On Maximum Merrifield-Simmons Index of Unicyclic Graphs with Prescribed Pendent Vertices

Hongbo Hua *

Department of Computing Science, Huaiyin Institute of Technology, Huaian, Jiangsu 223000, P. R. China

Abstract

The Merrifield-Simmons index $\sigma(G)$ of a (molecular) graph G is defined as the number of independent-vertex sets of G. By G(n,l,k) we denote the set of unicyclic graphs with girth and the number of pendent vertices being l and k respectively. Let S_n^l be the graph obtained by identifying the center of the star S_{n-l+1} with any vertex of C_l . By $S_n^{l,k}$ we denote the graph obtained by identifying one pendent vertex of the path $P_{n-l-k+1}$ with one pendent vertex of S_{l+k}^l . In this paper, we first investigate the Merrifield-Simmons index for all unicyclic graphs in G(n,l,k) and $S_n^{l,k}$ is shown to be the unique unicyclic graph with maximum Merrifield-Simmons index among all unicyclic graphs in G(n,l,k) for fixed l and k. Moreover, we proved that:

- When k=n-3, $S_n^{3,k}$ has the maximum Merrifield-Simmons index among all graphs in G(n,k); When $k=1,n-4,S_n^{4,k}$ or $S_n^{n-k,k}$ has the maximum Merrifield-Simmons index among all graphs in G(n,k).
- When $2 \le k \le n-5$, $S_n^{n-k,k}$ and $S_n^{4,k}$ are resp. unicyclic graphs having maximum and second-maximum Merrifield-Simmons indices among all unicyclic graphs in G(n,k), where G(n,k) denotes the set of unicyclic graphs with n vertices and k pendent vertices.

Key words: Unicyclic graph; Merrifield-Simmons index; Pendent vertex.

^{*}Corresponding author:hongbo.hua@gmail.com

1 Introduction

Let G = (V(G), E(G)) denote a graph whose set of vertices and set of edges are V(G) and E(G), respectively. For any $v \in V(G)$, we denote the neighbors of v as $N_G(v)$.

For any given graph G, its Merrifield-Simmons index, simply denoted as $\sigma(G)$, is defined to be the total number of subsets of the vertex set, in which any two vertices are non-adjacent, i.e., in graph-theoretical terminology, the number of independent-vertex subsets of G, including the empty set. As for the n-vertex path P_n , $\sigma(G)$ is exactly equal to the Fibonacci number F_{n+2} . So some researchers call the Merrifield-Simmons index Fibonacci number. It is significant to determine the graph with extremal Merrifield-Simmons index. The concept of a (molecular) graph is introduced in [2], and discussed later in [3]. The Merrifield-Simmons index for a molecular graph was extensively investigated in [4], where its chemical applications were demonstrated. In [5], X. Li et al gave its other properties and applications. Wang et al [16] gave sharp lower and upper bounds for Merrifield-Simmons index among all unicyclic graphs. More recently, Yu et al [17] determined the unique trees with maximum Merrifield-Simmons index among all trees with k pendent vertices. There have been many literature studying the Merrifield-Simmons index. For further details along this line, see [5-15] and the cited references therein.

In this paper, we investigate the Merrifield-Simmons index for unicyclic graph with given pendent vertices. We first determined the unique unicyclic graph with maximum Merrifield-Simmons index among all unicyclic graphs with prescribed girth l and number of pendent vertices k. Moreover, we de-

termined, for all possible values of k, the unicyclic graphs having maximum Merrifield-Simmons indices among all unicyclic graphs with given number of pendent vertices k.

2 Results

All graphs considered in this paper are connected and simple. By S_n , C_n , and P_n we denote respectively the star, the cycle and the path with n vertices. Let G(n,l,k) denote the set of all unicyclic graphs on n vertices with girth and the number of pendent vertices being resp. l and k. Let S_n^l be the graph obtained by identifying the center of S_{n-l+1} with any vertex of C_l . By $S_n^{l,k}$ we denote the graph obtained by identifying one pendent vertex of the path $P_{n-l-k+1}$ with one pendent vertex of S_{l+k}^l . S_n^l and $S_n^{l,k}$ are graphs shown as in Fig.s 1 and 2, respectively.

Let $V_1(G)$ denote the set of pendent vertices in G and $d_G(x, y)$ denote the length of the shortest path connecting x and y, namely, the distance between x and y. Let $d_G(x, C_l) = min\{d_G(x, y)|y \in V(C_l) \text{ and } x \notin V(C_l)\}$.

Let F_n denote the n^{th} Fibonacci number, we have $F_n + F_{n+1} = F_{n+2}$ with initial conditions $F_1 = F_2 = 1$.

Other notations and terminology not defined here will follow that of [1].

Fig.1. The graph S_n^l

Fig.2. The graph $S_n^{l,k}$

It is necessary to introduce several important lemmas reported in [2,5] which will be helpful to the proofs of our main results.

Lemma 1 Let G be a graph with m components $G_1, G_2, \cdots G_m$. Then $\sigma(G) = \prod_{i=1}^m \sigma(G_i)$.

Lemma 2 Let G be a graph and v any vertex in V(G), then

$$\sigma(G) = \sigma(G-v) + \sigma(G-[v])$$

where $[v] = N_G(v) \bigcup \{v\}$.

Lemma 3 Let T be a tree. Then $F_{n+2} \leq \sigma(T) \leq 2^{n-1} + 1$ and $\sigma(T) = F_{n+2}$ if and only if $T \cong P_n$ and $\sigma(T) = 2^{n-1} + 1$ if and only if $T \cong S_n$.

Lemma 4 Let G and G' be any two graphs. If G' is a proper spanning subgraph of G, then $\sigma(G') > \sigma(G)$.

Proof. Let $xy \in E(G)$, then $\sigma(G - xy) - \sigma(G)$ equals to the number of independent vertex sets containing both x and y. Thus the result follows

immediately.

By G(n, l) we denote the set of unicyclic graphs with n vertices and the length of its unique cycle being l. More recently, H. Wang and H. Hua reported the following result in [16].

Lemma 5 Let $G \in G(n, l)$ with $l \geq 3$, then $\sigma(G) \leq \sigma(S_n^l)$ with equality holding if and only if $G \cong S_n^l$.

The following theorem determined the unique graphs with maximum Merrifield-Simmons index among all graphs in G(n, l, k) for given l and k.

Theorem 6 Let $G \in G(n, l, k)$ with $3 \le l \le n - k$ and $1 \le k \le n - 3$. If $G \ncong S_n^{l, k}$, then $\sigma(G) < \sigma(S_n^{l, k})$. (Referring to Fig.2. for $S_n^{l, k}$)

Proof. For any $G \in G(n, l, k)$, let q(G) denote the subset of V(G) not including all pendent vertices as well as all vertices in $V(C_l)$. For fixed l, we have $|V(G)| + |V_1(G)| = (l + |q(G)| + |V_1(G)|) + |V_1(G)| \ge l + 2|V_1(G)| = l + 2k \ge l + 2$, where $|V(G)|, |V_1(G)|$ and |q(G)| are respectively the number of vertices in $V(G), V_1(G)$ and q(G).

We shall complete the proof by induction on $|V(G)| + |V_1(G)|$. When $|V(G)| + |V_1(G)| = l + 2$, $G \cong S_n^{n-1,1} = S_n^{n-1}$ and the theorem follows immediately due to the fact that $S_n^{n-1,1}$ is the unique element in G(n, n-1, 1).

When |q(G)| = 0, it can be seen that the statement of theorem is true by Lemma 5. When k = 1, G(n, l, 1) contains a single element $S_n^{l,1}$, and the theorem holds clearly.

Let $q = |q(G)| \ge 1$, $k \ge 2$ and suppose the statement of theorem is true for all graphs G with $|V(G)| + |V_1(G)| < l + q + 2k$. Now suppose that G

is a graph in G(n, l, k) with $|V(G)| + |V_1(G)| = l + q + 2k$.

Denote by $V_d(G)$ the subset of $V_1(G)$ with the property that for any $v \in V_d(G)$, $d_G(v, C_l) = max\{d_G(x, C_l) : x \in V_1(G)\}$. Take any vertex $v \in V_d(G)$ and let u be its unique neighbor.

We distinguish between two cases according to the values that n-l-k assumes.

Case 1. n - l - k = 1.

In this case, we claim that $d_G(v, C_l) = 2$.

Suppose, to the contrary, that $d_G(v, C_l) \neq 2$.

If $d_G(v, C_l) = 1$, then G has exactly n - l pendent vertices, that is n - l - k = 0. It is a contradiction to n - l - k = 1. So we are left with the case that $d_G(v, C_l) \geq 3$. But then $n - l - k \geq 2$, which contradicts n - l - k = 1 once again. So the claim follows.

Subcase 1.1 d(u) = 2.

Since $d_G(v, C_l) = 2$ and d(u) = 2, then $G - v \in G(n - 1, l, k)$ and $G - [v] \in G(n - 2, l, k - 1)$.

Let $v' \in V_d(S_n^{l, k})$ and u' its unique neighbor in $S_n^{l, k}$.

From Lemma 2, we have

$$\sigma(G) = \sigma(G - v) + \sigma(G - [v])$$

and

$$\sigma(S_{n}^{l, k}) = \sigma(S_{n}^{l, k} - v') + \sigma(S_{n}^{l, k} - v' - u').$$

Since n-l-k=1, then $S_n^{l,k}-v'\cong S_{n-1}^{n-1-k}\in G(n-1,l,k)$ and $S_n^{l,k}-v'-u'\cong S_{n-2}^{n-1-k}\in G(n-2,l,k-1)$.

In view of Lemma 5, we have $\sigma(G-v) \leq \sigma(S_{n-1}^{n-1-k})$ and $\sigma(G-[v]) \leq \sigma(S_{n-2}^{n-1-k})$ with the equality holding if and only if $G-v \cong S_{n-1}^{n-1-k}$ and $G-v-u \cong S_{n-2}^{n-1-k}$, respectively.

Since $G \ncong S_n^{l, k}$, we have that either $\sigma(G - v) < \sigma(S_{n-1}^{n-1-k})$ or

 $\sigma(G-[v]) < \sigma(S_{n-2}^{n-1-k})$. In either cases, the desired result follows.

Subcase 1.2¹ $d(u) \geq 3$.

In this case, $G-v \in G(n-1, l, k-1)$. Let |N(u)| = m+1. Then there're exactly m pendent vertices in N(u) since $v \in V_d(G)$. Let $w \in N(u)$ such that $d(w) \geq 2$. We consider the following two subcases.

• The case when k = m.

From Lemma 2, we obtain

$$\sigma(G) = \sigma(kK_1 \bigcup C_l) + \sigma(P_{l-1})
= 2^k [\sigma(P_{l-1}) + \sigma(P_{l-3})] + \sigma(P_{l-1})
= (2^k + 1)\sigma(P_{l-1}) + 2^k \sigma(P_{l-3}),$$

$$\sigma(S_n^{l, k}) = \sigma[(k-1)K_1) \bigcup P_2 \bigcup P_{l-1}] + \sigma(K_1 \bigcup P_{l-3})$$
$$= 2^{k-1}\sigma(P_2)\sigma(P_{l-1}) + 2\sigma(P_{l-3}).$$

Bearing in mind that $\sigma(P_{l-1}) = \sigma(P_{l-2}) + \sigma(P_{l-3}) < 3\sigma(P_{l-3})$, by Lemmas 1, 3 and the above two equalities, we obtain $\sigma(G) - \sigma(S_n^{l, k}) = (1 - 2^{k-1})\sigma(P_{l-1}) + 2(2^{k-1} - 1)\sigma(P_{l-3}) < 3(1 - 2^{k-1})\sigma(P_{l-3}) + 2(2^{k-1} - 1)\sigma(P_{l-3}) < 0$ since $k \geq 2$.

• The case when k > m + 1.

Let $G-[v] = G_0 \bigcup (m-1)K_1$, where G_0 denotes the subgraph containing C_l of G-v-u. Thus $G_0 \in G(n-m-1,l,k-m)$.

Note that $|V(G-v)| + |V_1(G-v)| = (n-1) + (k-1) = n+k-2 = l+2k+q-2 < l+q+2k$. Note also that $|V(G_0)| + |V_1(G_0)| = (n-m-1) + (k-m) = n-2m+k-1 = (l+q+2k)-2m-1 < l+q+2k$.

Then by induction assumption, we obtain $\sigma(G-v) \leq S_{n-1}^{l, k-1}$ and $\sigma(G_0) \leq \sigma(S_{n-m-1}^{l, k-m})$.

¹Note that n-k-l=1 in this case. Since the method we employed here will be used later, we did not substitute the value of n-k-l=1 into above formulas.

From Lemma 2, we obtain

$$\sigma(S_n^{l,\ k}) = \sigma(S_{n-1}^{l,\ k-1}) + \sigma[(k-2)K_1 \bigcup P_{l-1} \bigcup P_{n-k-l+1}] \tag{1}$$

and

$$\sigma(G) = \sigma(G - v) + \sigma(G - [v]) = \sigma(G - v) + \sigma[(m - 1)K_1 \mid G_0]. \tag{2}$$

Now, what remains is to prove that $\sigma[(m-1)K_1 \bigcup G_0] < \sigma[(k-2)K_1 \bigcup P_{l-1} \bigcup P_{n-k-l+1}]$. It suffices to show that $\sigma[(m-1)K_1 \bigcup S_{n-m-1}^{l, k-m}] < \sigma[(k-2)K_1 \bigcup P_{l-1} \bigcup P_{n-k-l+1}]$.

Let u_0 denote the maximum degree vertex in $S_{n-m-1}^{l,k-m}$. If we delete all k-m-1 pendent edges incident with u_0 as well as two edges along the cycle incident with it, we obtain $(k-m-1)K_1 \bigcup P_{l-1} \bigcup P_{n-k-l+1}$. So by Lemma 4, the theorem holds as expected in this case.

Case 2. $n - l - k \ge 2$.

There are two subcases we should distinguish between.

Subcases 2.1 $d_G(v, C_l) \geq 3$.

Subcases 2.1.1 $d(u) \geq 3$.

Subcases 2.1.1.1 d(w) = 2.

Let $G - [v] = G_0 \bigcup (m-1)K_1$, where G_0 is defined as above. Thus $G_0 \in G(n-m-1,l,k-m+1)$ and $G - v \in G(n-1,l,k-1)$.

As before, $|V(G-v)| + |V_1(G-v)| = (n-1) + (k-1) < l+q+2k$. Also, $|V(G_0)| + |V_1(G_0)| = (n-m-1) + (k-m+1) = n-2m+k = (l+q+2k) - 2m < l+q+2k$.

From induction hypothesis we deduce that $\sigma(G-v) \leq \sigma(S_{n-1}^{l,k-1})$ and $\sigma(G_0) \leq \sigma(S_{n-m-1}^{l,k-m+1})$.

According to Eqs. (1) and (2), we need only to prove that

$$\sigma[(m-1)K_1 \bigcup S_{n-m-1}^{l, k-m+1}] < \sigma[(k-2)K_1 \bigcup P_{l-1} \bigcup P_{n-k-l+1}].$$

One can easily see that $(m-1)K_1 \bigcup S_{n-m-1}^{l, k-m+1}$ contains $(k-2)K_1 \bigcup P_{l-1} \bigcup P_{n-k-l+1}$ as its proper spanning subgraph (In fact, we can

use the same operation on $S_{n-m-1}^{l, k-m+1}$ as that of subcase 1.2), therefore the result follows by Lemma 4.

Subcases 2.1.1.2 $d(w) \ge 3$.

Clearly, we have $k \geq m+1$ in this case. Let $G - [v] = G_0 \bigcup (m-1)K_1$, where G_0 is defined as above. It is evident that $G - v \in G(n-1,l,k-1)$ and $G_0 \in G(n-m-1,l,k-m)$. From Lemma 2, we obtain Eqs. (1) and (2) once again.

What remains is in full analogy with that of subcase 1.2, so we omit here.

Subcases 2.1.2 d(u) = 2.

Subcases 2.1.2.1 d(w) = 2.

Then $G - v \in G(n - 1, l, k)$ and $G - v - u \in G(n - 2, l, k)$.

From Lemma 2, we obtain

$$\sigma(S_n^{l, k}) = \sigma(S_{n-1}^{l, k}) + \sigma(S_{n-2}^{l, k})$$
(3)

and

$$\sigma(G) = \sigma(G - v) + \sigma(G - [v]). \tag{4}$$

Because $|V(G-v)| + |V_1(G-v)| = (n-1) + k = l + q + 2k - 1 < l + q + 2k$ and $|V(G-v-u)| + |V_1(G-v-u)| = (n-2) + k < l + q + 2k$, we have $\sigma(G-v) \le \sigma(S_{n-1}^{l,k})$ and $\sigma(G-[v]) \le \sigma(S_{n-2}^{l,k})$ by induction hypothesis.

The theorem holds in this case.

Subcases 2.1.2.2 d(w) > 3.

In this case, $G - v \in G(n-1, l, k)$ and $G - [v] \in G(n-2, l, k-1)$.

Once again by induction hypothesis, we have $\sigma(G-v) \leq \sigma(S_{n-1}^{l,k})$ and $\sigma(G-[v]) \leq \sigma(S_{n-2}^{l,k-1})$ since $|V(G-v)| + |V_1(G-v)| < l+q+2k$ and $|V(G-[v])| + |V_1(G-[v])| < l+q+2k$. Combining the above two inequalities with Eqs. (3) and (4), we need only to verify that $\sigma(S_{n-2}^{l,k}) > \sigma(S_{n-2}^{l,k-1})$.

According to Lemma 2, we obtain

$$\sigma(S_{n-2}^{l, k}) = \sigma(S_{n-3}^{l, k-1}) + \sigma[(k-2)K_1 \bigcup P_{l-1} \bigcup P_{n-k-l-1}]$$

and

$$\sigma(S_{n-2}^{l,\ k-1}) = \sigma(S_{n-3}^{l,\ k-1}) + \sigma(S_{n-4}^{l,\ k-1}).$$

If n-k-l=2, then $S_{n-2}^{l, k}\cong S_{n-2}^{l}$. Thus the theorem holds in this case by Lemma 5.

Suppose $n-k-l \geq 3$. Using the same method as employed in subcase 1.2, we know that $(k-2)K_1 \bigcup P_{l-1} \bigcup P_{n-k-l-1}$ is a proper subgraph of $S_{n-4}^{l, k-1}$. From Lemma 5, the theorem follows.

Subcases 2.2 $d_G(v, C_l) = 2$.

Subcases 2.2.1 d(u) = 2.

Then $G - v \in G(n - 1, l, k)$ and $G - [v] \in G(n - 2, l, k - 1)$. Similar to the proof of subcase 1.1, we omit here.

Subcases 2.2.2 $d(u) \geq 3$.

Let G_0 be defined as before and |N(u)| = m + 1. Then $G - v \in G(n-1,l,k-1)$ and $G_0 \in G(n-m-1,l,k-m)$. What remains to do is completely similar to that of subcase 1.2.

By above arguments, the theorem follows as desired. \square

Lemma 7 For $2 \le i \le \lfloor \frac{n}{2} \rfloor$, $i \ne 3$ and $n \ge 6$, we have

$$\sigma(P_1 \bigcup P_{n-1}) > \sigma(P_3 \bigcup P_{n-3}) > \sigma(P_i \bigcup P_{n-i}). \tag{5}$$

Proof. Note from Lemmas 1, 2 and 3 that

$$F_{i+2}F_{n-i+2} - F_{i+1}F_{n-i+3} = (F_{i+1} + F_i)F_{n-i+2} - F_{i+1}(F_{n-i+2} + F_{n-i+1})$$

$$= -(F_{i+1}F_{n-i+1} - F_iF_{n-i+2})$$

$$= (F_i + F_{i-1})F_{n-i+2} - F_i(F_{n-i+1} + F_{n-i})$$

$$= F_iF_{n-i} - F_{i-1}F_{n-i+1}$$

$$= \cdots$$

$$= (-1)^i(F_2F_{n-2i+2} - F_1F_{n-2i+3})$$

$$= (-1)^{i+1}F_{n-2i+1}.$$

So, for any $i \geq 2$, we have $\sigma(P_1 \bigcup P_{n-1}) - \sigma(P_i \bigcup P_{n-i}) = (F_{n-3} - F_{n-5}) + (F_{n-7} - F_{n-9}) + (F_{n-11} - F_{n-13}) + \cdots > 0$. This proves the left-hand side of Eq.(5).

Similarly, we can show that $\sigma(P_3 \cup P_{n-3}) > \sigma(P_i \cup P_{n-i})$ for all $i \geq 2$ and $i \neq 3$. This completes the proof. \square

Before stating another main result of this paper, we introduce the following two lemmas:

Lemma 8 Suppose that $3 \le l \le n-k-1$, $l \ne 4$ and $1 \le k \le n-4$. Then $\sigma(S_n^{l,k}) < \sigma(S_n^{4,k})$.

Proof. We prove that $\sigma(S_n^{l,k}) < \sigma(S_n^{4,k})$ for any $l \geq 3$ and $l \neq 4$ by induction on k.

When k = 1, it derived from Lemmas 2, 4 and 7 that

$$\begin{split} \sigma(S_n^{l,\ 1}) - \sigma(S_n^{4,\ 1}) &= [\sigma(P_{n-1}) + \sigma(P_{l-3} \bigcup P_{n-l})] - [\sigma(P_{n-1}) \\ &+ \sigma(P_1 \bigcup P_{n-4})] \\ &= \sigma(P_{l-3} \bigcup P_{n-l})] - \sigma(P_1 \bigcup P_{n-4}) < 0 \end{split}$$

for all $l \geq 3$ and $l \neq 4$.

Let $t \geq 2$ and assume that the result holds for k < t. Now, let k = t.

In view of Lemma 2, we have

$$\sigma(S_n^{l,\ t}) = \sigma(S_{n-1}^{l,\ t-1}) + \sigma[(t-2)K_1 \bigcup P_{l-1} \bigcup P_{n-t-l+1}]$$

and

$$\sigma(S_n^{4, t}) = \sigma(S_{n-1}^{4, t-1}) + \sigma[(t-2)K_1 \mid P_3 \mid P_{n-t-3}].$$

By induction hypothesis, we get $\sigma(S_{n-1}^{l, t-1}) < \sigma(S_{n-1}^{4, t-1})$ for all $l \geq 3$ and $l \neq 4$. Combining Lemmas 1, 3 and 7, we can get the desired result. \square

Lemma 9 Let $1 \le k \le n-4$, then $\sigma(S_n^{4, k}) \le \sigma(S_n^{n-k, k})$, where the equality is attained only if k = 1 or k = n-4.

Proof. When k = n-4, the result is immediate. When k = 1, we obtain $\sigma(S_n^{n-1, 1}) = \sigma(P_{n-1}) + \sigma(P_1 \bigcup P_{n-4}) = \sigma(S_n^{4, 1})$. So we may assume that $2 \le k \le n-5$ herein and we prove that $\sigma(S_n^{4, k}) < \sigma(S_n^{n-k, k})$ in what follows.

As in Lemma 8, we demonstrate the lemma by induction on k. When k=2,

$$\sigma(S_n^{4,2}) = \sigma(S_{n-1}^{4,1}) + \sigma(P_3 \bigcup P_{n-5})$$

and

$$\sigma(S_n^{n-2,\ 2}) = \sigma(S_{n-1}^{n-2,\ 1}) + \sigma(P_1 \bigcup P_{n-3}).$$

Note that $\sigma(S_{n-1}^{4,1}) = \sigma(S_{n-1}^{n-2,1})$ and $\sigma(P_3 \bigcup P_{n-5}) < \sigma(P_1 \bigcup P_{n-3})$. Hence, the statement of lemma is true in this case.

Assume that $t \geq 3$ and suppose that the lemma is true for the case that k < t. When k = t,

$$\sigma(S_n^{4, t}) = \sigma(S_{n-1}^{4, t-1}) + \sigma[(t-2)K_1 \bigcup P_3 \bigcup P_{n-t-3}]$$

and

$$\sigma(S_n^{n-t, t}) = \sigma(S_{n-1}^{n-t, t-1}) + \sigma[(t-1)K_1 \bigcup P_{n-t-1}]$$

$$= \sigma(S_{n-1}^{n-t, t-1}) + \sigma[(t-2)K_1 \bigcup P_1 \bigcup P_{n-t-1}].$$

By means of Lemmas 1, 7 and induction assumption, we immediately complete the proof of this lemma. \Box

Summarizing Lemmas 8, 9 and Theorem 6, we arrive at:

Theorem 10 Let $1 \le k \le n-3$. Then we have:

- (a). For k = n 3, $S_n^{3,k}$ has the maximum Merrifield-Simmons index among all graphs in G(n,k); For k = 1, n 4, $S_n^{n-k,k}$ or $S_n^{n-4,k}$ has the maximum Merrifield-Simmons index among all graphs in G(n,k).
- (b). For $2 \le k \le n-5$, $S_n^{n-k,k}$ and $S_n^{4,k}$ have, respectively, the maximum and second-maximum Merrifield-Simmons index among all graphs in G(n,k), where G(n,k) is the set of unicyclic graphs with n vertices and k pendent vertices.

Acknowledgement: The author is grateful to the anonymous referee for his/her many helpful comments, which improved considerably the presentation of this paper.

References

- J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland, Amsterdam, 1976.
- [2] H. Prodinger, R. F. Tichy, Fibonacci numbers of graphs, The Fibonacci Quarterly, 20(1)(1982)16-21.
- [3] A. F. Alameddine, Bounds on the Fibonacci number of a maximal outerplanar graph, The Fibonacci Quarterly, 36(3)(1998)206-210.

- [4] R. E. Merrifield and H. E. Simmons, Topological Methods in Chemistry, Wiley, New York, 1989.
- [5] X. Li, Z. Li and L. Wang, The inverse problems for some topological indices in combinatorial chemistry, J.Computational Biology 10(1) (2003)47-55.
- [6] Y. Wang, X. Li and I. Gutman, More examples and couterexamples for a conjecture of Merrifield-Simmons, Publications de L'Institut Math. NS 69(83)(2001)41-50.
- [7] H. Zhao, X. Li, On the Fibonacci numbers of trees, The Fibonacci Quarterly 44(1)(2006)32-38.
- [8] X. Li, H. Zhao and I. Gutman, On the Merrifield-Simmons index of trees, MATCH Commun. Math. Comput. Chem. 54(2)(2005).
- [9] R. E. Merrifield and H. E. Simmons, Enumeration of structuresensitive graphical subsets: Theory, Proc. Natl. Acad. Sci. USA 78(1981)692-695.
- [10] R. E. Merrifield and H. E. Simmons, Enumeration of structuresensitive graphical subsets: Theory, Proc. Natl. Acad. Sci. USA 78(1981)1329-1332.
- [11] V. Linek, Bipartite graphs can have any number of independent sets, Discr. Math. 76(1989)131-136.
- [12] I. Gutman, Fragmentation formulas for the number of Kekulé structures, Hosoya and Merrifield-Simmons indices and related graph invariants, Coll.Sci.Pap.Fac.Sci.Kragujevac (11)(1990)11-18.

- [13] I. Gutman, N. Kolaković, Hosoya index of the second of molecules containing a polyacene fragment, Bull. Acad. Serbe Sci. Arts (CI. Math. Natur.), 102(1990)39-46.
- [14] I. Gutman, Independent vertex sets in some compound graphs, Publ. Inst. Math. (Beograd) 52(1992) 5-9.
- [15] X. Li, On a conjecture of Merrifield and Simmons, Australasian J.Comb.14(1996)15-20.
- [16] H. Wang and H. Hua, Unicycle graphs with extremal Merrifield-Simmons index, J.Math.Chem.(2006)Online-first, DOI: 10.1007/s10910-006-9188-4.
- [17] A. Yu and X. Lv, The Merrifield -Simmons indices and Hosoya indices of trees with k pendent vertices, J. Math. Chem. 41(1)(2007)33-43.