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Abstract

The generalized Petersen graph P(n, k) is the graph whose vertex
set is U UW, where U = {uo,u1,...,un1}, W = {vo,v1,...,9n21};
and whose edge set is {uiui41, uivi, vivigx|t = 0,1,...,n— 1}, where
n,k are positive integers, addition is modulo n, and 2 < k < |}].
G.Exoo, F.Harary and J.Kabell have determined the crossing number
of P(n,2); Richter and Salazar have determined the crossing number
of the generalized Petersen graph P(n,3). In this paper, the crossing
number of the generalized Petersen graph P(3k, k) (k > 4) is studied,
and it is proved that cr(P(3k,k)) =k (k > 4).

1 Introduction

All graphs considered here are finite undirected graphs without loops or
multiple edges. For definitions not explained here, readers are referred to
(1] and [2].

A graph G = (V,E) is a set V of vertices and a subset E of unordered
pairs of vertices, called edges. The crossing number cr(G) of a graph G is
the minimum number of pairwise intersections of edges in a drawing of G in
the plane. It is well known that the crossing number of a graph is attained
only in good drawings of the graph, which are the drawings where no edge
crosses itself, no adjacent edges cross each other, no two edges intersect
more than once, and no three edges have & common point. Let D be a
good drawing of the graph G, we denote the number of crossings in D by
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er(D). If D is a good drawing of G satisfying er(D) = cr(G), then D is an
optimal drawing of G.

The generalized Petersen graph P(n, k) is the graph whose vertex set is
UuW, where U = {up,u1,...,un-1}, W = {vo,v1,...,n-1}; and whose
edge set is {ujuiy1, uivi, viviqi|i = 0,1,...,n — 1}, where n, k are positive
integers, addition is modulo n, and 2 < k < [%]. It will be useful to
call the subgraph induced by U the principal cycle. The edges {u;v;|i =
0,1,...n — 1} are the spokes of the graph.

The circulant graph C(n; S) is the graph with vertex set V(C(n;S)) =
{vil0 £ i £ n— 1} and edge set E(C(n;S)) = {viv;/0 <i<n—-1,0<
j<n—-1,(G-j)modk € S}, S C {1,2,...[3]}. It is clear that the
circulant graph C(n; {1,k}) can be obtained by contracting the spokes of
the generalized Petersen graph P(n, k). Hence, the problem of determining
the crossing number of C(n;{1,k}) is closely related to the problem of
determining the crossing number of P(n, k).

Calculating the crossing number of a given graph is, in general, an
elusive problem. Garey and Johnson have proved that the problem of
determining the crossing number of an arbitrary graph is NP-complete (3].
The crossing number of very few families of graphs are known exactly.

Yang, Y., and Lin, X., etc. investigated the crossing number of certain
circulant graphs, in [4], they showed that

er(C(n; {1,3))) = 5] +nmod3 (n28)
and in [5], they gave an upper bound of C(mk; {1,k}) and proved that
er(CEk; {LEN) =k  (k23)

Ma, D., Ren, H., and Lu, J. determined that the crossing number of
C(2m+2;{1,m}) is m +1 for m > 3, see [6].

Exoo began to investigate the crossing number of generalized Petersen
graph in (7], he proved cr(P(n,2)) = 0 if n is an even integer no less than
4, cr(P(n,2)) = 3 if n is an odd integer no less than 7 and cr(P(3,2)) =0,
er(P(5,2)) = 2. In [8], Fiorini determined that the crossing number of
P(9,3) is 2, he claimed to have determined that the crossing number of
P(10,3) is 4 and

(1) er(P(3k,3)) = h (h > 4)
@) h+3>er(PBh+1,3)>h+1  (h>3)
(3) cr(P(3h +2,3)) = h+2 (h>2)

In 1992, Mcquillan and Richter found Fiorini’s claim about the crossing
number of P(10, 3) is false, and proved that the crossing number of P(10, 3)
is at least 5, see [9]. In [10], Richter and Salazar found Fiorini’s paper
contained one serious mistake that invalidates the principal results. By
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taking cr(P(10,3)) = 6, cr(P(11,3)) = 5, er(P(12,3)) = 4 as the basis of
induction, they proved that

(1) er(P(3h,3)) = h (h > 4)
(2) er(P(3h +1,3)) =h +3 (h > 3)
(3) er(P(3h +2,3)) = h+2 (h>3)

In this paper, we study the crossing number of the generalized Petersen
graph P(3k, k) when k > 4, and prove
Theorem. cr(P(3k,k)) =k (k > 4).

Our main proof is by induction on k. This paper is organized as follows.
In section 2, we give some lemmas. In section 3, the proof of the induction
basis, er(P(12,4)) = 4, is given. In section 4, the final proof is presented.

2 Some Lemmas

In a drawing D, if an edge is not crossed by any other edge, we say that it
is clean in D; if it is crossed by at least one edge, we say that it is crossed
in D.

From (8], we have Lemma 2.1.

Lemma 2.1. If there ezists o crossed edge e in a drawing D and deleting
it results a new drawing D*, then cr(D) > cr(D*) + 1.

Let A and B be two disjoint subsets of F. In a drawing D, the number
of crossings crossed by an edge in A and another edge in B is denoted by
crp(A, B). The number of crossings crossed by two edges in A is denoted
by crp(A), then er(D) = crp(E). By counting the number of crossings in
D, we have Lemma 2.2.

Lemma 2.2. Let A, B,C be mutually disjoint subsets of E. Then

crp(AU B,C) =crp(A,C) + erp(B,C);
erp(AU B) = cerp(A) + crp(B) + crp(A, B).
First we partite the edge set of P(3k, k) (k > 3) into two disjoint subsets,

X and Y. Then we divide X into k¥ mutually disjoint subsets as follows
(subscripts modulo 3k):

Ei = {0iVigk, Vit k Vit 2k, Vi 2kViy Uiiy UidkVigk, Uit 2kVit2k } (0<i<k-1),

and divide Y into k mutually disjoint subsets (subscripts modulo 3k):
H; = {uitig1, UitkUith+1, Yip2kUitaktr} (0Li<k—1),

then
E(P(3k,k)) = X UY,
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k-1 k-1
x=JE, Y=UH,
=0 i=0

EiﬂEj=@, H.'nHj=0, 0<i#j<k-1

It is clear that a graph obtained by deleting the edges of any E; (0 <
i < k — 1) from P(3k, k) is homeomorphic to P(3(k — 1), (k — 1)).

We define a function fp(H;) (0 £ i < k — 1) counting the number of
crossings related to H; in a drawing D as follows:

fo(H)=crp(H)+ Y.  crp(H;, Hj)/2
0<j<k=-1, j#i

With the above notations, we get
k=1

Lemma 2.3. crp(Y)= ) fp(Hi).
i=0

Lemma 2.4. Let D be a good drawing of P(3k, k) for k > 3. If the edges in
{Eili=0,1,...,k—1} are all clean in D, then Vi, 0< i < k-1, fp(H;) >
1

Proof. We prove this by contradiction. Suppose that the edges in {E;}i =
0,1,...,k — 1} are all clean in D, but there exists ¢ (0 < i < k —1) such
that fp(H;) < 1.

Let C; = v;vitkvit-2k i, C; divides the plane into two regions, int C; and
ext C;. Since the edges in E; are all clean, the edges u;v;, Ui+ kVitk, Uit 2k Vit 2k
must lie in either int C; or ext C;. Without loss of generality, we may as-
sume that they lie in ext C;. Since the edges in E; and E;;, are all clean,
the vertices of F;;; must lie in ezt C;, otherwise C; must be crossed by
Uil 1, Uik Uirk+1 8Nd Uiyoktipak+1, See Figure 1(a).

Vi  Vigk

Ui o Uitk Ui Uitk

i+2k

Uit2k
J3
R - )\ Ui Lsy
Einy i1 T Ve i+k+1
Figure 1 (a Figure 1 (b
gu

Because fp(H;) < 1, the edge ©itiy1, UitkUitk4+1, Yis26Ui42k41 CANNOL
cross each other, or else fp(H;) = crp(H;) = 1. Up to isomorphism, the
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only possible way to label the vertices of E;;; and draw edges u;ui;i,
Uit kUith+1, Uit2kUit2k+1 I8 shown in Figure 1(b), and the ezt C; is divided
into 4 regions: fi, f2, f3 and f;.

It is clear that the vertices of F;, cannot lie in f4, or else the 3-cycle
Vit+1Vitk+1Vit2k+1 Must be crossed. Without loss of generality, we may as-
sume that the vertices of E; 15 lie in f3. Since the edges in E; and E;,; are
all clean, the edge ©;; 2k+1%i+2k+2 and the path v k4 oUipk+3 . - - Uip2k—1Uitak
(which excludes vertices u;, wi41, Uit+k, Yi+k+1) Mmust cross H;, so fp(H;) >
1, contradicts the previous assumption!

By Lemma 2.2, Lemma 2.3 and Lemma 2.4, we have
Lemma 2.5. Let D be a good drawing of P(3k,k) for k > 3. If the edges
in {Es|i =0,1,...,k — 1} are all clean in D, then cr(D) 2> k.

Proof. By Lemma 2.2, Lemma 2.3 and Lemma 2.4,

er(D) = erp(XUY)
2 crp(Y)
k-1
= > fo(Hi)
=0
> k. 0

In the following parts, we will prove the Theorem by induction on k
(k > 4). First of all, the induction basis needs to be proved. So, the
crossing number of P(12,4) is studied in the next section.

3 The Crossing Number of P(12,4)

As we have referred to in the former section, P(9, 3) can be obtained from
P(12,4) by deleting the edges in E; (0 < i < 3), see Figure 2. Some
properties of P(9,3) will be studied in the following paragraphs.
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Figure 2: A good drawing of P(12,4)

Lemma 3.1. For any vertez v of P(9,3), cr(P(9,3) —v) > 1.

Proof. Figure 3(a) is a drawing of P(9,3), for any vertex v of P(9,3),
Figure 3(b) shows that P(9,3) — v contains a subgraph homeomorphic to
K33, s0 cr(P(9,3) — v) 2 er(Ks3) = 1. (]

Figure 3(a): A drawing of P(9,3) Figure 3(b): A subdivision of K33

Corollary 3.2. If D is a good drawing of P(9,3) with cr(D) = 2, then the
4 edges involved forms a matching in P(9,3). ]



Lemma 3.3. If D is a good drawing of P(9,3) with cr(D) = 2, then up
to isomorphism, D must be one of the three possibilities shown in Figure 5
and Figure 7(a).

Proof. First, we can assert that the principal cycle C has at most one
internal crossing in D, otherwise cr(D) > 3 since the edges of E; are all
clean.

Case 1. Suppose that the principal cycle C has no internal crossing. C
divides the plane into two regions, the interior region f; and the exterior
region fa. For i = 0,1, 2, three vertices v;, v;4+3 and v;4+¢ must lie in the same
region of C, otherwise, without loss of generality, we may assume that v; lies
in f; and vi43,vise lie in fo, then the edges v;v;43, v;vi+6 must be crossed,
that contradicts with Corollary 3.2. Three vertices v;, v;+3 and v;+¢ must
lie in the same region in D for the same reason. By the hypothesis of the
lemma, we can also assert that there must exist ¢ (0 < ¢ < 2) such that E;
doesn’t have crossings with C. Without loss of generality, we may assume
Ey doesn’t have crossings with C, and it lies in f;.

Subcase 1.1. Suppose that Ey has internal crossings. Then by Corollary
3.2, Ey only have one internal crossing since the edges of Ey cannot form
a matching, see Figure 4(a) and Figure 4(b).

Subcase 1.1.1. Suppose that the edges of E; are all clean, they must
lie in fq, see Figure 4(a) and Figure 4(b). The drawing divides the plane
into several regions with at most one vertex of uz, us,us on the boundary
of every region. No matter which region do vs, vs, and vg lie in, the edges
of E3 must be crossed at least twice, which contradicts with cr(D) = 2.

Figure 4 (a) Figure 4 (b)

Subcase 1.1.2. Suppose that the edges of E; are crossed once. If the
crossing is made by an edge of E; and an edge not belonging to E», then
the edges of E are all clean, we change the roles of F; and E; and the
remaining arguments are similar to Subcase 1.1.1, so the crossing is made
by an edge of E; and an edge of E. Then, both E; and E; don’t have
internal crossings and don’t cross neither C nor Ey, and E; must lie in fj,
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in Figure 4(a) and Figure 4(b) this is shown, but E; cannot be drawn with
exactly one crossing with E;, a contradiction.

Subcase 1.2. Suppose that Ey does not have internal crossings, it divides
f1 into 4 regions, namely fi1, fi2, fi3 and fi4, see Figure 5(a). By our earlier
remark, for ¢ = 1,2, three vertices v;, vi+3, vit¢ must lie in the same region.
And it is clear that the vertices of ) cannot lie in fi4, or the cycle vouzvgup
must be crossed at least three times by u;v;, for i = 1,4, 7. The same holds
for E2.

Subcase 1.2.1. Suppose that the vertices of Ey lie in one of the inner
regions of C, without loss of generality, we may assume that the vertices
of E; lie in f1;. Then the edges ujv; and u4v4 must be crossed exactly
once respectively, and the vertices of E2 must lie in f2 and the edges of E;
are all clean. By the hypothesis that er(D) = 2, u4v4 can only be crossed
by ugvg and ujyv; can be crossed by either upuvp or ugug. This is shown in
Figure 5 (a) and Figure 5 (b) respectively.

~ ZNN

Figure 5 (a) Figure 5 (b)

Subcase 1.2.2. Suppose that the vertices of F; lie in the outside region
of C y fz.

If the vertices of Es lie in f11, fi2 or fis, the remaining arguments are
similar to Subcase 1.2.1 by changing the roles of E; and E». Then we can
suppose that the vertices of Ej lie in fo.

If the edges of E; and E; have one crossing with C respectively, without
loss of generality, we may assume that u;v; is crossed by C, then it must
cross ugtg, see Figure 6 (a), no matter which region do the vertices vz, vg
and v lie in, E3 cannot be drawn with one crossing with C and satisfying
er(D) = 2. Thus either E; or E; doesn’t have crossings with C, without
loss of generality, we may assume that E; doesn’t cross C.

Subcase 1.2.2.1. Suppose E; has internal crossings. This subcase is
similar to Subcase 1.1 by changing the roles of Ey and Ej.

Subcase 1.2.2.2. Suppose E; doesn’t have internal crossings, see Figure



6 (b). The edges of E; divide the region f, into 4 regions, fa1, f22, fo3 and
f24. En can be drawn in fa1, fo2 or fa3 satisfying cr(D) = 2, this subcase
is isomorphic to Subcase 1.2.1.

7

/\

6 foa

Figure 6 (a) Figure 6 (b)

Case 2. Suppose that the principal cycle C has an internal crossing,
the crossing point is named v. The principal cycle C divides the plane into
three regions, namely, fi, f- and fs. By our earlier remark, for i = 0,1, 2,
three vertices v;, vi+3, vi+.¢ must lie in the same region. Up to isomorphism,
we consider three subcases by the number of vertices on the boundary of

Figure 7(a) Figure 7(b)

Subcase 2.1. Suppose that the boundary of f; has 7 vertices. Without
loss of generality, we may label the vertices ug, u1,...,us as shown in Figure
7(a). By Corollary 3.2, the edges adjacent to ug, ug,u7 and ug except ugug
and uguy are all clean, so for ¢ = 1,2, three vertices v;, vi43, Vi+¢ should lie
in fs. And vp, v3, vs must lie in fi, or the cycle ugvugugvouo will be crossed
at least twice by the two paths u;v;v7u7 and uavevgus, a contraction!

The edge ugvs is clean. If the edge usvs is crossed by C, then it must
cross usu4, and there must be one more crossing on the path ujviviuy,
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contradicts the previous assumption! Analogously, we can get that all the
edges u;v; (i = 1,2,4,5) are not crossed by C. This possibility is as shown
in Figure 7(a).

Subcase 2.2. Suppose that the boundary of f; has 6 vertices. Without
loss of generality, we may label the vertices ug, u1, . . . , us as shown in Figure
7(b). By Corollary 3.2, the edges adjacent to uo, us, ug and ug except ugug
and ugug are all clean, so the vertices v; (¢ # 1,4, 7) should lie in f3.

Furthermore, we can conclude that v;,v4 and v7 should lie in f3 too. It
is clear that they cannot lie in fo, or the cycle ugusugvug will be crossed at
least twice by the edges ujv; and u4v4, a contradiction! If the vertices lie
in f1, then the edge u7v7 has a crossing with C, and it must cross one of the
three edges, ujug, usus or uzus. If uyvy is crossed by ujusa, then the cycle
v vrurugvuou divides the vertices us and ug in two regions, there will
be at least one more crossing on the path usvszvgug, a contradiction! And
we can get that uyvu; cannot cross neither upus nor ugus by the analogous
arguments, which implies that v;,v; and v7 cannot lie in f;.

If the edge uyvy is crossed by C, then it will be crossed at least twice
since vy lies in f3 and the edge uyv7 cannot cross ugug, ugus, urug and ugug,
contradicts the previous assumption! If the edge u,v; is crossed by C, then
it must cross one of the three edges of usus, usug and uqus. If uyv; crosses
ugugz, then the cycle ujvyvrurugvugu; divides the vertices us and ug in
two regions, there will be at least one more crossing in path upvoviaus, a
contraction. And ujv; cannot cross neither ugu4 nor ugqus by the similar
arguments, which implies that u;v; has no crossing with C. Analogously,
u4v4 has no crossing with C neither, this is shown in Figure 7(b). It can be
seen from Figure 7(b) that there will be at least one crossing on the path
ugvavsus and ugvzvgus respectively, contradicts the previous assumption!

Subcase 2.3. Suppose that the boundary of f; has 5 vertices. Without
loss of generality, we may label the vertices ug, ui, . .., us as shown in Figure
7(c). By Corollary 3.2, the edges adjacent to uo, u4, us and ug except uous
and uqug are all clean. Using the analogous arguments in Subcase 2.1 and
Subcase 2.2, we can assert that the vertices v; (¢ = 0,1,...,8) should lie
in fs3, and the edge vsvs cannot have a crossing with C. Thus the cycle
ugvsvgugvug divides the vertices ug and ug, us and u; in different regions,
there will be at least one crossing on the path ugvpveus and ujvivruy
respectively, contradicts the previous assumption!

In all, if D is a drawing of P(9,3) with cr(D) = 2, then up to isomor-
phism, the only three possibilities of D are shown in Figure 5 and Figure
7(a). O
Theorem 3.4. cr(P(12,4)) = 4.

Proof. Figure 2 shows that cr(P(12,4)) < 4. And we get that er(P(12,4)) >
cr(P(9, 3)) = 2 since P(12,4) contains P(9, 3) as a subgraph. Let D be an



optimal drawing of P(12,4).

If er(D) = 2, then it is clear that there exists (0 < ¢ < 3) such that
E; is crossed, or cr(D) > 4 by Lemma 2.5. By deleting the edges of E;,
we can obtain a new drawing D; and the graph corresponding to D; is
homeomorphic to P(9, 3), then

er(Di) <er(D)-1=1

a contradiction!

If er(D) = 3, then there must exist ¢ (0 < 7 < 3) such that E; is crossed.
According to Lemma 2.1, it is easy to see that for each i, 0 < i < 3, E; can
be crossed at most once. Without loss of generality, we may assume that
Ep is crossed exactly once. A new drawing D can be obtained by deleting
the edges of Ey, and the graph corresponding to Dy is homeomorphic to
P(9,3) with er(D3) = 2. Then D; must be one of the three possibilities
shown in Figure 5 and Figure 7(a). In any one of the three possibilities,
it is impossible to insert 3 vertices of Eg N U in the edge segments u;u;41,
Ui+3Uitd, UitsUivr (1 = 0,1,2) of P(9,3) and draw 6 edges of Eg with only
one crossing increased. This impossibility shows that cr(D) # 3.

Since D is an optimal drawing of P(12,4) and the above arguments
show that ¢r(D) # 2 and cr(D) # 3, the crossing number of P(12,4) in D
can only be equal to 4, that is cr(P(12,4)) = 4. [}
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4 The Proof of the Theorem

Uo Vo Vk

Figure 8: A good drawing of P(3k, k)

proof. The drawing in Figure 8 shows that er(P(3k,k)) < k for & > 4. We
prove the reverse inequality by induction on k.

(i) By Theorem 3.4, cr(P(12,4)) = 4, the result is true for k = 4.

(ii) Suppose that for k=1~1 ({ 2 5), er(P(3(1 -1),({-1)))=1-1,
consider P(3!,1). Let D be any good drawing of P(3l,1).

Case 1. Suppose that there is at least one crossing in the edges of {E;|
0<i<!-1}in D. Without loss of generality, we may assume that there
is at least a crossing in Ep. We can get a drawing Dy by deleting Ep in D,
then er(D) > er(Do) + 1 by Lemma 2.1. Since the graph corresponding to
Dy is homeomorphic to P(3(1—1), ({—1)), and er(P(3(I-1), (1—-1))) =11,
we have

er(D) > er(Do) +1 > er(PB(I—1), (1 —1))) +1 = 1.

Case 2. Suppose that the edges in {E;] 0 < ¢ <! — 1} are all clean in
D. Then er(D) > I by Lemma 2.5.

According to Case 1 and Case 2, for any good drawing D of P(3l,1), we
have cr(D) > I, so er(P(3L,1)) > 1.

According to (i) and (ii), we have cr(P(3k,k)) = k for k > 4. So, the
crossing number of P(3k, k) is k for k > 4. O
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