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Abstract

Let J, be the set of tricyclic graphs of order n. In this paper,
we use a new proof to determine the unique graph with maximal
spectral radius among all graphs in J, for each n > 4. Also, we
determine the unique graph with minimal least eigenvalue among
all graphs in this class for each n > 52. We can observe that the
graph with maximal spectral radius is not the same as the one with
minimal least eigenvalue in J,, which is different from those on the
unicyclic and bicyclic graphs.

AMS Classification: 05C50
Keywords: Tricyclic graph; Spectral radius; Least eigenvalue

1 Introduction

All graphs considered here are simple and undirected. The vertex set and
edge set of a graph G are denoted by V(G) and E(G), respectively. For
S € V(G), let G[S] be the subgraph induced by S. The degree of a vertex
v, written by dg(v) or d(v), is the number of edges incident with v. A
pendant vertez is a vertex of degree 1. k paths P, P,,,..., P, are said to
have almost equal lengths if 11,15, . .., U satisfy |I; — lj|<1for1<4,j<k.
The set of the neighbors of a vertex v is denoted by Ng(v) or N(v). The
girth g(G) of a graph G is the length of the shortest cycle in &, with the
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girth of an acyclic graph being infinite. Denote by C,, and P, the cycle and
the path, respectively, each on n vertices. The complete product G; VG of
two vertex-disjoint graphs G; and G is the graph obtained from G; U G2
by joining every vertex of G; with every vertex of Gs.

Let A(G) or A be the adjacency matrix of a graph G. Since A is
symmetric and real, the eigenvalue of A, i.e., the zeros of the characteristic
polynomial P(G, A) = det(AI — A), can be arranged as follows:

M(G) 2 X2(G) 2 -+ 2 A ().

Since G is connected, then A is irreducible non-negative and by Perron-
Frobenius Theorem, the spectral radius p(G) = Ay(G) is simple and has a
unique positive eigenvector. We will refer to such an eigenvector as Perron
vector of G. It is known [5] that A\,(G) = —p(G) for a bipartite graph G.

Brualdi and Solheid [3] proposed the following general problem, which
became one of the classical problems of spectral graph theory:

Given a set G of graphs, find an upper bound for the spectral radius in
this set and characterize the graphs in which the mazimal spectral radius is
attained.

A lot of researchers have showed dense interest to the above problem. At
the same time, they have turned their attention to the similar problems on
the Laplacian spectral radius and the least eigenvalue, which became more
popular in spectral graph theory:

Given a set G of graphs, find an upper bound for the Laplacian spectral
radius or a lower bound for the least eigenvalue in this set and characterize
the graphs in which the mazimal Laplacian spectral radius or the minimal
least eigenvalue is attained.

This paper mainly focuses on the lower bound of the least eigenvalue in
the set of tricyclic graphs.

For the above classical problems, unicyclic and bicyclic graphs have
become two popular sets of graphs. There are many results in the literature
on the spectral radius and least eigenvalue of unicyclic and bicyclic graphs
with n vertices(see [4, 8, 13, 16, 19, 24]). A tricyclic graph is a connected
graph in which the number of edges equals the number of vertices plus two.
The set of tricyclic graphs is also a very important class of graphs in spectral
graph theory. Recently, tricyclic graphs have aroused extensive attention
of many researchers. Let 7, i be the set of tricyclic graphs with n vertices
and k pendant vertices. In [9], Geng et al. characterized the tricyclic graphs
with maximal spectral radius in J, x. Guo [12] determined the tricyclic
graphs with maximal Laplacian spectral radius in 7, x. Let Z(2k) be the
set of all tricyclic graphs on 2k(k > 2) vertices with perfect matchings.
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Geng et al. [10] characterized the tricyclic graphs with maximal spectral
radius in 7 (2k). In [18], Li et al. determined the tricyclic graphs of a given
diameter with minimal energy. This paper focuses on the spectral radius
and least eigenvalue of tricyclic graphs.

Let 7, be the set of tricyclic graphs of order n. In this paper, we use
a new proof to determine the unique graph with maximal spectral radius
among all graphs in J, for each n > 4. Also, we determine the unique
graph with minimal least eigenvalue among all graphs in this class for each
n 2> 52. We can observe that the graph with maximal spectral radius is not
the same as the one with minimal least eigenvalue in Z,, which is different
from those on the unicyclic and bicyclic graphs.

2 Preliminaries

In this section, we list some known results which will be used in this
paper.

Lemma 2.1 ([17]) Let v be a vertez in a connected graph G and suppose
that two new paths P : vvivg--- vk and Q : vujug---uy, of length k,m
(k > m > 1) are attached to G at v, respectively, to form a new graph G, m,
where vy, va, ...,k and uy,Us, ..., Uy are distinct new vertices. Then for

any A > p(Gk,m), we have
P(Gk+1,m-—1,A) > P(Gk,my )‘)-

In particular,
P(Gr,m) > p(Grt1,m—1)-

Lemma 2.2 ([20]) Letv be a vertex of G and € (v) be the set of all cycles
containing v. Then

P(GN) =APG-v,))- 3 P(G-v-u,X)-2 3 PG-V(2),N),
u€N(v) Ze¥€(v)

where G — V(Z) is the graph obtained by removing from G the vertices
belonging to Z.

Lemma 2.3 ([17]) Let G and H be two connected graphs such that P(G,\) >
P(H,)) for A > p(H). Then p(G) < p(H).

Lemma 2.4 ([5]) Let Ay > A2 > -+ 2 A, be the eigenvalues of a graph G
and py > pp > -+ 2 pm eigenvelues of an induced subgraph H. Then

M2 Wi 2 Anemei (E=1,...,m).
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Lemma 2.5 ([23]) Let u,v be two distinct vertices of a connected graph
G, {wl|i = 1,2,...,8} € Ng(v)\Ng(u), and X = (x1,22,...,2a)T be the
Perron vector of G. Let G* =G — Y ;_, vwv + 3 ;. viv. If 2y > zo, then
p(G) < p(G*).

Let G, H be two disjoint connected graphs with v € V(G) and w €
V(H), we denote by GuwH the graph obtained from G and H by identi-
fying u with w.

Corollary 2.6 ([23]) Let G be a nontrivial connected graph, T}, be a tree
of order k and Sy, be a star with center w. Then p(GuvTy) < p(GuwSy) for
any u € V(G) and v € V(Ti). The equality holds if and only if GuvT} =
GuwS, (See Fig.1).

Sk

GuvT}, GuwS;
Fig.1. Operations on a general graph and a tree.

Lemma 2.7 ([11]) Let G,G',G" be three connected graphs disjoint in
pairs. Suppose that u,v are two vertices of G,u’ is a vertez of G' and
u" is a vertex of G". Let G, be the graph obtained from G,G',G" by iden-
tifying, respectively, u with v’ and v with u”. Let G be the graph obtained
from G,G',G" by identifying vertices u,v’,u”. Let G3 be the graph obtained
from G,G',G" by identifying vertices v,u',u"”. Then either p(G;) < p(G3)
or p(G1) < p(Gs).

Let G be a connected graph with uv € E(G). We denote by G,,, the
graph obtained from G by subdividing the edge uv, that is, introducing
a new vertex on the edge uv. A walk vjvg.--v (k 2 2) in a graph G
is called an internal path, if these k vertices are distinct (except possibly
vy = v), dg(v1) > 2, dg(vk) > 2 and dg(v2) = - -+ = dg(Vk-1) = 2 (unless
k = 2). Let W, (n > 6) be the graph obtained from a path v vz---vn_4
by attaching two pendant vertices to v, and another two to v,—4. Hoffman
and Smith showed the following result.

Lemma 2.8 ([14]) Let G be a connected graph with wv € E(G). If uwv
belongs to an internal path of G and G & Wy, then p(Gu.v) < p(G).

Lemma 2.9 Let G and H be two connected graphs on n vertices.
(i)When n is even, if P(G,)) — P(H,)) < 0 for A = A,(H), then
An(G) < An(H).
(it)When n is odd, if P(G,A) — P(H,)\) > 0 for A = A (H), then
An(G) < An(H).
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Proof. Let A\1(G) = A2(G) 2 -+ 2 An(G) be the zeros of P(G,)). Then
we have

P(G,2) = (A= 2(G)(A = 2(G)) -+ (A = Mn(G)).
For A = A,(H), we have
P(G,X) = P(H,2) = (Aa(H) = M(G))(An(H) = X2(G)) - - - (An(H) = A (G)).

(i)When n is even, if A\y(G) > An(H), then P(G,)\) — P(H,)\) > 0, a
contradiction.

(ii)When n is odd, if Ay (G) 2> An(H), then P(G,)) — P(H,A) <0, a
contradiction. O

3 Tricyclic graphs with maximal spectral ra-
dius

By [9], we know that a tricyclic graph G contains at least 3 cycles and
at most 7 cycles, and there do not exist 5 cycles in G. Let J, (k > 1)
be the set of trlcychc gra.phs on n vertices and k pendent vertices. Then
Ik = T2, VT4, kU T, where J}, denotes the set of tricyclic
graphs in .9' & w1th exact i cycles for i=3,4,6,7. Correspondingly, , =
J3ugiu 93 uZgr.

Denote by Gl,Gz,Gg and G4 the connected tricyclic graphs of order
n presented in Fig.2. Let G;x (k > 1) be the graph obtained from G; by
substituting all pendant edges with k paths with almost equal lengths at
vertex v, where i = 1,2,3,4. Clearly, G; = G1,n—7,G2 = Ga,n—6,G3 =

G3,n-5 and G4 = Gyn—g.
G

Fig.2. The connected tricyclic graphs Gy, G2, G3 and G4 of order n.

Lemma 3.1 ([9]) Let G have mazimal spectral radius in F, k., where k >
1.

(IfGe T3, (1<k<n-7), then G=Gy.

(#)If G € .}, (1<k<n—6), then G =Gy
(i#)If G € F2, (1 <k <n-5), then G Gy.
(WIfGe JT, (1<k<n-—4), then G=Gyy.
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In [4], R.A. Brualdi and E.S. Solheid characterized the unique graph
with maximal spectral radius among all graphs in , for each n > 4. We
will give a new proof of the result.

Theorem 3.2 ([4]) Let G have mazimal spectral radius in I,, where n >
4. Then G = Gy.

Proof. It is easy to see from the tables of eigenvalues of connected graphs
on 4,5,6 and 7 vertices [5, 6, 7] that theorem holds for 4 < n < 7. Now
suppose that n > 8. NotethatGe.? 93U94U96U97

For Ge 72 =UrZg 3. UG e 9,{’:0, let Go be the graph obtained
from G by contractmg a vertex on an internal path of G and adding a
pendant edge to a vertex of G, by Lemma 2.8, p(Go) > p(G) and Go € 3,
a contradiction. Hence G € Uk-—-7 9’3 For each fixed k (1 € k < n—7), by
Lemma 3.1(i), G & Gy k. Consider graph Gir€ T2 Let1<k<n-71,
it follows that there exists a path Pyi=vo -1y attached to the vertex
v of Gy such that [ > 2. Let G’ = G — {vwz_l} + {vv}. Then G’ €
9,‘_,, +1- By Lemma 2.1, we have p(G1,x) < p(G'). By Lemma 3.1(i), we have
p(G') < p(G1,k41). Hence p(G1x) < p(G1,k+1)- Thus G X Gy 7 = G1.

Similarly, for G € 2, then G & G,. For G € 8, then G = Gj. For
G € 7, then G = G4. Hence p(G) = max{p(G;)|1 <i < 4}.

By applying Lemma 2.2 to the vertex v of G; we obtain
P(G1,)) = A" ¥ A8—(n42)A®—6A54(3n—6)A*+1203—(3n—14)A2—6A+(n—7)].
In the analogous manner we have

P(G2,)) = A""8[A° — (n + 2)A% — 6)% + (3n — 9)A% + 8) — (2n — 12)).
P(G3,)) = A" 4[A* — (n 4 2)A% — 6\ + 3(n — 5)).
P(G4, \) = A" "8[\8 — (n + 2)A% — 8A% 4+ 3(n — 5)A + 2(n — 4)].
For A > p(G2) > p(K1,n-1) = v/n — 1, we have
P(G1,\) = P(G3,N) = M ¥3x* 4403 — (n—2)A2 = 6A + (n—7)]

= A ENZEAZ—n+2)+ 20202 -3)+(n—T)] > 0.

By Lemma 2.3, p(G,1) < p(Ga2).
For A > p(G3) > p(K1,n—1) = vn — 1, we have
P(G3,)) — P(G3,)) = A""6[6)A% 4 8\ — (2n — 12)] > 0.
By Lemma 2.3, p(G2) < p(G3).
For A > p(G4) > p(K1,n-1) = v — 1, we have
P(G3,\) — P(G4,\) = A" °[2)% — 2(n — 4)] > 0.

By Lemma 2.3, p(Gs) < p(G4).
Hence G = G4, this completes the proof of Theorem 3.2. 0O



4 Tricyclic graphs with minimal least eigen-
value

In [1], Bell et al. study connected graphs whose least eigenvalue is min-
imal among graphs of prescribed order and size. They state the following
structural result.

Theorem 4.1 ([1]) Let G be a connected graph whose least eigenvalue
An(G) is minimal among the connected graphs of order n and size m (0 <
m < (3)). Then G is either

(i)a bipartite graph, or

(#i)a complete product of two nested split graphs (not both totally dis-
connected).

Here a graph G is called a nested split graph (or threshold graph ) if
its vertices can be ordered so that jq € E(G) implies ip € E(G) whenever
1 < j and p < q. The nested split graphs are the graphs without 2K3, P; or
C4 as an induced subgraph. They are precisely the graphs with a stepwise
adjacency matrix. There are many spectral results on these graphs in the
literature (see for example, [2, 15, 21, 22]).

n-3 n—4
Gi G3
Fig.3. The connected unicyclic graph G§ and bicyclic graph G} of order n.

Let G have minimal least eigenvalue among all connected unicyclic
graphs of order n (n > 12). Xu et al. [24] and Fan et al. (8] indepen-
dently by the different methods show that G = Gj. In fact, it is much
easier by Theorem 4.1 to obtain the same conclusion. If G is a bipartite
graph, then by Lemmas 2.7, 2.8, and Corollary 2.6, G 2 Gg, where Gy is
the graph obtained from Cy by attaching n—4 pendant edges at one vertex.
If G is a complete product of two nested split graphs, then G = G}. By
(24}, for n > 12, we have A,(Go) > An(G}), hence G = GY.

Let G have minimal least eigenvalue among all connected bicyclic graphs
of order n (n > 28). In [19], by Theorem 4.1, M. Petrovié et al. show that
G =Gy

Let G have minimal least eigenvalue among all connected tricyclic graphs
of order n (n > 52). In this section, by Theorem 4.1, we will prove G & Gj.
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Bipartite graph

Let 87, denote the set of all connected bipartite tricyclic graphs.
Note that A, (G) = —p(G) for a bipartite graph G, hence the minimal least
eigenvalue problem in 89, is equivalent to the maximal spectral radius
problem in this class.

In the following, let Gs, Gg, . .., G2 be the connected bipartite tricyclic

graphs as shown in Fig.4.
n-10

b Py
Gs Gg_o Gsg

Go G Gn Gi2
Fig.4. Eight connected bipartite tricyclic graphs G; (5 < i < 12).

Lemma 4.2 Let G have mazimal spectral radius among all connected bi-
partite tricyclic graphs of order n (n > 10). Then G = Gg(see Fig.4).

OO OO O Q= OO
(@ (€) (d)
Q.. "o O X 2@
(e) O f )O .('g.)»<>
Fig.5. Seven possible cases for the arrangement of three cycles in G.
P
{ ::E> CO © 0D OO
(i) (iif)

Fig.6. P(l,p,q) and four possible cases for the arrangement of four cycles in G.
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Proof. Let G have maximal spectral radius among all connected bipartite
tricyclic graphs of order n (n > 10), then G € B9, = BI2UBTLU
BIEURBIT. Let X be the Perron vector of G correspondmg to p(G)

S J O

Fig.7. Three possible cases for the arrangement of six cycles in G.

Fig.8. One possible case for the arrangement of seven cycles in G.

For G € #9,. The arrangement of three cycles Cp,Cy,C; in G has
seven possible cases(see Fig.5). Suppose that the arrangement of the three
cycles contained in G is just (b). Denote by vjvy---v; (I > 2) the path
connecting two cycles Cg, C,.. Suppose that v; € Cyg, v € C,.. Without loss
of generality, we may assume that z; > z;. Denote Ng, () = {w1, w2}
Let Go = G — wyv; — wav; + wyv; +wovy. Then Gy € BI? 3 , and by Lemma
2.5, we have p(Go) > p(G), a contradiction. Hence | = 1 Similarly, we
can also show that G cannot contain three cycles whose arrangement is
as (d), (e), (f) or (¢). Hence the arrangement of three cycles in G is (a)
or (¢c). By Lemma 2.7, we know that the arrangement of three cycles in
G is (c). From a repeated use of Lemma 2.7, we have G has exactly one
tree T attaching to the common vertex v of these three cycles. We claim
that p = ¢ = r = 4. Otherwise, note that G is bipartite, without loss
of generality, we may assume that p > 6. Let G’ be the graph obtained
from G by replacing C, with C,_» and adding two pendant edges to vertex
v. Then G’ € BI2, a,nd by Lemma 2.8, o(G') > p(G), a contradiction.
Furthermore, by Corollary 2.6, then G = Gs. By Lemma 2.2, we have

P(Gs,2) = X" 8[A% — (n + 2)A® + 6(n — 4)A* — 4(3n — 22)A2 + 8(n — 10)).
P(Gs, ) = A" 74\* — (n + 2)A% + 4(n - 6)).
For A > p(Gs) > p(K1,n—2) = v/ — 2, we have
P(Gs,\) — P(Gs, \) = A" 8[2n)% — 4(3n — 22)A% + 8(n — 10)] > 0.
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By Lemma 2.3, p(Gs) < p(Gs). That is to say, for any G e BI3, we
always have p(G) < p(Gs).

For G € B2 Let Piy1,Pp41,Pyy1 be three vertex-disjoint paths,
where I,p,g > 1 and at most one of them is 1. Identifying the three
initial vertices and terminal vertices of them, respectively, the resulting
graph(see Fig.6), denoted by P(l,p,q), is called a f-graph. Furthermore,
let C, be a cycle. Join P(l,p,q) and C, by a path P, and denote the
resulting graph by Go, where s > 1 and Gp has four cases(see Fig.6).
We will prove that Gy is either (ii) or (iii). Assume, on the contrary,
that it is not true. Then there exists a path P, joining P(l,p,q) and
C,, where s > 2. Suppose that v; € P(l,p,q),vs € Cr. Without loss of
generallty, we may assume that z; > z,. Denote Ng, (vs) = {wy, w2} Let
G = G — wyv, — wov, + wiv1 + wovy. Then G € BI4, and by Lemma
2.5, p(G') > p(G), a contradiction. Hence s = 1. From a repeated use of
Lemma 2.7, we have G has exactly one tree T' attaching to the common
vertex v of P(l,p,q) and C,. By Lemma 2.8, we have 7 = 4, one of p,q,!
is 1 and the other two are 3, or p, q,! are all 2. Eurthermore, by Corollary
2.6, then G = Gg, Ge, Gror G-,, where Gs and G-, are the graphs obtained
from Gg and Gy by moving C4 and all the pendant edges from v to u,
respectwely(see Fig.4). By applying Lemma 2.2 to the vertex u of Gg and
G, we have

P(Gg, A) = A" 8[A8 — (n 4 2)\% 4 (6n — 28)AZ — 8(n — 8)].
P(Ga,2) = A"8[A8 — (n 4 2)A® + (Tn — 32)A* — (12n — 89)A? + (4n — 34)).
By applying Lemma 2.2 to the vertex v of G¢ and G7 we have

P(Gg,\) = A""8[A% — (n + 2)A\* + (5n — 22)A% — 6(n — 8)].
P(G7,)) = A""3[A% — (n + 2)A® + (6n — 25)A* — (11n — 78)A% + 6n — 52)).
For A > p(Gg) > p(K1,n—3) = vn — 3, we have

P(Gg,\) — P(Ge, ) = X"8[(n — 6)X2 — 2(n — 8)] > 0.

By Lemma 2.3, p(Gg) < p(Ge).
For A > p(G7) > p(K1n—4) = V1 — 4, we have

P(G7,)) — P(G7,)) = A*8[(n — T)A* — (n — 11)A2 — 2(n - 9)] > 0.

By Lemma 2.3, p(G-) < p(G7).
Hence G = Gg or G7. Similarly, we can prove p(Gg) < p(Gg) and
p(G7) < p(Gs). That is to say, for any G € B2, we always have p(G) <

P(Gs).



For G € 89,2, G can be obtained from Gy by planting some trees at
some vertices of Gp, where Gy consists of six cycles. Gy can be obtained
from P(l,p,q) by adding a new path P,,;, where the two endpoints of
P,;1 meanwhile belong to one of Pyy1, Pp41 and P,y . Hence Go has three
cases(see Fig.7). From a repeated use of Lemma 2.7, we have G has exactly
one big tree T attaching to one vertex v of Gy. Note that G have maximal
spectral radius and Gy is a bipartite graph. By Lemma. 2.8, G has exactly
eight structures(see Fig.9). By Corollary 2.6, then G must be obtained
from Gy by attaching some pendant edges to exactly one vertex of Gy.
Clearly, G has many structures. For example, G 2 Gg or Gg(see Fig.4).
Note that

P(Go, Ay = A""8[A8 — (n + 2)A8 + (6n — 27)A% — (9n — 56)A% + 4(n — 7)).
For A > p(Gs) > p(K1,n—2) = v/n — 2, we have
P(Gg,A) — P(Gs, \) = A"78[(2n — 3)A* — (9n — 56)A2 + 4(n — 7)] > 0.

Fig.9. Eight structures of Gy.

By Lemma 2.3, p(Gs) < p(Gs). Similarly, by computing the character-
istic polynomial of graphs and Lemma 2.3, we can show that the spectral
radii of other structures of G are all less than that of G or Gy. That is to
say, for any G € .93.7,,6, we always have p(G) < p(Gs) unless G = Gg.

For G € 89,], G can be obtained from Gy by planting some trees at
some vertices of G, where G consists of seven cycles. G can be obtained
from P(l,p,q) by adding a new path P,.;;, where the two endpoints of
Pry1 are on the different paths Py1,Ppyq or Pyy;. Hence Go has only
one case(see Fig.8). From a repeated use of Lemma 2.7, we have G has
exactly one big tree T attaching to vertex v of Go. By Corollary 2.6,

G = G10,G11, G2 or other graphs obtained from Gig, G11, G2 by moving
all pendant edges to one vertex other than v, respectively. Note that

P(G10,A) = A*"8[A® — (n+ 2)A% + (5n — 26)A% — 2(n — 6)).
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P(G11,)) = A»8[\8 — (n + 2)A% 4 (6n — 27)A% — (5n — 28)).
P(G12,A) = X 8A% — (n 4+ 2)A8 + (6n — 27)A* — (9n — 56)A% + 4(n - 7)].

By Lemma 2.3, p(G;) < p(Gs) for i = 10,11, 12. Similarly, we can show that

the spectral radii of other structures of G are all less than that of G10,G11

or Gy2. That is to say, for any G € 87,7, we always have p(G) < p(Gs).
Hence G = Gg. This completes the proof of Lemma 4.2. 0O

Complete products of two nested split graphs

Lemma 4.3 Let G be a connected non-bipartite tricyclic graph of order
n (n > 6) with minimal least eigenvalue among all connected tricyclic
graphs, and be the complete product of two nested split graphs. Then
G = Gs.

Proof. Let G = H;VH>, where H; and H; are nested split graphs. Let
|H1| = k,|Hz| =n—k (1 < k < n-2). Then k = 1, because in the opposite
case

|E(G)| = |E(HiVHs)| > k(n - k) >22(n—-2) 2 n+2,

when n > 6 and 2 < k < n — 2, a contradiction. So |Hy| =1 and |H| =
n — 1. By the definition of nested split graph, then G = G3 or G4. Note

that
P(G3,\) = A" 4\ — (n +2)A% — 6) + 3(n ~ 5)).

P(G4,2) = A""8\% — (n 4+ 2)A% — 8X% + 3(n — 5)A + 2(n — 4)).

By Lemma 2.4, for A = Ay(G4) £ Mn(K1n-3) = —v/n — 3, when n is even,
we have
P(G3,\) — P(G4,)) = A"~5[2)% — 2(n — 4)] < 0.

When n is odd, we have
P(G3,)) — P(Gq, ) = A""5[2)0%2 — 2(n — 4)] > 0.

According to Lemma 2.9, Ap(G3) < An(G4). Hence G = G3. O
Having in mind Lemmas 4.2 and 4.3, we get the main result.

Theorem 4.4 Let G have minimal least eigenvalue among all connected
tricyclic graphs of order n (n > 52). Then G = Gj.

Proof. By Lemmas 4.2 and 4.3, we have G = Gg or G3. By Lemma 2.2,

we have
P(Gs,\) = A"4[\% — (n 4+ 2)A2% + 4(n — 6)).

P(G3,)) = X" 4\ — (n 4+ 2)A% — 6A + 3(n — 5)].
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Obviously, A.(Gs) = —\/@. Let f(A) =AM =(n+2))2-
6A + 3(n — 5). Then f()) has the same nonzero roots as P(G3, A) and

f(,\n(Gs))=_n+9+6\/n+2+m'

By Lemma 2.9, if f(An(Gs)) <0, then A,(G3) < A\ (Gs).
Now we solve the inequality,

_n+9+6\/n+2+\/(121—-6)5+64-<0.

After squaring and reordering we obtain the equivalent inequality

18y/(n — 6)2 + 64 < (n — 18)% — 279.
Continuing squaring and putting in order we get the equivalent inequality
(n — 18)* — 882(n — 18)2 — 7776(n — 18) + 10449 > 0.

Let g(z) = z* — 88222 — 7776z + 10449. This function has exactly two
positive roots: z; € (0,2),z2 € (33,34). Sincen > 52, thenz =n — 18 >
34, and clearly g(z) > 0. This completes the proof of Theorem 4.4. O
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