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Abstract

In this paper we give a complete solution to the Hamilton-
Waterloo problem for the case of Hamilton cycles and Cyx-factors
for all positive integers k.
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1 Introduction

The Hamilton-Waterloo problem is a generalization of the well known Ober-
wolfach problem, which asks for a 2-factorization of the complete graph K,
in which r of its 2-factors are isomorphic to a given 2-factor R and s of its
2-factors are isomorphic to a given 2-factor S with 2(r + s) = n — 1. The
most interesting case of the Hamilton-Waterloo problem is that R con-
sists of cycles of length m and S consists of cycles of length k, such a
2-factorization of K, is called uniform and denoted by HW (n;r, s;m, k).
The corresponding Hamilton-Waterloo problem is the problem for the ex-
istence of an HW (n;r, s;m, k).

There exists no 2-factorization of K,, when n is even since the degree of
each vertex is odd. In this case, we consider the 2-factorizations of K, —
I,(where I, is a 1-factor of K,,) instead. The corresponding 2-factorization
is also denoted by HW (n; r, s;m, k). Obviously 2(r + s) = n — 2.
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It is easy to see that the following conditions are necessary for the
existence of an HW (n; r, s; m, k):

Lemma 1.1. If there exists an HW(n;r, s;m, k), then

n=0 (mod m) when s=0;
n=0 (mod k) when r =0;
n=0 (modm)andn=0 (mod k) when r# 0 and s # 0;

The Hamilton-Waterloo problem attracts much attention and progress
has been made by several authors. Adams, Billington, Bryant and El-
Zanati (1] deal with the case (m,k) € {(3,5),(3,15),(5,15)}. Danziger,
Quattrocchi and Stevens(3] give an almost complete solution for the case
(m, k) = (3,4), which is stated below: ~

Theorem 1.2. [3] An HW (n;r, s;3,4) exists if and only if
n=0 (mod 12)and (n,s) # (12,0) with the following possible exceptions:

n =24 and s = 2,4,6;
n =48 and s =6, 8,10, 14,16, 18.

The case (m,k) = (n,3), i.e. Hamilton cycles and triangle-factors, is
studied by Horak, Nedela and Rosa [8], Dinitz and Ling [4, 5] and the
following partial result obtained:

Theorem 1.3. [4, 5, 8]

() Ifn=3 (mod 18), then an HW(n;r, s; n, 3) exists except possibly
when n = 93,111,129, 183,201 and r =1;

(b) If n=9 (mod 18), then an HW(n;r, s;n,3) exists except n = 9
and 7 = 1, except possibly when n = 153,207 and r = 1;

()ffn=15 (mod 18)andr e {1, (349 (ndS) 43 (nod)y
then an HW (n; r, s; n, 3) exists except possibly when n = 123, 141,159, 177,
213,249 and r = 1.

Forn =0 (mod 6), the problem for the existence of an HW(n;r,
s;n, 3) is still open.

The cases (m, k) € {(t, 2t)|t > 4} and (m, k) € {(4,2t)|t > 3} have been
completely solved by Fu and Huang [6).

Theorem 1.4.[6]

(a) Suppose t > 4, an HW(n;r,s;t,2t) exists if and only if n = 0
(mod 2t).

(b) For an integer ¢ > 3, an HW (n;r, s;4,2t) exists if and only if n =0
(mod 4) and n=0 (mod 2t).

For » = 0 or s = 0, the Hamilton-Waterloo problem is in fact the
problem for the existence of resolvable cycle decompositions of the complete
graph, which has been completely solved by Govzdjak [7].

Theorem 1.5.[7] There exists a resolvable m-cycle decomposition of
K,(or K,, — I when n is even) if and only if n =0 (mod m),

(n,m) # (6,3) and (n,m) # (12,3).

The purpose of this paper is to give a complete solution to the Hamilton-
Waterloo problem for the case of Hamilton cycles and Cyi-factors which is
stated in the following theorem.

Theorem 1.8. For given positive integer k, an HW (n; r, s; n, 4k) exists
ifand only if r+s = [25!] and n=0 (mod 4k)ifs>00rn>3ifs=0.
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2 Preliminaries

In this section, we provide some basic constructions.

For convenience, we introduce the following notations first. A Cp,-factor
of K,, is a spanning subgraph of K,, in which each component is a cycle of
length m. Let r + s = [(n — 1)/2] and

HW*(n;m, k) = {r|lan HW(n;r, s;m, k) ezists}.

We use HC to represent Hamilton cycle for short.

By Lemma 1.1, the necessary condition for the existence of HW (n;
r,8;n,4k) with s > 0 is n = 0 (mod 4k), we assume n = 4kt and the
vertex set of Ky, is Zgy x Zox. We write V; = {3} x Za = {do, i1,...,%26—1}
for i € Za:. Let Ky, v, be the complete bipartite graph define on two
partite sets V; and Vj, and Ky, be the complete graph of order 2k define
on the vertex set V;. Obviously,

2t—-1

E(Kae) = | E(Kv,) U E(Kv,v,)-

i=0 i#j

Further for d € Z;;, we define sets of edges (3, 7)a = {(iiji+a)|l € Zak}
for i, j € Za;. Clearly, (4,7)q is a perfect matching in Ky, v;. In fact,

2k-1
B(Kv.v,)= {J G.d)a.
d=0

The following lemmas are useful in our constructions.

Lemma 2.1. [6) Let I, = {(vovn)} U {(vivan—i)|l <i < n-1}. Then
K, — I, can be decomposed into n— 1 HCs, Each HC can be decomposed
into two 1-factors. Moreover, by reordering the vertices of K>, if necessary,
we may assume one of the HCs is (vo,v1,...,v2n-1).

The following lemma is a generalization of Lemma 1 in [8].

Lemma 2.2. Let 7 be a permutation of Zy,, do,ds,...,ds—; be non-
negative integers. Then the set of edges

(”(0)! ﬂ(l))do U (7"(1))7"(2))41 U---u(m(2t - 1)’”(0))dze-x

forms an HC of K, if do +dy + -+ 32¢-1 and 2k are relatively prime.
Proof. Set d =dgy + dy + - -- + da¢—1, then arrange the edges as

H = (7(0)o, (1) do, ®(2)dptdrs* ** » 7(0)dts T(1)dtdgy -+ - » (28 — 1)okd—dae_y )-
Since (d, 2k) = 1, the vertices
T(8)do+dy++-+dimys T(8) ddokdy +-+dicrs - + - » T(E) (2k=1)dt oty -+ iy

are mutually distinct for ¢ € Zy,. Thus all vertices in H are mutually
distinct, so H is an HC. D
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Lemma 2.3. Let dj,d2 be nonnegative integers. If dy — ds and 2k
are relatively prime, then the set of edges (%, j)a, U (%, j)a, forms a cycle of
length 4k on the vertex set V; UVj.

Proof. It’s a direct consequence of Lemma 2.2. Arranging the edges as
a cycle (4o, jd, idy—dz» J2dy—dy» * * * » J2kdy —(2k—1)d; ) COmPpletes the proof.0

3 Proof of the main theorem

With the above preparations, now we are ready to prove our main theorem.

Let G be a complete graph defined on {V;,V3,...,Va;—1}. By Lemma
2.1, G can be decomposed into 2¢—1 1-factors, denoted by ﬁ, Fz, ceny F‘gt_l,
and F‘gi._1UF‘2,‘ formsan HC fori =1, 2,...,¢t—1. By reordering the vertices
if necessary, we may assume

fl = {%1,11‘,‘2’ ‘,37“ -1V2!-—2V25—1}1

Fy = WV, WaV,,. .., Vo Vo,
Foeor = (VoV} U {ViVaeili = 1,2, £ = 1),
Let
Fo= | EEwuy) forzeZ\{0}
ViV, €E(F:)

and
Hy=(0,1)U(1,2)2k-1U(2,3)1U---U(2t = 1,0)2k—1 for l € Zy.

Then FLUF; = HQUH  U---UHag_.

Lemma 3.1. F5_; UFp(i =0,1,...,k — 1) can be decomposed into
r; € {0,2,...,2k} HCs and 2k — r; Cyr-factors of K,.

Proof. We only give the proof for the case ¢ = 1, i.e. Fj U F;, the
remaining cases are similar.

For ! =0,1,...,k — 1, Hy U Hyy can be decomposed into two edge

sets:

U (2523 + 1 25,27 + D),
j=0

t-1
U (25 + 1,25 + g | J (25 + 1,25 + 2ge_u_1)»
=0

by Lemma 2.3, each forms a Cyx-factor of K.
Similarly, Ha1 U Hai41 can be decomposed into another two edge sets:

(Hat — (2t = 1,0)25—21) U (2¢ — 1,0)26-21-1,

(Haig1 — (2t — 1,0)2—21-1) U (2t = 1,0)2k-2,
by Lemma 2.2, each forms an HC of K.
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Finally, by decomposing HyiUH3i+1 into two HCs when ! € {0,1,..., 5 —
1} or into two Cyx-factors when ! € {%,% +1,...,k — 1}, we have the
proof.O

Lemma 3.2. For each i € Z,\{0}, F;U( U Ky,) can be decomposed

€23

into 2k — 1 Cyi-factors and a 1-factor of K,,.
Proof. Noticing that F;U( U Kv;) =tKy and these complete graphs

i€
of order 4k are edge-disjoint. By femma 2.1, each can be decomposed into
2k — 1 HCs and one 1-factor of K. Hence, these HCs and 1-factors form
2k — 1 Cyp-factors and a 1-factor of K,. This concludes the proof. O

For convenience in presentation, we use X to denote |J Ky, in what
i€23¢

follows.

Proposition 3.3. {0,2,4,..., % — 2k} C HW*(n;n, 4k) for all positive
integers n =0 (mod 4k).

Proof. Since K,, = FfUF,U-.-U Fy_; UX, applying Lemma 3.2 to
Fy_;UX and Lemma 3.1 to Fp; UF;_3(1 < ¢ < £—1) completes the proof.
(m}

Proposition 3.4. {1,3,5,...,% — 4k + 1} € HW*(n;n,4k) for all
positive integers n =0 (mod 4k).

Proof. First, by Lemma 3.2, we decompose F U X into 2k — 1 Cy-
factors and a 1-factor. Without loss of generality, assume the 1-factor is
I =(1,2)0U(3,4)oU---U (2t — 1,0).

Since E(F) = 2ﬁl ((0,1),U(2,3); - (2t — 2,2t — 1);), we decompose
E(F)UI, into k -'Toc4k-factors, an HC and a 1-factor:
Ci =((0,1)2;-1U(0,1)2:)U((2,3)2i-1U(2,3)2:)U- - -U((2t — 2,28 — 1)1V
(2t —2,2t—1)g), i=1,2,...,k—1,
HCy = (0,1)2k-1U(1,2)0U(2,3)0U---U (2t — 2,2t — 1)o,

In=(0,1)0 U (2,3)26-1 U (4,5)2k—-1 - U (2t = 2,2t — 1)1

It is straightforward to verify that C; is a Cy,-factor, HC; is an HC, [, is
a 1-factor and they are edge-disjoint.

Finally, applying Lemma 3.1 to F2;_; U F3;(2 < ¢ < t — 1) gives
{1,3,5,...,2 — 4k + 1} C HW*(n; n,4k). D

Lemma 3.5. If r; € {2k,2k+ 1,2k +2,...,4k — 1}, then L UFR U
F5;_; UX can be decomposed into ry HCs, 4k — 1 — r; Cyx-factors and a
1-factor of K.

Proof. It is well known that every complete graph with even order can
be decomposed into Hamilton paths{2]. Noticing that

Fp 1 UX ={Kyuv,} V{Kviuw_i=1,2,...,t - 1} =tKau

and these complete graphs of order 4k have no common vertex. Let P; ;[u. .. v]
be the Hamilton path of Kv,uy; with u and v as its end vertices. We may
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decompose Fy;—3; UX into {Py, Pi,..., Par—1} where
13]' = {Po'g[Oj, see ,tJ]} ] {P,"Qg_.'[ij, vaey (2t - 1)J]|'l = 1, 2, vee ,t - 1}

For each j, connecting the Hamilton paths of P; with t edges (0;1;),
(253),...,((2t—2);(2t—1);) € (0,1)pU(2,3)oU---U(2t—2,2t—1)g C Hp
which gives an HC. Then we have 2k Hamilton cycles HC};, j € Zyk, when
t is odd,

HCJ' = (OJ', lj, Pl'zg-lllj, ceey (2t - l)j], (2t - l)j, (2t - 2)]"
Pm-g'g[(2t - 2)]., cee ,2_,-], N l)j,tj,Pg,o[tj, e ,Oj]);

when ¢ is even,

HC; = (04,15, Py ge—afl;,...,(2t - l)j], (2t - l)j,(2t - 2),1"
P2t—2.2[(2t - 2)j: e 12]']? v (t+ l)j,tjr IJt,O[tJ's e ’Oj])'

Then we can decompose Hy U(Hp—(0,1)oU(2,3)oU- - -U(2t—2,2t—1)p)
into an HC and a 1-factor, or a Cyi-factor and a 1-factor. In the first case,
let

HCy = Hy U (2t — 1,0)0 — (2t — 1,0)2k-1,

I,=(1,2)0U(3,4)oU---U(2t — 3,2t — 2)o U (2t — 1,0)2¢—1.
By Lemma 2.2, HCj;, forms an HC. I, is a 1-factor. In the second case, let

t-1
C=J{(2i+1,27 +2)J(2 + 1,2/ + 2, }»
i=0

I, = (0,1 U(2,3)U---U (2t —2,2t — 1);.

By Lemma 2.3, C is a Cy,-factor and I," is a 1-factor.

Finally, in the same way as Lemma 3.1, for each r; € {2k,2k + 2,2k +
4,...,4k — 2}, we decompose each Hy U Hgy4 into two HCs for | €
{1,2,..., 3} or two Cyr-factors for ! € {5 + 1,5 +2,...,k —1}. Then
we have the proof. O

Proposition 8.6. {2k,2k+1,2k+2,..., 252} C HW*(n;n, 4k) for all
positive integers n =0 (mod 4k).

Proof. Let r = p-2k +q, where 0 < q < 2k. If 2k < r < 2kt — 2k
and ¢ is even, by Lemma 3.5, we may decompose Fi U F; U Fp,_; UX
into 2k HCs, 2k — 1 Cyk-factors and a 1-factor. By Lemma 3.1, we may
decompose Fy;_1 U Fy; into 2k HCs for each 2 < ¢ < p, Fopy1 U Fopya into
g HCs and 2k — g Cyi-factors, and Fpj_; U Fy; into 2k Cyx-factors for each
p+2<j<t-1. Then we have

{2k,2k+2,...,2kt — 2k} C HW*(n;n, 4k).

If 2k < r < 2kt — 2k and q is odd, by Lemma 3.5, we may decompose
R uF,UFy_UX into 2k + 1 HCs, 2k — 2 Cy,-factors and a 1-factor. By
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Lemma 3.1, we may decompose F3;_1 U Fy; into 2k HCs for each 2 < i < p,
F2P+l U F2P+2 into ¢ — 1 HCs and 2k — ¢ + 1 Cy-factors, and F2j—1 ) sz
into 2k Cyx-factors for each p +2 < j <t — 1. Then we have

{2k +1,2k+3,...,2kt — 2k — 1} € HW*(n; n, 4k).

If 2kt — 2k < 7 < 252 and q is even, by Lemma 3.5, we may decompose
FRUF,UFy_; UX into 4k — 2 HCs, a Cy-factor and a 1-factor. When
g+ 2 < 2k, by Lemma 3.1, we may decompose Fy;_; U Fy; into 2k HCs for
each2 < i < p—~1, Fp_1UFy, into g+2 HCs and 2k— g—2 Cy,-factors, and
Fy;_1 U Fyj into 2k Cyx-factors for each p+1 < j < ¢~ 1; when g+ 2 = 2k,
we decompose Fz;_) U F; into 2k HCs for each 2 < ¢ < p and Fy;_; U Fy;
into 2k Cy-factors for each p+1 < j <t — 1. Then we have

{2kt — 2k + 2,2kt — 2k + 4,..., 2kt — 2} € HW* (n; n, 4k).

If 2kt — 2k < r < 252 and ¢ is odd, by Lemma 3.5, we may decompose
FRUF,UFy_; UX into 4k — 1 HCs and a 1-factor. When ¢q + 1 = 2k,by
Lemma 3.1, we may decompose each Fa;_; U Fy;into 2k HCs for each 2 <
i < p and F3;.1 U F; into 2k Cyr-factors for each p+1 < ¢ <t — 1; when
q+ 1 # 2k, we decompose Fp;_; U Fy;into 2k HCs for each 2 < i <p -1,
Fyp_1 UF, into ¢+ 1 HCs and 2k — ¢ — 1 Cy-factors, and Fy;_1 U Fy; into
2k Cyx-factors for each p+ 1 < j <t — 1. Then we have

{2kt — 2k + 1,2kt — 2k + 3,...,2kt — 1} € HW*(n; n, 4k).0

Combining Proposition 3.3, Proposition 3.4 and Proposition 3.6, we
have the main result of this paper.

Theorem 3.7. {0,1,2,..., 252} = HW*(n;n, 4k) for all positive inte-
gersn=0 (mod 4k).

Proof. For n = 4k, the theorem is obvious by Theorem 1.5. For
n = 8k, the result is also correct by Theorem 1.4. When n > 8k, we have
7 — 2k > 2k and § — 4k + 1 > 2k + 1, then combining with Proposition
3.3, Proposition 3.4 and Proposition 3.6 completes the proof. O

4 Concluding remarks

It would be interesting to determine the necessary and sufficient conditions
for the existence of an HW(n;r, s;n, k) for any even integer k. As a first
step, we proved in this paper that for any integer k = 0 (mod 4) the
necessary condition for the existence of HW (n;r,3;n,k)isn =0 (mod k),
and the necessary condition is also sufficient. The next step is for the case
when k=2 (mod 4), we conjecture that for k= 2 (mod 4) and s > 0
there exists an HW(n;r,s;n,k) if and only if n =0 (mod k).
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