Effect of parallelism on the efficiency of
binary tree search

Sarmad Abbasi
Department of Computer Science
Sukkur Institute of Business Administration
Airport Road
Sukkur 65200
Sindh, Pakistan

email: sarmad_abbasi@iba-suk.edu.pk

Abstract

Let T.. denote a complete binary tree of depth n. Each internal
node, v, of T, has two children denoted by left(v) and right(v). Let
f be a function mapping each internal node, v, to {left(v), right(v)}.
This naturally defines a path from the root, A, of T, to one of its

leaves given by
A SN2, F).

We consider the problem of finding this path via a deterministic al-
gorithm that probes the values of f in parallel. We show that any

algorithm that probes k values of f in one round requires y=rt17;

rounds in the worst case. This indicates that the amount of informa-
tion that can be extracted in parallel is, at times, strictly less than
the amount of information that can be extracted sequentially.

keywords: combinatorial games, two player perfect information games, adver-
sary strategies.

1 Introduction

Let T, denote a complete binary tree with n levels. Level 0 of T}, consists
of a single node labeled by A, the empty string. In general, the i-th level
of Ty, consists of 2° nodes labeled by binary strings of length i. For any
i < n, every node z in the i-th level has two children left(z) = z0 and
right(z) = z1. Let f be a function mapping each internal node, v, to
{left(v), right(v)}. This function naturally defines a path from the root of

ARS COMBINATORIA 100(2011), pp. 349-363

T, to one of its leaves given by:
Pf = ’\sf(/\):fz(’\)s"wfn()\)r

where fO(v) = v and fi(v) = f(f*"!(v)) fori > 1.

Consider the problem of finding Py via a sequential algorithm that
probes the values of f. An algorithm can probe the values of f(}),..., f*(})
one by one and find Py in exactly n probes. Moreover, it is also easy to see
that this is an optimal algorithm. In this paper, we investigate the prob-
lem when the values of f have to be probed in parallel. Thus, the parallel
algorithm has to proceed in rounds. In each round it is allowed to probe &k
values of f. We show that any such algorithm requires

"
llog(k + 1)

rounds to determine Py in the worst case. Furthermore, this bound is opti-
mal as a very simple algorithm can achieve it. Our result can be interpreted
in terms of information extraction. It states that, for this problem, probing
k values of f in parallel extracts |log(k + 1)| bits of information; whereas,
probing k values sequentially extracts & bits of information.

Any algorithm that correctly finds Py in r rounds, in the worst case,
must also find P; in r rounds if an adversary were to choose the values
of f on the fly. This observation allows us to view this problem as a
combinatorial game between two players; Paul (the algorithm) and Carole
(the adversary). We define G(n, k,) as a perfect information game between
Paul and Carole. The game is played on the complete binary tree with n
levels and consists of r rounds. Every round of the game consists of the
following steps:

1. Paul selects a set S C I,,, where I, is the set of internal nodes of T
and |S| < k.

2. Carole declares the value of f(v) for every v € S.

At the end of r rounds, Paul wins if he is successful in determining Py;
that is, there is a unique path that is consistent with Carole’s answers.

As Paul is only allowed to ask questions of the form “What is f(v)?”
in this game, we will often say that Paul presents Carole with a node v (or
equivalently he presents Carole with a set of nodes).

Remark: Joel Spencer{3] has suggested that the players in these types of
search games be called Paul and Carole: Paul represents the great ques-
tioner Paul Erdés; whereas, Carole, being a permutation of “oracle”, rep-
resents the notoriously obtuse oracle of Apollo at Delphi.

350

o

ol 0"

o 100 o no

. \ [° / ® o \ [/ ®
0000 0001 0010 001 0100 O(0I 'O110 OI1l 1000 1001 1010 1011 1100 1101 e

Figure 1: An instance of G(4,k,7)

It is interesting to contrast G(n, r, k) with the k round version of Ulam’s
searching game [4]. In Ulam’s game, U(n, k,r), Carole thinks of an = from
the set S = {1,...,n}. Paul tries to find this “z” by asking questions of
the form:

Qa:“Is x € A?

where A can be any subset of {1,...,n}. The game proceeds in r rounds
and in each round Paul is allowed to ask k questions. After r rounds Paul
wins if he can determine z. The outcome of this game depends only on the
total number of questions asked; that is rk. One can easily show that Paul
wins U(n, k,r) if and only if 2¥* > n. Ulam’s game becomes much more
interesting if Carole is allowed to lie at times. Very interesting results are
known for Ulam’s game with fixed number of lies [2, 3].

Ulam’s game is often compared|[3] with the classical “TWENTY QUES-
TIONS.” Note that few would be willing to play TWENTY QUESTIONS,
if they were required to ask all of the twenty questions at once! What
makes TWENTY QUESTIONS interesting is that “answers help in posing
questions.” The game G(n, k,r) also turns out to be more interesting in
this regard: for G(n, k,r) answers do help in posing questions.

We also study the game G(n,ki,...,k.) in which Paul is allowed to
ask k; questions in round i. We prove the following general theorem for

G(n,k1,... k)

Theorem 1.1 Paul wins G(n,ky, ..., k) if and only if 3;_, |log(ki+1)] >
n.

351

By taking k; = k for all ¢ = 1,...,7 and observing that G(n,k,7) =
G(n,k,- -, k) we obtain:
N’

r times
Theorem 1.2 Paul wins G(n, k,r) if and only if r > IBRZTTTI'

The analysis of this game, in some sense, answers how much information,
per round, can Paul extract out of Carole, if he has to ask k questions in
parallel. In case of Ulam’s game he can extract & bits of information. For
G(n,k,r) Theorem 1.1 states that he can obtain only [log(k + 1)] bits of
information.

The remaining paper is organized as follows: in the next section we give
a good strategy for Paul. In section 3 we prove that if }_;_, log(k; +1) < n,
Carole wins G(n, ky,...,k.). In section 4 we improve this to show that if
i1 llog(ki+1)] < n then Carole wins G(n, ki, . .., k). In the last section
we describe Chaudhuri’s game C(n, k,7) and point out some interesting
problems.

2 A Trivial Strategy

In this section we present a good strategy for Paul. Note that Paul wins
G(0,ky,..., k) for any sequence ki, ...,k > 0. This is because the trivial
tree of depth 0 contains a unique path from the root to the only leaf (which is
also the root) and Paul can declare this path without asking any questions.
In case r = 0 Paul wins the game if n = 0; otherwise, Carole wins the game.
Now we can state the following simple result:

Lemma 2.1 If Y [_, log| (ki + 1)) > n then Paul wins G(n, k1, ..., k).

Proof. The proof is by induction on 7. For r = 0 there is nothing to
prove as n must be 0. Assume that r > 1 and let ! be the largest integer
such that 2 — 1 < k. Note that ! = |log(k1 + 1)|. Paul selects the set
of questions {v : level(v) < I — 1}. Once he gets the answers to these
questions, he has determined the first [nodes of the path P;. Let u be
the node on level ! that lies on the path P;. The game now is restricted
to the subtree of T}, rooted at u. This subtree is isomorphic to T,,_; and
Sioglog|(ki +1)] > n — L. Since Paul can win G(n — ,ky,...,kr—y) by
induction, he can win G(n, k1,...,kr). O

The above lemma seems to say nothing about G(n,2,7). As Paul can
win G(n,1,7) if 7 2 n, he can clearly win G(n,2,r) if r > n. However, we
will show in the Section 4 that this result is the best possible.

352

3 An Adversary Strategy

In this section we will prove a partial converse of Lemma 2.1. Towards this
end, we describe an adversary strategy for Carole. When Carole plays the
adversary strategy she does not decide on the function f at the beginning
of the game. Instead she constructs it on the fly. At the end of the game
she wins if there are more than one possible paths from the root to a leaf
that are consistent with her answers. It is not hard to see that if Paul
can win G(n, ki, ..., k) then he can win even if Carole plays an adversary
strategy.

The idea is that Carole will keep track of Paul’s progress. In each round
she will answer the questions posed by Paul in such a way that he makes
as little progress as possible. To make her plan work, she needs to measure
the progress made by Paul as the game proceeds. She will maintain a set A;
consisting of all the questions that have been posed by Paul and answered
by her up to round 7 of the game. Initially, Ag is empty. After every round
some new internal nodes are added to it. Thus, @ = Ay C A;--- C A, is
a sequence of sets. The function f is constructed during the course of the

game. Hence, we view it as a sequence: fo, f1,..., fr : I, — {left, right, x},
where
fi(A) C {left, right},
filln\Ai) = {*} and
fi(v) = Fic1(v) forallve A;_y and foralli=1,...,n.

Round i of the game consists of the following steps:

1. Paul selects a set S C I, \ A;—1, where |S| < k;; that is he sets

i = A1 US.
2. For every v € S, Carole assigns the value of f;(v) to either left(v) or
right(v).
We say that a path A = v, v1,...,vs is consistent with an f; if

fi(vj) # * implies vj41 = fi(v;) for j=1,...,8—1.

After the end of the i-th round, the pair (4;, f;) completely determines
the state of the game. We would like to measure the progress of Paul at
this point. We define the weight of each node, v, with respect to (A, f;),
as follows:

1 ‘ if v is a leaf node,
W, = Wl?eft(u) + W;ight(u) if v & A,
W}i(v) if v e A;.

353

With the above definition the weights of the nodes can be computed
in a bottom up fashion. The weight of a node, v, is the number of paths,
starting from v and ending at a leaf node, that are consistent with the
function f;. We define the weight of the game, W*(T},), with respect to
(Ai, fi), to be the weight of the root of T;,. It turns out that W#(T},) is
a good way to measure the progress made by Paul. We start with the
following simple fact:

Lemma 3.1 Paul wins G(n, ki, ..., k) if and only if at the end of r rounds
W (T,)=1.
a

In the next lemma, we show that Carole can limit the progress made by
Paul in one round.

Lemma 3.2 Suppose the game is in state (A;, f;) after i rounds and W*(T},)
is its weight with respect to (A;, fi). Let S C I\ A; be any set of k questions
posed by Paul in the (i + 1)-st round. Carole can answer these questions
in such a way that the game ends in a state (Ait1, fi+1) end the weight
WHY(T,), with respect to (Aiy1, fit1), satisfies
i+1 Wi (Tn)
W (T) 2 55
Proof. We prove this lemma by induction on k. The base case (k = 0) is
trivial. Let k > 1. Assume that the lemma is true for all &’ < k. We prove
the lemma for k£ by induction on n. Let A be the root of T,. Let 7, and
T, denote the trees rooted at a and b respectively, where a = left(\) and
b = right()). Also, let S, (resp. Sp) be the nodes of S which belong to the
tree rooted at a (resp. b). Define k; = |S,| and k. = |Sy|. We consider
three cases:

Case 1) € S. Carole defines

o W w§
aif g7 2 g1
firr(A) =

b otherwise.

Without loss of generality, we assume she chooses fi+1(\) = a. By
induction on k she can define f;;; on S, so that

X Wi
t+1 > a
W 2 ki+1

354

She extends f;;1 to Sp arbitrarily. With these choices
W,

i+1 — Wit = witl >
W) =W =W, '—k1+1
Now,
WiTa) = Wi+W

kr+1
W' W

(k1+1)
kr+kl+2 i
(ki +1)W°

k+1 i
(kz + 1) Wa,
where the last equality holds since k; + k- = k£ — 1.

Case 2 A\ ¢ S. Assume that k; > 0 and k&, > 0. By induction on k Carole
can extend f; to S, (resp. Sp) such that,

; Wi Wi
Wz+1 > a Wt+1 > b .
* T h+l (resP _kr+1)

IN

By making these choices,
Wi+1(Tn) = Wai+1 + W:'H

Wi W

> a b

o
Wi Wi

> e b

2 ki TR+l

_ WHTw)

T k+17

Case 3 A\ ¢ S and either k&1 = 0 or k. = 0. The result now follows from
induction on n and a simple calculation. O

Using the above lemma we obtain the main result of this section.
Lemma 3.3 If Y[, log(k; + 1) < n then Carole wins G(n, k1, ..., kr).

Proof. When the game starts the weight of T}, is 2™, If Carole plays the
strategy given in Lemma 3.2 then after r rounds the game ends in a state
(Ar, fr), the weight of the game is at least

2n
_——>1
H::l(ki + 1)

and she wins the game. O

355

S
-
K
/
s
1
S
s
.
1 [}
-
SN

0.
0 0 T
[o] \
SN N I AN 3 .\ kS
do 6 bvd o 4 b d 5 & o c/ o

00 00) G0 OlF 100 1} 1o mn 000 001 o 011 00 tot "o m

(a) (b)

Figure 2: G(n,3,7) versus G(n,6,r): dark nodes indicate the questions
posed by Paul. (a) Paul proceeds 2 levels in one round. (b) Carole thwarts
an obvious attempt by Paul to proceed 3 levels by asking 6 questions.

Corollary 3.1 Ifr < Wz_*-_lf then Carole wins G(n,k,r). O

This simple argument is good enough to solve the problem completely
for the case when the number of questions is 2™ — 1.

Corollary 3.2 If k = 2™ — 1 for some integer m > 0 then Paul wins
G(n, k,r) if and only if

O

r>__nr __n
“loglk+1) m

4 The Balanced Generosity of Carole

Let m > 0 be an integer. Let us compare the game when Paul asks k; =
2™ — 1 questions per round versus when he asks kf = 2™+1 -2 = 2(2™ - 1)
questions per round. As |log(k; + 1)] = [log(k] + 1)] = m, Lemma 2.1
merely says that Paul can win both games in [%'l rounds. However, in
the second case he is asking twice as many questions per round. A naive
attempt to improve the trivial strategy by asking k; questions in level m
is easily thwarted by Carole (Figure 2). Is it possible for Paul to use the
extra k; questions to extract more information from Carole by using some
sophisticated method? Intuitively the answer seems to be “No”. This
section is devoted to showing that this intuition is indeed correct; there is
no way for Paul to use these extra questions towards his advantage.
Consider the game G(n, k,r) after ¢ rounds in a state (A;, f;). Let A be
the root of T and @ and b be its two children. Suppose the state (4;, f;) is
imbalanced in the sense that W} « W{. In this case, Paul can make a lot of
progress by asking more questions in the subtree rooted at b. However, for

Paul to exploit such an imbalance he has to create one first. To create an

356

imbalance, Paul must deviate from “the optimal” strategy and this gives
an advantage to Carole. The main idea is that Carole will not allow Paul
to create such an imbalance in the weights. To achieve this goal, every
time Paul tries to create an imbalance, she will “generously” answer some
questions that he has not even posed. Carole can afford this generosity
because Paul is pursuing a suboptimal strategy. Thus Carole’s generosity
is not directed towards Paul, it is just a book-keeping tool that helps in

establishing the converse of Lemma 2.1.
Note that at the beginning of the game, the state (Ag, fo) is balanced
in the following sense: for any internal node v we have
0 — w0
Wleft(u) - Wright(v)'

Now consider a state (A;, f;). We call a node, v, reachable if the path
A =vp,v1,...,V =v from the root to v is consistent with f;; that is

€A = f(u) =vqfort=0,...,r-1.
An internal node, v, is called open if it is reachable and v ¢ A;. We will
call a state (A;, f;) balanced if for every open node, v, we have
Wlieft(u) = l'iight(v)'
A node z is called the pseudo-root of T, if
1. z is open.
2. all predecessors of z are not open.

Figure 3 illustrates these definitions. If = is a pseudo-root of T;, in round i
then it is clear that in all the subsequent rounds the weight of the root A
is the same as that of z. More formally,

Wi = W{ for j > .

We now define a new game G’(n, k1, ...,k.). This game is the same as the
previously defined game G(n, k;, ..., k) except that Carole is also allowed
to declare the answers to zero or more questions that Paul has not inquired
about. More precisely, the i-th round of the game proceeds as follows:

1. Paul selects a set S C I, \ A;—1, where |S| < k.

2. Carole selects a (possibly empty) set Z C I, \ (A;~1 US); that is, she

sets
$ =A;_1USUZ.

For every v € Z U § Carole assigns f;(v) to either left(v) or right(v).

357

TR 5 \

1 1
Figure 3: A game in a balanced state: white nodes are open, grey nodes
are reachable but not open and the pseudo-root is double circled.

I 1

The following lemma is immediate.

Lemma 4.1 Cerole can win G'(n,ki,..., k) if and only if Carole wins
G(n,ky,..., k). O

Lemma 4.2 Suppose the game is in o balanced state (A;, f;) after i
rounds and W*(T,) is its weight with respect to (A;, f;). Let S C I\ A; be
any set of at most 2™ — 1 questions posed in the (i + 1)-st round. Carole
can find a set Z and answers to the questions in SU Z in such a way that
the game ends in a balanced state (A;+1, fi+1). Furthermore, the weight
Wit(T,,), with respect to (Ais1, fis1), satisfies

WH(T)
Tom

Proof. We prove this lemma by induction on m. If m = 0 then there
is nothing to prove. Let m > 1 and |S] € 2™ — 1. Let = be the root
pseudo-root of T,,. Since

Wi(T,) = Wi = Wi for all j > 1,

we can focus our attention on the subtree rooted at z. Define a = left(z)
and b = right(z). We let S, (resp. Sp) denote the nodes of S which
belong to T, (resp. Tp). It is easy to see that either |S;| < 2™~! — 1 or
|Sp| < 2™~! — 1. Without loss of generality we may assume that

|Se €271 =1

WH(T,) =

358

By induction, Carole can find a set Z, and answers A, to the questions in
S, U Z, in such a way that

left(v) = " right(v)

, wi
+1 __
Wt = ont
and T, is in a balanced state; that is,
witl = witl for all open nodes, v, of Tj,. (1)

Carole still has to answer the questions in Sj,. She chooses fi4(v) €
{left(v),right(v)} for v € S, arbitrarily. Lastly, she defines fiii1(z) =
left(z) = a, regardless of whether Paul asks about z or not.

In the state (Ai+1, fi+1) all the nodes in T} are unreachable. Further-
more, T is no longer open and the nodes belonging to T, satisfy Equation
(1). Hence (Ai41, fi+1) is a balanced state. Lastly, we observe that as
(A;, f;) was balanced, we have Wi = 2W}. As fi11(z) = a,
wi Wi

i+1 i+1 _
witl = w; = el = gm-

Here the second last equality holds by induction. Notice that Carole has
chosen an answer for x even if z € S and this generosity is precisely what
helps Carole keep (Ai+1, fi+1) balanced. O

The above lemma can be strengthened. It remains true even if the
number of questions posed in the (i + 1)-st round is doubled. Lemma 4.2
is needed in the proof of the following stronger lemma:

Lemma 4.3 Suppose the game is in a balanced state (A;, f;) after i
rounds and W(T,) is its weight with respect to (A, fi). Let S C I, \ A: be
any set of at most 2™+! — 2 guestions posed in the (i + 1)-st round. Carole
can find a set Z and answers to the questions in SU Z in such a way that
the game ends in a balanced state (A;y1, fi+1). Furthermore, the weight
Witl(T,), with respect to (A1, fit+1), satisfies

WYT)

W1+1 (T) 2m

Proof. Once again we apply induction on m where the base case (m = 0)
is trivial. Let m > 1 and |S| < 2™*! — 2. Again, let = be the pseudo-root
of T,,. Since

Wi(T,) = Wi = WY for all j > i,

we can focus our attention on the subtree rooted at z. Define a = left(z)
and b = right(z). We let S, (resp. S3) denote the nodes of S which belong

359

<=2"-2 mq 2m-1
questions questions questions

Case 1 Case 2

Figure 4: Two cases of Lemma 4.3: Carole uses induction on the shaded
trees. In case 1 she answers z regardless of Paul’s asking about it and in
case 2 she does not.

to T, (resp. Tp). To prove this lemma we have to consider two cases which
are illustrated in Figure 4.

Case 1 |S;| £ 2™ -2 or |Sp| < 2™ — 2. Without loss of generality we may

assume that
|S.| £ 2™ —2.

By induction, Carole can find a set Z, and answers A, to the questions in
S. U Z, in such a way that
A

i+l
Wa - 9gm—1

and T, is in a balanced state; that is,

Wltﬂl: ~ W:izlht © for all open nodes, v, of Ty. (2)
She chooses fi11(v) € {left(v), right(v)} for v € S, arbitrarily. Lastly, she
defines fi41(z) = left(z) = a.

In the state (Ai+1, fi+1) all the nodes in T are unreachable. Further-
more, z is no longer open and the nodes belonging to T, satisfy Equation
(2). Hence (Ai+1, fi+1) is a balanced state. Lastly, we observe that as
(Ai, fi) was balanced, we have W} = 2W}. As fi11(z) = a,

W, _W;

i+1 __ i+1 __
WeH =Wt = 28 = o

360

Here the second last equality holds by induction. Notice that Carole has
chosen an answer for = even if £ € S and again this generosity is precisely
what helps Carole keep (Ait, fi+1) balanced.

Case 2 |S,| = |Sp| = 2™~ — 1. Since we have |S| =2™ -2, 2 & S. In this
case we apply Lemma 4.2 to both T, and T}. Carole finds Z, C T, and
Zy C T} and answers to the questions in S, U Z, and Sy U Z, such that in
the next state (Ai+1, fi+1) both T, and T, are balanced. Furthermore, we
have

. W Wl+
1.+1 _a W1+1
w; = om 5
Since the state (A;, f;) was balanced,
Wt

i
Wi=W; = 5

This implies that Wi+l = W""1 Notice that this state is balanced since
all the nodes of T, that are not in T, are unreachable. Also,

. . W'

Wzt+1 — W;'H Wz-H 2m

In this case Carole does not answer = generously. She can be stingy and
keep the tree balanced as Wit!l = W;t!. 0O

Now we can obtain the full converse of Lemma 2.1.
Lemma 4.4 IfY " | |log(ki +1)] < n then Carole wins G'(T,, ks, . .., ks).

Proof. We may assume that k; = 2™*! — 2; otherwise, we can increase
k;. The weight of T}, is 2" when the game starts and the tree is balanced.
Now if Carole follows the strategy described in Lemma 4.3 in every round
then the game remains balanced at the end of each round. Furthermore,
the weight of T, at the end of the game is

on
H::l 2111.')

As this quantity is greater than 1, she wins the game. O

5 Another Interesting Game
The game G(n,k,r) is inspired by another game of Shiva Chaudhuri[l].

Briefly, Chaudhuri’s game C(n, k, r) is played on a mesh which is diagonally
cut into half (See Figure 5). Hence, there are n levels. Each level ¢ consists

361

&
(RS
0707020 %%%%%

Figure 5: Chaudhuri’s game

of ¢ nodes labeled (7,1),...,(%,i). A node (i,a) in level ¢ is connected to
two nodes (i + 1,a) and (i + 1,a + 1) in level i + 1. Once again for every
node v at level ¢ (¢ < n), Carole chooses one of its neighbors, X (v), at level
i+ 1. This defines a path from node (1,1) to one of the nodes in the last
level. Paul has to find this path by asking questions of the form

Qu: “What is X (v)?”

Again the game has r rounds and Paul may ask k questions per round.
For this game only an analog of Lemma 2.1 is known.

Lemma 5.1 ([1]) Letk = &;—ll Ifr > % then Paul wins C(n,k,r). O

No strategy for Carole is known which shows that for some r = ﬂ%
Carole can win the game, where f(k) = o(k). On the other hand, Paul
wins C(n,2,r) if r > 3.} To see this, consider Figure 6. Paul first asks the
questions regarding the nodes that are circled in the figure. Now depending
on the answer of the root node, he asks two left most questions on level 2
and 3. This way he can move down three levels in two rounds. Whether this
is the best possible strategy for k = 2 is also an intriguing open question.

Acknowledgments

I would like to thank Shiva Chaudhuri for bringing this problem to my
attention and Asif Jamshed for proof reading an earlier draft of this pa-

Figure 6: A strategy of C(k,2,r)

362

per. This work is dedicated to my colleague Vicky Chao for sharing her
enthusiasm with me.

References

(1] S. P. Chaudhuri, 1997. personal communication.

[2] A. Plec. Ulam’s problem on searching with a lie. J. Combin. Thoery.
Ser. A., 44:129-140, 1987.

[3] J. Spencer. Ulam’s searching game with fixed number of lies. Theoretical
Computer Science, 95:307-321, 1992.

[4) S. Ulam. Adventures of a Mathematician. Sribners, New York, 1977.

363

