bar{a}\notin M_k(b)$, $k-1=d_J(\bar{a},b)\leq d_G(\bar{a},b)< k$. Hence $d_G(b,\bar{a})=k-1$, that is, $\bar{a}\in L_{k-1}(b)$. Similarly we have that $\bar{b}\in L_{k-1}(a)$. Since $V(G)=\bigcup_{i=0}^{k-1}L_i(a)\cup\bigcup_{i=0}^{k-1}L_i(b)$

is a partition, a shortest path in G between \bar{a} and \bar{b} must pass through an edge between $x \in L_d(a)$ and $y \in L_d(b)$ for some $d \le k-1$, since there are no edges between $L_i(a)$ and $L_j(b)$ for $j \ne i$. Further $d \ge 1$ since $1 = d_J(\bar{a}, \bar{b}) \le d_G(\bar{a}, \bar{b}) \le k$. Then the edge xy, two shortest paths between x and a and between y and b (not passing through ab), and the edge ab form a cycle of length at most $2d+2 \le 2k$ which contains e.

Lemma 3.2 [2] Let G be a connected multigraph. If every edge of G is in a cycle of length at most l then G has at least $|V(G)|-1+\lceil (|V(G)|-1)/(l-1)\rceil$ edges.

Theorem 3.3 For $n \ge 2k \ge 2$, the maximum number of edges of J(n,k) whose removal does not alter the diameter is bounded by $un^-(J(n,k)) \le {k+1 \choose 2} {n \choose k+1} - \lceil (1+\frac{1}{2k}) {n \choose k} - 1 \rceil$.

Proof. For any spanning subgraph G of J(n,k) of diameter k, by Lemmas 3.1 and 3.2 we have that $|E(G)| \ge |V(J(n,k))| - 1 + \lceil (|V(J(n,k))| - 1)/2k \rceil$. Hence $un^-(J(n,k)) \le |E(J(n,k))| - |E(G)|$ and the theorem follows. \square

4 Conclusion

By Theorems 2.6 and 3.3, we conclude that, for $n \ge 2k \ge 2$

$$\binom{k}{2}\binom{n}{k+1} \le un^{-}(J(n,k)) \le \binom{k+1}{2}\binom{n}{k+1} - \left\lceil \left(1 + \frac{1}{2k}\right)\binom{n}{k} - 1\right)\right\rceil. \tag{3}$$

Our result about the lower bound is optimal for k=1. For k=2, we find a spanning subgraph G of J(4,2) with diameter 2 and size 7, see Figure 3. Hence $5 \le un^-(J(4,2))$. By Eq. (3) we have that $4 \le un^-(J(4,2)) \le 5$ and the upper bound can be achieved.

Fig. 3. The spanning subgraph of J(4,2) with diameter 2 and size 7.

References

- [1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Elsevier, New York, 1976.
- [2] A. Bouabdallah, C. Delorme and S. Djelloul, Edge deletion preserving the diameter of the hypercube, Discrete Appl. Math. (1995) 91-95.
- [3] F.R.K. Chung, Graphs with small diameter after edge deletion, Discrete Appl. Math. (1992) 73-94.
- [4] F.R.K. Chung and M.R. Garey, Diameter bounds for altered graphs,J. Graph Theory 8 (4) (1984) 511-534.
- [5] Z.G. Deng and J.M. Xu, On diameters of altered graphs, J. Math. Study 37 (1) (2004) 35-41.
- [6] C. Godsil and G. Royle, Algebraic Graph Theory, Springer, New York, 2001.
- [7] N. Graham and F. Harary, Changing and unchanging the diameter of a hypercube, Discrete Appl. Math. 37/38 (1992) 265-274.
- [8] C. Peyrat, Diameter vulnerability of graphs, Discrete Appl. Math. 9(3) (1984) 245-250.
- [9] M.A. Pizaña, Distances and diameters on iterated clique graphs, Discrete Appl. Math. 141 (2004) 255-261.
- [10] A.A. Schoone, H.L. Bodlaender and J.V. Leeuwen, Diameter increase caused by edge deletion, J. Graph Theory 11 (3) (1987) 409-427.
- [11] E. Simó and J.L.A. Yebra, The vulnerability of the diameter of folded n-cubes, Discrete Math. 174 (1997) 317-322.
- [12] K. Vijayan, U.S.R. Murty, On accessibility in graphs, Sankhyā Ser. A 26 (1964) 299-302.
- [13] J.J. Wang, T.Y. Ho and D. Ferrero and T. Sung, Diameter variability of cycles and tori, Information Sciences 178 (2008) 2960-2967.
- [14] Y.Z. Wu and J.M. Xu, On diameters of altered graphs, J. Math. Res. Exposition 26 (3) (2006) 502-508.
- [15] H.X. Ye, C. Yang and J.M. Xu, Diameter vulnerability of graphs by edge deletion, Discrete Math. 309 (2009) 1001-1006.