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Abstract

The Merrifield-Simmons index ¢(G) of a (molecular ) graph G is
defined as the number of independent-vertex sets of G. By G(n, !, k)
we denote the set of unicyclic graphs with girth and the number of
pendent vertices being [ and k respectively. Let S, be the graph ob-
tained by identifying the center of the star S,_;;.1 with any vertex
of C1. By S4* we denote the graph obtained by identifying one pen-
dent vertex of the path P,_;_k+1 with one pendent vertex of S,'_,,k.
In this paper, we first investigate the Merrifield-Simmons index for
all unicyclic graphs in G(n, |, k) and S4* is shown to be the unique
unicyclic graph with maximum Merrifield-Simmons index among all
unicyclic graphs in G(n, !, k) for fixed ! and k. Moreover, we proved
that:

e When & = n — 3, S3* has the maximum Merrifield-Simmons
index among all graphs in G(n, k); When k = 1,n—4, §&* or Sn—%:*
has the maximum Merrifield-Simmons index among all graphs in
G(n,k).

eWhen 2 < k < n—5 Sr~%* and S&* are resp. unicyclic
graphs having maximum and second-maximum Merrifield-Simmons
indices among all unicyclic graphs in G(n, k), where G(n, k) denotes
the set of unicyclic graphs with n vertices and k pendent vertices.
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1 Introduction

Let G = (V(G), E(G)) denote a graph whose set of vertices and set of
edges are V(G) and E(G), respectively. For any v € V(G), we denote the
neighbors of v as Ng(v).

For any given graph G, its Merrifield-Simmons index, simply denoted
as o(G), is defined to be the total number of subsets of the vertex set,
in which any two vertices are non-adjacent, i.e., in graph-theoretical ter-
minology, the number of independent-vertex subsets of G, including the
empty set. As for the n—vertex path P,, o(G) is exactly equal to the
Fibonacci number Fy, 2. So some researchers call the Merrifield-Simmons
index Fibonacci number. It is significant to determine the graph with ex-
tremal Merrifield-Simmons index. The concept of a (molecular) graph is
introduced in (2], and discussed later in [3]. The Merrifield-Simmons index
for a molecular graph was extensively investigated in [4], where its chemical
applications were demonstrated. In (5], X. Li et al gave its other properties
and applications. Wang et al [16] gave sharp lower and upper bounds for
Merrifield-Simmons index among all unicyclic graphs. More recently, Yu
et al [17] determined the unique trees with maximum Merrifield-Simmons
index among all trees with k pendent vertices. There have been many lit-
erature studying the Merrifield-Simmons index. For further details along
this line, see [5-15] and the cited references therein.

In this paper, we investigate the Merrifield-Simmons index for unicyclic
graph with given pendent vertices. We first determined the unique unicyclic
graph with maximum Merrifield-Simmons index among all unicyclic graphs

with prescribed girth  and number of pendent vertices k. Moreover, we de-
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termined, for all possible values of k, the unicyclic graphs having maximum
Merrifield-Simmons indices among all unicyclic graphs with given number

of pendent vertices k.

2 Results

All graphs considered in this paper are connected and simple. By S,
Chr, and P, we denote respectively the star, the cycle and the path with n
vertices. Let G(n,!, k) denote the set of all unicyclic graphs on n vertices
with girth and the number of pendent vertices being resp. ! and k. Let S},
be the graph obtained by identifying the center of S,,_;+; with any vertex
of Ci. By Sh* we denote the graph obtained by identifying one pendent
vertex of the path P,_i_k41 with one pendent vertex of S}, . S} and Sk*
are graphs shown as in Fig.s 1 and 2, respectively.

Let V1(G) denote the set of pendent vertices in G and dg(z, y) denote
the length of the shortest path connecting z and y, namely, the distance be-
tween z and y. Let dg(z, C1) = min{de(z,y)ly € V(C!) and z & V(C})}.

Let F,, denote the n** Fibonacci number, we have F, + F,.1 = Fj.o
with initial conditions F} = Fp = 1.

Other notations and terminology not defined here will follow that of [1].

Fig.1. The graph S},
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Fig.2. The graph S4*
It is necessary to introduce several important lemmas reported in [2, 5]

which will be helpful to the proofs of our main results.

Lemma 1 Let G be a graph with m components Gy, Ga, -+-Gp,.

Then o(G) = [] o(G5).

i=1
Lemma 2 Let G be a graph and v any vertez in V(G), then
o0(G) =0(G - v) +0(G — [v])

where [v] = Ne(v) U{v}.
Lemma 3 Let T be a tree. Then Fopa < o(T) < 271 +1 and
0(T) = Fu42 if and only if T = P, and o(T) = 2" ! + 1 if and only if

T=S8,.

Lemma 4 Let G and G’ be any two graphs. If G’ is a proper spanning
subgraph of G, then o(G') > o(G).

Proof. Let zy € E(G), then o(G — zy) — 0(G) equals to the number of

independent vertex sets containing both z and y. Thus the result follows
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immediately. O

By G(n, l) we denote the set of unicyclic graphs with n vertices and
the length of its unique cycle being {. More recently, H. Wang and H. Hua
reported the following result in [16].

Lemma 5 Let G € G(n, l) with Il > 3, then o(G) < o(S!) with
equality holding if and only if G = S.,.

The following theorem determined the unique graphs with maximum

Merrifield-Simmons index among all graphs in G(n, !, k) for given ! and k.

Theorem 6 Let G € G(n,l,k) with3<l<n—-kandl<k<n-3.
IfG 2 Sh %, then 0(G) < 0(Sh *). ( Referring to Fig.2. for Sk ¥)

Proof. For any G € G(n,l, k), let g(G) denote the subset of V(G) not
including all pendent vertices as well as all vertices in V(C}). For fixed !,
we have |V (G)|+|V1(G)| = (I +1g(@)|+ Vi (G)) +[V1(G)| 2 1 +2Vi(G)| =
l+2k > 1+2, where |V(G)|, [V1(G)| and |g(G)| are respectively the number
of vertices in V(G), V1(G) and ¢(G).

We shall complete the proof by induction on |V(G)| + [V1(G)]. When
V(G) +VA(G)| =1 +2, G = Sr~11 = §-1 and the theorem follows
immediately due to the fact that S?—1+! is the unique element in G(n,n —
1,1).

When |g(G)| = 0, it can be seen that the statement of theorem is true
by Lemma 5. When k = 1, G(n,!,1) contains a single element S4!, and
the theorem holds clearly.

Let ¢ = |g(G)| = 1, k > 2 and suppose the statement of theorem is true
for all graphs G with |V(G)| + [Vi(G)| < ! + q + 2k. Now suppose that G
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is a graph in G(n,l, k) with |V(G)| + |Vi(G)| =l + g + 2k.

Denote by V4(G) the subset of Vi(G) with the property that for any
v € Va(G), de(v,C1) = maz{dg(z,C;) : z € Vi(G)}. Take any vertex
v € V4(G) and let u be its unique neighbor.

We distinguish between two cases according to the values that n - [ - %
assumes.

Casel.n—Il—k=1.

In this case, we claim that dg(v,C) = 2.

Suppose, to the contrary, that dg(v, Ci) # 2.

If dg(v,C1) = 1, then G has exactly n — ! pendent vertices, that is
n—1{—k=0. It is a contradiction to n — [ — k = 1. So we are left with
the case that dg(v,C;) > 3. But theni n — ! — k > 2, which contradicts
n —1 —k =1 once again. So the claim follows.

Subcase 1.1 d(u) = 2.

Since dg(v,C1) = 2 and d(u) = 2, then G — v € G(n — 1,[,k) and
G- eGn-21,k-1).

Let v’ € V4(S% *) and v’ its unique neighbor in Sk .

From Lemma 2, we have
o(G) = o(G — v) + o(G — [v])

and
o(Sh*¥)=o(Sh*—v)+0(ShE—v —u).

’

Since n —l — k = 1, then S * — v = SP-1-% € G(n - 1,1,k) and
Shk_y —u =251l *ecGn-20k-1).

In view of Lemma 5, we have 0(G — v) < 0(S"=1~*) and ¢(G — [v]) <
o(S*=37*) with the equality holding if and only if G — v & SP*~1~* and
G —v—u8r1-F respectively.

Since G # S4*, we have that either (G — v) < a(s::ll—k) or
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o(G - [v]) < 0(SPZ37%). In either cases, the desired result follows.

Subcase 1.2! d(u) > 3.

In this case, G—-v € G(n—1,l,k—1). Let |[N(u)| = m+1. Then there’re
exactly m pendent vertices in N(u) since v € V3(G). Let w € N(u) such
that d(w) > 2. We consider the following two subcases.

e The case when k = m.

From Lemma 2, we obtain

o(G) = okK1|JC) +0(Py)
= 2%[0(Pi-1) + 0(Pi-3)] + o(Pi-1)
= (2*+1)o(P-1) + 25 0(Pi-3),
o(Sh*) = olk - DK)JP|JP-i] + o(Ka | Prs)

25~10(Py)o(Pr-1) + 20(Pi-3).

Bearing in mind that o(P—1) = o(Pi-2) + 0(P—3) < 30(Pi—3), by
Lemmas 1, 3 and the above two equalities, we obtain o(G) — (5S4 ¥) =
(1= 2k"Ng(P_y) + 2(2! = 1)o(Pi=3) < 3(1 — 25"V)o(P;—3) + 2(2F-1 -
1)o(P,-3) < 0 since k£ > 2.

e The case when k > m + 1.

Let G—[v] = Go|J(m—1)K,, where Gg denotes the subgraph containing
Ciof G=v—u. Thus Go € G(n—m —1,l,k—m).

Note that [V(G —v)|+ |Vi(G—v)|=(n-1)+(k-1)=n+k-2=
142k +q—2 <1+ g+ 2k. Note also that [V(Go)| + |[V1(Go)| = (n —m —
D+(k—-m)=n—-2m+k—-1=(0+q+2k)-2m—-1<l+q+2k.

Then by induction assumption, we obtain o(G — v) < S:;_kl' ! and
a(Go) < a(S;55T).

INote that n —k — I = 1 in this case . Since the method we employed here will be
used later, we did not substitute the value of n — k — ! = 1 into above formulas.
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From Lemma 2, we obtain
o(Sh %) = a(Sh A1) + otk - K1 | JPor | Packmina] - (1)

and
o(G) =0(G - v) + (G - [v]) = 0(G - v) +of(m - VK1 | JGo].  (2)

Now, what remains is to prove that of(m — 1)Ki|JGo] <
ol(k — 2)K1UPi-1 U Pa-k-141]. It suffices to show that of[(m —
DK USh 5T < of(k — 2)K1 U Pica U Packt41)-

Let up denote the maximum degree vertex in S'*.™ .. If we delete all
k — m — 1 pendent edges incident with uo as well as two edges along the
cycle incident with it , we obtain (k —m — 1)K |J P-1 U Pa—k-t+1. So by
Lemma 4, the theorem holds as expected in this case.

Case2.n—-1l—-k>2.

There are two subcases we should distinguish between.

Subcases 2.1 da(v,C)) > 3.

Subcases 2.1.1 d(u) > 3.

Subcases 2.1.1.1 d(w) = 2.

Let G — [v] = GoU(m — 1)K, where Gy is defined as above. Thus
GoeGn—-m-1,L,k—-m+1)andG-veG(n-1,l,k-1).

As before, [V(G —v)|+ |[Vi(G=v)|=(n=1)+(k—1) <!+ q+ 2k.
Also, [V(Go)| + Vi(Go)| = (n—-m-D)+(k—-m+1)=n-2m+k =
(l+g+2k)-2m <1+ q+2k.

From induction hypothesis we deduce that o(G — v) < a(Sf;fIl) and
o(Go) < (S Ln ).

According to Egs. (1) and (2), we need only to prove that

ol(m - DK | Sn 27T < ol(k - 2)Ki | Pis | Pack-ta]-

One can easily see that (m — 1)K;|JSh% ™¥' contains (k —

2)K1\J Pi—1 U Pa—k-1+1 as its proper spanning subgraph (In fact, we can
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use the same operation on S’ *~™f! as that of subcase 1.2 ), therefore the
result follows by Lemma 4.

Subcases 2.1.1.2 d(w) > 3.

Clearly, we have k£ > m +1 in this case. Let G — [v] = Gy J(m — 1)K},
where Gy is defined as above. It is evident that G —~v € G(n — 1,1,k — 1)
and Gp € G(n —m — 1,1,k — m). From Lemma 2, we obtain Egs. (1) and
(2) once again.

What remains is in full analogy with that of subcase 1.2, so we omit
here.

Subcases 2.1.2 d(u) = 2.

Subcases 2.1.2.1 d(w) = 2.

Then G-ve G(n—1,l,k)and G—v—u € G(n—2,1,k).

From Lemma 2, we obtain
o(Sh*) = o(S5 ) + o (S ty) (3)

and
a(G) = o(G —v) + o(G — [v]). 4)

Because [V(G—v)|+ [Vi(G-v)| =(n—-1)+k=1+q+2k-1<l+q+2k
and |V(G —v—u)|+ |Vi(G—v—u)| =(n—2)+ k <!+ g+ 2k, we have
o(G —v) < o(St*,) and (G — [v]) < 0(S%%,) by induction hypothesis.

The theorem holds in this case.

Subcases 2.1.2.2 d(w) > 3.

In this case, G —v € G(n—1,l,k) and G - [v] € G(n — 2,1,k —1).

Once again by induction hypothesis, we have o(G —v) < a(Sf;fl) and
o(G — [v]) < o(Sh5) since [V(G —v)| + |Vi(G = v)| < L+ q+ 2k and
IV(G—-[])|+IVi(G—[v])| < I+g+2k. Combining the above two inequalities
with Egs. (3) and (4), we need only to verify that o(S" %) > a(Sh51).
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According to Lemma 2, we obtain
a(Spk) = a(Sp 251 + ol(k = 2)K1 | Piea | J Prcit-1]

and

o(Sp 5t = o(SLET) + o(SEETY).

Ifn—k—1=2, then S4% = 8! ,. Thus the theorem holds in this
case by Lemma 5.

Suppose n — k — ! > 3. Using the same method as employed in subcase
1.2, we know that (k — 2)K; |J Pi—y | Pa—k-i—-1 is a proper subgraph of
S,l;_k[ !, From Lemma 5, the theorem follows.

Subcases 2.2 dg(v,C;) = 2.

Subcases 2.2.1 d(u) = 2.

Then G —v € G(n—1,l,k) and G - [v] € G(n — 2,1,k — 1). Similar to
the proof of subcase 1.1, we omit here.

Subcases 2.2.2 d(u) > 3.

Let Go be defined as before and [N(u)] = m + 1. Then G —v €
G(n—-1,l,k—1) and Gy € G(n —m — 1,1,k — m). What remains to do is
completely similar to that of subcase 1.2.

By above arguments, the theorem follows as desired. (]

Lemma 7 For2<i< |%], i # 3 and n > 6, we have
o(P1|J Pn-1) > (P3| J Pa-3) > o(P.|  Pa-s). (5)
Proof. Note from Lemmas 1, 2 and 3 that

FiioFnoive — FiiFoivs = (Fi1 + F)Faoig2 — Fipr(Facis2 + Faiga)
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= —(Fit1Fniv1 — FiFp_iy2)
= (Fi+ Fi1)Faoiy2 — Fi(Faciy1 + Foi)
= FFi—-Fo1Fooina

= (1) (FaFn-2i42 = FiFn-2i+3)

= (-)"*Fgin.

So, for any ¢ > 2, we have o(P,|J Pn-1) — o(P;|J Pa=i) = (Fn—3 —
Fo—s) + (Fa—7 — F—9) + (F11 — Fn—13) + - - - > 0. This proves the left-
hand side of Eq.(5).

Similarly, we can show that o(Ps|J Pn-3) > o(P;|J Pn—;) for all i > 2
and ¢ # 3. This completes the proof. O

Before stating another main result of this paper, we introduce the

following two lemmas:

Lemma 8 Suppose that3<i<n-k—-1,l#4and1 <k<n-4.
Then o(S4 ) < o(S4 %),

Proof. We prove that o(S% *) < o(S3 %) for any | > 3 and | # 4 by
induction on k.

When & = 1, it derived from Lemmas 2, 4 and 7 that

o(sh ) —a(shY)

[0(Pn—1) + 0(Pius | J Pa—t)] — [0(Pa-1)
+o(P, U P_4))
= o(As|UP-)] - o(P | Pr-s) <0

foralll >3 and ! #4.
Let ¢ > 2 and assume that the result holds for k& < t. Now, let k = ¢.
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In view of Lemma 2, we have
o(Sx *) = o(Sp 7Y +ol(t = K1 | J Pes | Premina]

and
a(Syt) = o(Sa 1) + of(t — 2)Ki | Ps | Pa-i-sl-

By induction hypothesis, we get a(S,l;_fi'l) < o'(S:’_‘l'l) foralll >3

and ! # 4. Combining Lemmas 1, 3 and 7, we can get the desired result. O

Lemma 9 Let 1 < k < n — 4, then o(S» %) < o(SP—k *), where the
equality is attained only if k=1 or k=n —4.

Proof. When k = n—4, the result is immediate. When k = 1, we obtain
o(S71 1) = g(Py-1) + 0(PL U Pazq) = 0(Sh 1). So we may assume that
2 < k < n —5 herein and we prove that o(S% *¥) < o(S?~* ¥) in what
follows.

As in Lemma 8, we demonstrate the lemma by induction on k. When
k=2,

o(Sp %) = o(Sp2h) + o(Ps| J Pass)
and
o(Sp~* B = o(Sp2 1) + o(Pi| Pa-s)-

Note that o(Sir}) = o(S7=31) and o(P3|JPas) < o(Pi U Pa-3).
Hence, the statement of lemma is true in this case.

Assume that ¢ > 3 and suppose that the lemma is true for the case that

k<t Whenk=t,
o(Sp 1) = o(Sp ) + ol(t - 2)Ka | Ps|J Pa-s-3]
and

o(SEhY = o(STh Y +of(t — DK | Pame-i]
o(Spzp N +olt - K1 | P | Pa-e-1).
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By means of Lemmas 1, 7 and induction assumption, we immediately

complete the proof of this lemma. O
Summarizing Lemmas 8, 9 and Theorem 6, we arrive at:
Theorem 10 Let1 < k <n—3. Then we have:

(a). For k = n — 3, S3* has the mazimum Merrifield-Simmons index
among all graphs in G(n,k); For k = 1,n — 4, SP—kk or S7—4K has the

mazimum Merrifield-Simmons index among all graphs in G(n, k).

(). For 2 < k < n =5, S*%F and S4* have, respectively, the
mazimum and second-mazimum Merrifield-Simmons indez among all
graphs in G(n,k), where G(n,k) is the set of unicyclic graphs with n

vertices and k pendent vertices.

Acknowledgement: The author is grateful to the anonymous ref-
eree for his/her many helpful comments, which improved considerably the
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