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there is a covariant functor between the category of I'-hyperrings and
the category of fundamental I'/3*-rings.
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| 1 Introduction

The theory of algebraic hyperstructures (or hypersystems) is a well estab-
lished branch of classical algebraic theory. In the literature, the theory of
hyperstructure was first initiated by Marty in 1934 [14] when he defined
the hypergroups and began to investigate their properties with applica-
tions to groups, rational functions and algebraic functions. Some review
of the theory of hyperstructures can be found in (3, 4, 5, 18]. In a recent
monograph of Corsini and Leoreanu [4], the authors have collected numer-
ous applications of algebraic hyperstructures, especially those from the last
fifteen years to the following subjects: geometry, hypergraphs, binary re-
lations, lattices, fuzzy sets and rough sets, automata, cryptography, codes,
median algebras, relation algebras, artificial intelligence and probabilities.
Another monograph is devoted especially to the study of hyperring theory,
written by Davvaz and Leoreanu-Fotea [5]. It begins with some basic re-
sults concerning ring theory and algebraic hyperstructures, which represent
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the most general algebraic context, in which the reality can be modelled.
Several kinds of hyperrings are introduced and analyzed in this book.

The fundamental relation 3* was introduced on hypergroups by Koskas
[11], for the first time and studied by many authors, for example see [3, 7, 8,
9, 20]. The fundamental relation is defined on hypergroups as the smallest
equivalence relation so that the quotient would be a group. Vougiouklis in
[19] defined the fundamental relation 4* on a hyperring R as the smallest
equivalence relation on R such that the quotient R/vy* is a fundamental
ring. Let R be a hyperring. Vougiouklis defined the relation « as follows:
avb if and only if {a,b} C u, where u is a finite sum of finite products of
elements of R (v may be a sum of only one element), and proved that v* is
the transitive closure of . The fundamental equivalence relation extended
to some classes of hyperrings by Anvariyeh, Davvaz, Hedayati, Mirvakili,
Spartalis, Vougiouklis and others, for example see [1, 5, 10, 17, 18].

The notion of I'-rings was introduced by N. Nobosawa in [15] and im-
mediately after him in 1966, Barnes extended this notion and obtained
more results [2]. Almost 10 years later Kyuno in [12, 13] investigated of
new aspects of I-rings such as: prime I-rings and left and right unities of
I-rings.

In this paper, we apply the concept of fundamental relation on I'-
hyperrings and obtain some related results. Specially, we show that there is
a covariant functor between the category of I'-hyperrings and the category
of fundamental I'/3*-rings.

2 Preliminaries

In this section, we gather all definitions and simple properties of I'-rings
and hyperstructures and set the notions.

Deflnition 2.1. ([2, 15]) Let (M, +) and (T',+) be commutative groups.
Then M is said to be a I'-ring, if there exists a mapping - : MxI'xM — M
(the image is denoted by zay for z,y € M and a € I') such that the
following conditions are satisfied for all z,y,2 € M and a,v € I':

(1) (z +y)oz =zaz +yoz, za(y+ z) = zay + zaz;
(2) z(a+ By = zay + zBy;

3) (zay)Bz = za(yBz2);

(4) Omay = zaOpy = O;

where 0y is the zero element of M. In this case, by (M,I') we mean
M is a I'-ring.
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Let M; be a I'y-ring and M, a Ta-ring. Then (f,) : (M1,T1) —
{M,,T2) is called a homomorphism if f : M} — My and ¥ : T} — Ty
are group homomorphisms and f(zvy) = f(z)¥(7)f(y) for all z,y € M
and v € I'. A homomorphism (f, ) : (M1,T1) — (M2,I'2) is called an
isomorphism if f : My — Mj and 9 : 'y — I'y are group isomorphisms.

Let H be a non-empty set. A map + : H x H — P*(H) is called a
hyperoperation or join operation, where P*(H) denotes the set of all non-
empty subsets of H.

Deflnition 2.2. A non-empty set M together with a hyperoperation + is '
called a polygroup if the following conditions are satisfied:

(1) forallz,y,2€ M, (z+y)+2=z+(y+2);

(2) for all £ € M, there exists an unique element e € M such that
e+ z =z =z + e (we denote e by 0);

(3) for all z € M, there exists a unique element ' € M such that e €
z+ 2’ Na’ + z (we denote =’ by —z);

(4) forallz,y,zeM, zez+y=>zc€2—y=>y€z—=x.

A canonical hypergroup is a commutative polygroup. It is easy to see
that every commutative group is a canonical hypergroup.

Let M; and M, be polygroups. Then f : M; — M, is called a homo-
morphism (good homomorphism) if f(zy) € f(z)f(y) (f(zy) = f(z)f(y))
for all z,y € M. A homomorphism (good homomorphism) f: M; — Ms
is called an isomorphism (good isomorphism) if f is one to one and onto.

Let (M, +) be a polygroup. We define the relation 3 as follows:
af3b <= {a,b} C u, Ju € Uy,

where Ups = U is the set of all finite sums of the elements of M. By j*
we mean the transitive closure of 8. It is shown that 8* is an equivalence
relation. We denote the equivalence class of a € M by 8*(e). Thus every
element u € U can be written as

u=Za:, zeM.

finite

Then B* is the smallest equivalence relation on M such that M/B* is a
group (see [3, 18]). The relation B* is called the fundamental relation on
M.

Definition 2.3. A triple (R, +, ) is called a hyperring if
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(1) (R,+) is a canonical hypergroup;

(2) (R,-) is a semigroup having zero as a bilaterally absorbing element,
ie,z:0=0=0-z;

(3) foralla,b,ce R, a-(b+c)=a-b+a-c and (b+c)-a=b-a+c-a.

A hyperring R is said to be with identity element, if there exists an
element 1 € Rsuchthat z-1=2=1-zforall z € R.

Let (R, +,) be a hyperring. We define the relation v as follows:
ayb <> {a,b} Cu, Ju € Up,

where Ur = U is the set of all finite sum of finite products of the elements
of R. By v* we mean the transitive closure of . It is shown that 4* is an
equivalence relation. We denote the equivalence class of a € R by 4*(a).
Thus every element u € U can be written as

u=ZHz,-,, Tiy €R.
JjeJiel;

Hence, every element u € U is a polynomial of elements of R with coeffi-
cients in N (see {5, 18]). Then v* is the smallest equivalence relation on R
such that R/v* is a ring. The relation v* is called the fundamental relation
on R and has important role in the study of hyperstructure theory.

3 Fundamental relation on I'-hyperrings

Definition 3.1. Let (M, +) and (T, +) be canonical hypergroups. Then
M is said to be a I'-hyperring if there exists a mapping - : M xI'x M —
P*(M) such that the following conditions are satisfied for all z,y,z € M
and o,f €T

(1) (z+y)az=zaz+yaz, za(y + 2) = zay + zaz;
(2) z(a+ By = zay + zhy;

(3) (zay)Bz = za(yBz);

(4) Omay = Talp = Op;

where 07 is the zero element of M. In this case, by (M,I') we mean
M is a [-hyperring. Let M be a [-hyperring. We say M has an identity
element if there exists an element 17 such that z € lysvz N2yl for all
r€Mandyer.
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Proof. Let @(c) € &(a)@T(b). Then c € 7(a)+F(b) so there exist a’ € 7(a)
and & € @(b) such that c € ¢’ + V. It is enough we prove &(z) = 7(2')
forall z € a+band 2 € o' + . We know that a’@a if and only if
there exist z1,...,Zm+1 € M with z; = o’ and Zy,4+1 = a and there exist
Uy, ..., Um € U such that {z;, 241} C u; for i =1,2,...,m. Also b'@b if and
only if there exist ¥y, ...,yn+1 € M with y; = V¥ and yn41 = b and there
exist vy,...,vn € U such that {y;,y;41} C v; for j = 1,2,...,n. Therefore,
we obtain

{zo,Tig1} +m1 Cui+vy, i=12,...,m-1
(%)
mm+1+{yjsyj+1}gum+vj) j=1’21~-')n' .
Therefore, u;+v; =t; e fori=1,2,...,m—1 and um+v; = tpmyj—1 €U
forj=1,2,...,n.

Now, choose the elements 23, 2s,...,2m+n such that z; € z; + y; for
i=1,..,mand Zmy; € Tms1 + yj41 for j = 1,...,n. By using (»),
we have {2k, 241} Gtk for k=1,...,m+n — 1. So every element 2; €

z1+1y = o’ +V is equivalent to every element zy4n € Tman+Ymen = a+b
with respect to the & Therefore [o(a) ® (b)) = 1 and we can write
&(a) ® 7(b) = F(c) for all ¢ € 7(a) + T(b).

Now, we prove [6(a) o 8*(7) o T(b)| = 1. Let &(c) € T(a) o B*(7) o &(b).
Then ¢ € &(a)B*(7)F(b). So there exist a' € &(a), v’ € B*(y) and V' € G(b)
such that ¢ € a’4't. It is enough we prove that for all 2 € ayb and
2’ € d'y'V, 7(2) = 7(<').

We have ao'Fa if and only if there exist z1,...,Zms+1 € M with 2, = a'
and Tm41 = a and there exist uy,...,um € U such that {z;,z:41} C u;
for 1 <i < m. Also, /b if and only if there exist ¥,...,Yn41 € M with
y1 =V and yn41 = b and there exist vy,...,v, € U such that {y;,y;+1} €
vj for 1 < j < n. Also 4/B*y if and only if there exist 71,..., 741 € T
with 71 = 4/ and Yx4+1 = 7 and there exist A,,...,Ax € Ur such that
{7, 1+1} € A for 1 <1 < k. Thus, we have

{ {zi,Zer1}{ M1} Cwdyy, 1<i<m-1,1<1I<k
(>)

Tmi1 {1} {¥ir i1} Cumbiv;, 1<5<n, 1<I<k

Now, set uiAiv; =ty e Uforl <i<m-1landl <! <k, and
also UmAv; = t(myj_iy EUfor1 < j<nandl <! <k Sowe
cansayty e Uforl1 < g<m+n—-1landl <1<k Now choose
21y Zmen)t € M such that zy € ziyyy for 1l <i<mand 1< <k,
and also Z(m4j) € Tme1MYj+1 for 1 <j<nand1 << k. Now, by using
(**), we have {zg1, 2(g41)+1)} Ctafor1<g<m+n—-land1<I<k.
Hence for all 213 € z1my; = a"y’b’ and Z(mtn)(k+1) € Tm+1Tk+1Yn41 = ayb
we have 21152(m4n)(k+1). Therefore, [(a) o 8*(7) o T(b)] = 1. (]
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Thus, for every A C u(a), B C u(b) and 6 C B*(y) we can write u(a) &
p(b) = pu(a +b) = u(A + B) and p(a) o 5*(7) o u(b) = p(avb) = u(A0B).
By induction we can extend these relations on finite sums. Then for all
u € U and = € u we have p(z) = u(u). Hence for all m € M, z € o(m)
implies z € p(m). Also u is transitivity closed, so if (z,m) € 7 implies
(z,m) € p. Therefore, @ is the smallest equivalence relation such that
M/7 is a T'/B*-ring. 0

Theorem 3.10. The fundamental relation o* is the transitive closure of
the relation o.

Proof. It is concluded by Lemmas 3.6, 3.7, 3.8 and 3.9. a

Definition 3.11. Let M, be a I';-hyperring and M; a I';-hyperring. Then
(f,9¥) : (M,Th) — (M,,I'3) is called a homomorphism (good homo-
morphism) if f : My — M, and ¢ : '}y — T’y are polygroups homo-
morphism (good homomorphism) and f(zvy) € f(z)¥(7)f(y) (f(zvy) =
f(@)¥(7)f(y)) for all z,y € M and v € . A homomorphism (good homo-
morphism) (f,v) : (M;,T1) — (M2,T2) is called an isomorphism (good
isomorphism) if f : My — My and o : 'y — I's are polygroup isomor-
phisms.

Lemma 3.12. Let M be a I'-hyperring, o* the fundamental relation on
M and B* the fundamental relation on I'. Then (mp,7r) : (M,T) —
(M/o*,T/B*) is a good epimorphism, where mpg : M — M/o* is defined
by mpt(x) = 0*(x), and mp : T — T/B° is defined by nr(y) = B*(7)-

Proof. Clearly my and np are well-defined and onto. We prove that
(mm,7r) is a good homomorphism. It is easy to verify that mp(z + y) =
wm(z) ® mm(y) and wp(a + 7) = 7r(a) & #r(y) for all z,y € M and
a,v7 € I'. We prove mp(zyy) = mp(z) o mr(y) o mar(y). Let z € zyy C
Ta(@)r(1)mae(y). Then may(2) € myr(2) o 7r(7) 0 mpr(y). By Lemma
3.6, we know that |mp(z) o mr(v) o mm(¥)| = 1, hence mp(2) = mp(z) 0
mr(y) ompm(y), consequently 7a(zvy) = mm(z) omr(y)oma(y). Therefore,
(wam,7r) is a good epimorphism from (M,T) to (M/c*,T'/B*). 0

Theorem 3.13. Let M be a I'-hyperring, o* the fundamental relation on
M and 3* the fundamental relation onT.

(i) If there ezist A, A’ C 0*(a) end B,B’ C o*(b) for some a,b € M
suchthatz+ AC B and 2’ + A’ C B', then zo*z'.

(ii) If M has identity element 1p; and xzo*z’, then there exist A, A’ C
o*(a), B,B’' C o*(b), C,C' C 0*(c) and A,A’' C B*(v) for some
a,bce M and v €T such that tAC C B2 z+ A and 2'A'C' C
B' oz +A.
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Proof. (i) Since A C ¢*(a) and B C 0*(b),so for allt € A and s € B we
have o*(a) = o*(t) and o*(b) = o*(s). Hence mp(z) ® mar(a) = wpr(b).
Thus o*(z)®0*(a) = ¢*(b). Then o*(z) = o*(b)®0*(—a) = 0*(z’), which
implies that zo*z’'.

(ii) It is enough we take A = A’ = 0*(0pr), B = B’ = o*(z) = o*(z'),
C =C =o0*(1y) and A = A’ = B*(y) for arbitrary v € T. Now,
let z € zAC C 0*(2)B*(7)0"(1u), then 0*(2) € o*(x) 0 B*(y) 0 0*(1n).
But we know that o*(z) € o*(z) o 8*(7) 0o 0*(1p) (since a*(1ps) is the
identity element of M/c*). In other hand, [o*(z)o 8*(y) oo*(1p)| =1, 50O
o*(z) = o*(z), hence z € ¢*(z) = B, thus zAC C B.

Now, let z € £+ A. Then there exists a € A such that z € z+a. Hence
m:m(z) = my(z) © mp(a). It follows that o*(2) = o*(z) @ o*(0pr), which
implies that *(2) = ¢*(z), i.e z € 0*(z) = B. Therefore, t + A C B.
Similarly, we can prove that z'A’C' C B' Dz’ 4 A’. O

Theorem 3.14. Let M be a I'-hyperring, o* the fundamental relation on
M and 3* the fundamental relation on T,

(i) = € 0*(0m) if and only if there ezists A C o*(a) for somea € M
such that x4+ A C A.

(ii) If M has the identity element 1p, then y € 0*(1py) #f and only if
there exist B C 0*(b) and A C B*(v) for some b€ M andy € I such
that yAB C B.
Proof. (i) Let z € *(0p), a € M and A = o*(a). We have
zex+A = FHeAzezxz+t
= o*"(z)=c*(z)®o*(t) =0*(Opm) ® o*(a) = 0(a)
= z2€0%(a)=A

Thus z + A C A.
Conversely, if there exists A C o*(a) for some a € M such that z+ A4 C

A, then
o*(z)®o*(a) =0"(a) = 0o*(z)=0"(a)Do*(—a)=0c"(0p)
= z€0o*(0um).
(ii) Let y € 0*(1p), b e M,y €T, B =0*(b) and A = 5°(v). Let
z € yAB, we have
0*(2) € 0*(y) 0 8°(7) 0 0°(b) = 0" (1m) 0 B°(7) 0 0*(b) = o (b},
80 z € o*(b) = B, which implies that yAB C B.
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Conversely, suppose that there exist B C ¢*(b) and A C 8*(v) for some
b€ M and v € I such that yAB C B. Then

o*(y) o B*(7) 0 0™ (b) = " (b) = o*(1m) 0 B*(7) 0 *(b).
In other hand ¢*(1,7) is unique and hence o*(y) = o*(1pr), which implies

that y € o*(1a1).

n k
Proposition 3.15. Let M be a T-hyperring. Ifu = Za.-'y.'b,- +Z c; €U,
i=1 i=1
then

o*(u) = [@7,0"(a:) 0 B (%) 0 0* (0:)) ® [BF=107(c5)] = 0*(2)
forall z € u.
Proof. We have

n k
zZEU = Za,-‘y,-b.- +2cj

i=1 i=1
= 0°(2) € [B10"(a:) 0 B° (%) 0 0™ (0a)] @ [@F10°(c;)]
= 0°(2) = [®,0"(as) 0 B* (%) 0 0* (b)) @ [B]=10°(cj)] -

In other hand, clearly
o*(u) = 0°(2) = [®}=,0"(a:) 0 B* (1) 0 0° (b:)) ® [®F-10°(c5)] -
O

In the next theorem, by the help of I'-rings, we construct I'-hyperrings.

Theorem 3.16. Let M be a I'-ring and I a non-empty subset of M. Then
M is a T'-hyperring with the map
oy : MxT'x M — P*(M)

defined by zoyyory =zl'lyy for allz,y e M and y€T.

Proof. It is easy to verify that o; is well-defined. Then for all z,y,z2 € M
and v,7' € T’ we have

zlIy(y + z)

' vy + 2T 1yz
zoryory+zxor7yorz.

zoryor(y+2)
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Similarly we can prove that
(x+y)oryorz=zxoryorz+yosvyoyr 2.
Also we have

alI(v++')y
zl vy + zTIy'y
= zoryory+zory ory.

zor (y+7)ory

Finally, it is easy to prove that Ops oy yorz = 0pr = T o7 v0r 0pr. Therefore
M is a I'-hyperring. O

In the sequel, we prove that there exists a covariant functor between
the category of I'-hyperrings and the category of fundamental I'/3*-rings.
For this we need the following theorem.

Theorem 3.17. Let M, be a I'y-hyperring, My a I'3-hyperring and of, Bt,
o3 and B3 the fundamental relations on My, 'y, M2 and Ty, respectively.
If(f,9): (M1,T1) - (M3,I'3) is a homomorphism, then there is a unique
homomorphism (f*,g%) : (My/03,T1/B1) — (Ma/0%,Ta/B;) such that the
following diagram commutes:

(M 1‘, ) -—-=---- — (le, T2)
(‘”Mx ) 7l’1"1) I I (”Mzs 7"1‘:)
! l
(r%.9°)
(My/o3,T1/B}) ————- — (Ma/03,T2/B3)

Moreover, if (f,g) is an isomorphism, then (f*,g*) is an isomorphism.

Proof. We define f* : My/o; — My/o3 by f*(o1(z)) = o3(f(z)) for all
oi(z) € Mi/o} and g* : T'1/B; — T2/B; by ¢"(B1(7)) = B3(g(7)) for all
Bi(y) eT'y1/B;. Clearly f*omp, = ma0f and g*onp, = 7, 0g. Therefore,
the diagram commutes. We prove (f*, ¢*) is a homomorphism.

Let o}(z) = o{(y), i.e., zo}y. Then there exist ay,---,am+1 € M and
U1, Um € Upgy ry) by = a) and y = @y such that {a;,ai41} C u;
for all 1 € ¢ € m. Now, since f is a homomorphism we have

flw) €Untyryy = {f(ai), F(aiv1)} € Fws) € Upngy,ry)
= f(z)o3f(y)
= 03(f(z)) = 03(f(v))
= [f*(o1(z)) = f*(o1(¥))-
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Therefore, f* is well-defined. Similarly, we can show that g* is well-defined.
Now, we prove

(o1 (z) ®0i(y)) € f*(oi(2)) ® f (01 ()
Let f*(01(2)) € f*(oi(z) @ 01 (y)) for z € o}(z) + o5 (y). We have

Vtez+y,oi(t) =0i(z) = f(t)€f(2)+fv)
= 03(f(t)) € 03(f(2)) ® 93 (f(¥))
= fY(01(t) € f*(oi(2)) ® f*(01(¥))
= [f'(01(2)) € f*(oi(2)) @ f*(o1(¥))-

Similarly, we can prove that
g (B @ Bi(a)) € 5" (B1() @ 9" (Bi().
Now, we prove
£ (i@ 0 BiM 0 01 @) € £*(01(2)) 09" (B1(M) © £* (01))-

Let *(01(2)) € £*(01(2) 0 Bi(y) 0 07(3)) for = € G7(x)B} (1) (v). We
have

vt € zyy,0i(2) =0i(t) = f(t) € f(z)e(M)f(¥)
= 03(f() € 03(f(2)) 0 B3(9(7)) 0 03(f(¥))
= f*(01(2)) € f*(o1(2)) 0 " (Bi(M)) 0 F* (07 (¥))-

Moreover, if (f,g) is an isomorphism, we show that (f*, g*) is an isomor-
phism. It is enough we prove that (f*,g*) is one to one and onto.

Let f*(oi(z)) = f*(o1(y)). Then, 03(f(z)) = 03(f(y)). Hence, there
exist 1, ,tms1 € Maand wy, - -, wm €U, ry) by f(z) =ty and f(y) =
tm41 such that {t;,t;4+1} € w; for all 1 € ¢ < m. Now, since f is onto, so
there exists r; € M) such that f(r;) = ¢; for all 2 < ¢ < m, and hence there
exists u; € Uips,,ry) Such that f(u;) = w;. Thus {f(r:), f(rig1)} € fluws).
Since f is one to one, then {r;, 711} G ui. It concludes that zoty, ie.,
a}(z) = o1 (y). Therefore f* is one to one. Similarly, we can show that g*
is one to one. Also, clearly f* and g* are onto. This proves that (f*, g*) is
an isomorphism. 0

Theorem 3.18. Let T — HR be the category of I'-hyperrings and T/3* — R
be the category of I'/B*-rings. Then there is a covariant functor between
I'-HR endT/B* — R.
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Proof. We define F:T—HR - I'/3*— Rby F(M) = M/o* and F(f,g) =
(f*,g*), where M is a [-hyperring, o* the fundamental relation on M and
(f,9) is & homomorphism between I'-hyperrings. Let (¥,¢) : (M;,T) —
(M2,T) and (f,g) : (M2,T) — (M3,T') be homomorphisms. We have

(f,9)°(¢,‘P) = (f°1/%9°‘P) : (Ml!r) d (M3’r)
We prove (fo9)* = f*o9* and (go p)* = g* o p*. We know that

(fo)* : My/o} — M3/o} and f* op* : My/o} — Ms/o3. By Theorem
3.17, we have

(foy)*(0i(z)) = o3(fod(z)
o3(f(¥(z)))
f*(03(%(=)))
f* oy (0i(z)).

Thus, (f o ¥)* = f* o ¢*. Similarly, we can prove that (g o ¢)* = g* o p*.
Therefore ‘

F((f,9) o (¥, 0)l = F(f,9) o F(¥, ).
Let (Ip, Ir) : (M,T) — (M, T) be the identity homomorphism. We have
F(Im,Ir) = (T34, It) = (Injoe, Irype)

because (I}, It) and (In/o-, Iy g+ ) are identity homomorphisms of (M/a*,T'/8").
Therefore, F' is a covariant funptor. a
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