SHORT PROOFS OF COMBINATORIAL IDENTITIES FOR
n!

ANGEL PLAZA AND SERGIO FALCON

In this note, and using elementary tools from complex analysis, a con-
cise, unifying insight into combinatorial identities for n! is given. These
identities were separately treated by the authors of references [1] and [2].
In [2], some generalizations of identity (0.2) were given, showing the con-
nection with Stirling numbers. The first identity that appeared in Integers
[1], is the following:
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Proof. By the Cauchy’s Integral Formula for Derivatives:
z _1\n (n)
Ly o, 100
|z]=1 ne

2ms PA ’

where f(z) = (e®* — 1)". Note that, since f(z) = i(—l)"‘* (’:) €'*, then
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On the other hand, the same integral may be considered as follows:
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But function —1 € H(C - {O}) and shows a removable singular-

ity at the origin, and therefore, by the Cauchy’s Integral formula, I =
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=1, and the proof is done.
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Identity 2: Let n be a positive integer. Then for any complex number
k,
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It should be noted that in [2] identity (0.2) was proven for all nonnega-
tive integer values of k, applying a method which goes back to Euler, and
is based on the higher order differences of polynomial sequences. Here, this
identity is proven again by using complex analysis arguments.

Proof. Consider
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by the Cauchy’s Integral Formula for Derivatives, where g(z) = e**(e*—1)".
n
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On thetother hand, the same integral may be considered as follows:
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by the Cauchy’s Integral formula, as before.
O
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