On the Crossing Number of the Generalized Petersen Graph P(3k, k)* Wang Jing, ^a Yuan Zihan^b and Huang Yuanqiu^c ^a Department of Mathematics and Information Sciences, Changsha University, Changsha 410003, P.R.China, email: wangjing1001@hotmail.com - ^b Department of Mathematics, Hunan University of Science and Technology, Xiangtan 411201, P. R.China - ^c College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, P. R. China #### Abstract The generalized Petersen graph P(n,k) is the graph whose vertex set is $U \cup W$, where $U = \{u_0, u_1, \ldots, u_{n-1}\}, W = \{v_0, v_1, \ldots, v_{n-1}\};$ and whose edge set is $\{u_i u_{i+1}, u_i v_i, v_i v_{i+k} | i = 0, 1, \ldots, n-1\}$, where n, k are positive integers, addition is modulo n, and $2 \le k \le \lfloor \frac{n}{2} \rfloor$. G.Exoo, F.Harary and J.Kabell have determined the crossing number of P(n, 2); Richter and Salazar have determined the crossing number of the generalized Petersen graph P(n, 3). In this paper, the crossing number of the generalized Petersen graph P(3k, k) ($k \ge 4$) is studied, and it is proved that cr(P(3k, k)) = k ($k \ge 4$). ### 1 Introduction All graphs considered here are finite undirected graphs without loops or multiple edges. For definitions not explained here, readers are referred to [1] and [2]. A graph G = (V, E) is a set V of vertices and a subset E of unordered pairs of vertices, called edges. The crossing number cr(G) of a graph G is the minimum number of pairwise intersections of edges in a drawing of G in the plane. It is well known that the crossing number of a graph is attained only in good drawings of the graph, which are the drawings where no edge crosses itself, no adjacent edges cross each other, no two edges intersect more than once, and no three edges have a common point. Let D be a good drawing of the graph G, we denote the number of crossings in D by ^{*}Supported by National Science Foundation of China (10771062), New Century Excellent Talents in University (07-0276), Education Department of Hunan Province of China(10C0410), Talent Introduction Research Fund(SF0904,SF0905), Changsha Science and Technology Program(K0902210-11). cr(D). If D is a good drawing of G satisfying cr(D) = cr(G), then D is an optimal drawing of G. The generalized Petersen graph P(n, k) is the graph whose vertex set is $U \cup W$, where $U = \{u_0, u_1, \dots, u_{n-1}\}, W = \{v_0, v_1, \dots, v_{n-1}\}$; and whose edge set is $\{u_iu_{i+1}, u_iv_i, v_iv_{i+k}|i=0,1,\ldots,n-1\}$, where n,k are positive integers, addition is modulo n, and $2 \le k \le \lfloor \frac{n}{2} \rfloor$. It will be useful to call the subgraph induced by U the principal cycle. The edges $\{u_iv_i|i=1\}$ $0,1,\ldots n-1$ are the spokes of the graph. The circulant graph C(n; S) is the graph with vertex set V(C(n; S)) = $\{v_i|0 \le i \le n-1\}$ and edge set $E(C(n;S)) = \{v_iv_i|0 \le i \le n-1, 0 \le i \le n-1\}$ $j \leq n-1, (i-j) \mod k \in S$, $S \subseteq \{1, 2, \dots \lfloor \frac{n}{2} \rfloor \}$. It is clear that the circulant graph $C(n; \{1, k\})$ can be obtained by contracting the spokes of the generalized Petersen graph P(n, k). Hence, the problem of determining the crossing number of $C(n;\{1,k\})$ is closely related to the problem of determining the crossing number of P(n, k). Calculating the crossing number of a given graph is, in general, an elusive problem. Garey and Johnson have proved that the problem of determining the crossing number of an arbitrary graph is NP-complete [3]. The crossing number of very few families of graphs are known exactly. Yang, Y., and Lin, X., etc. investigated the crossing number of certain circulant graphs, in [4], they showed that $$cr(C(n;\{1,3\})) = \lfloor \frac{n}{3} \rfloor + n \operatorname{mod} 3 \quad (n \geq 8)$$ and in [5], they gave an upper bound of $C(mk; \{1, k\})$ and proved that $$cr(C(3k; \{1, k\})) = k \qquad (k \ge 3)$$ Ma, D., Ren, H., and Lu, J. determined that the crossing number of $C(2m+2;\{1,m\})$ is m+1 for $m \geq 3$, see [6]. Exoo began to investigate the crossing number of generalized Petersen graph in [7], he proved cr(P(n,2)) = 0 if n is an even integer no less than 4, cr(P(n,2)) = 3 if n is an odd integer no less than 7 and cr(P(3,2)) = 0, cr(P(5,2)) = 2. In [8], Fiorini determined that the crossing number of P(9,3) is 2, he claimed to have determined that the crossing number of P(10,3) is 4 and - (1) cr(P(3h,3)) = h $(h \ge 4)$ $(h \ge 3)$ - $(2) h+3 \ge cr(P(3h+1,3)) \ge h+1$ - $(h \geq 2)$ (3) cr(P(3h+2,3)) = h+2 In 1992, Mcquillan and Richter found Fiorini's claim about the crossing number of P(10,3) is false, and proved that the crossing number of P(10,3)is at least 5, see [9]. In [10], Richter and Salazar found Fiorini's paper contained one serious mistake that invalidates the principal results. By taking cr(P(10,3)) = 6, cr(P(11,3)) = 5, cr(P(12,3)) = 4 as the basis of induction, they proved that - $(1) cr(P(3h,3)) = h (h \ge 4)$ - (2) cr(P(3h+1,3)) = h+3 $(h \ge 3)$ - (3) cr(P(3h+2,3)) = h+2 $(h \ge 3)$ In this paper, we study the crossing number of the generalized Petersen graph P(3k, k) when $k \geq 4$, and prove Theorem. cr(P(3k, k)) = k $(k \ge 4)$. Our main proof is by induction on k. This paper is organized as follows. In section 2, we give some lemmas. In section 3, the proof of the induction basis, cr(P(12,4)) = 4, is given. In section 4, the final proof is presented. #### 2 Some Lemmas In a drawing D, if an edge is not crossed by any other edge, we say that it is *clean* in D; if it is crossed by at least one edge, we say that it is *crossed* in D. From [8], we have Lemma 2.1. **Lemma 2.1.** If there exists a crossed edge e in a drawing D and deleting it results a new drawing D^* , then $cr(D) \ge cr(D^*) + 1$. Let A and B be two disjoint subsets of E. In a drawing D, the number of crossings crossed by an edge in A and another edge in B is denoted by $cr_D(A, B)$. The number of crossings crossed by two edges in A is denoted by $cr_D(A)$, then $cr(D) = cr_D(E)$. By counting the number of crossings in D, we have Lemma 2.2. **Lemma 2.2.** Let A, B, C be mutually disjoint subsets of E. Then $$cr_D(A \cup B, C) = cr_D(A, C) + cr_D(B, C);$$ $$cr_D(A \cup B) = cr_D(A) + cr_D(B) + cr_D(A, B).$$ First we partite the edge set of P(3k, k) $(k \ge 3)$ into two disjoint subsets, X and Y. Then we divide X into k mutually disjoint subsets as follows (subscripts modulo 3k): $$E_i = \{v_i v_{i+k}, v_{i+k} v_{i+2k}, v_{i+2k} v_i, u_i v_i, u_{i+k} v_{i+k}, u_{i+2k} v_{i+2k}\} \qquad (0 \le i \le k-1),$$ and divide Y into k mutually disjoint subsets (subscripts modulo 3k): $$H_i = \{u_i u_{i+1}, u_{i+k} u_{i+k+1}, u_{i+2k} u_{i+2k+1}\} \qquad (0 \le i \le k-1),$$ then $$E(P(3k,k)) = X \cup Y,$$ $$X = \bigcup_{i=0}^{k-1} E_i, \qquad Y = \bigcup_{i=0}^{k-1} H_i,$$ $$E_i \cap E_j = \emptyset, \qquad H_i \cap H_j = \emptyset, \quad 0 \le i \ne j \le k-1.$$ It is clear that a graph obtained by deleting the edges of any E_i $(0 \le i \le k-1)$ from P(3k,k) is homeomorphic to P(3(k-1),(k-1)). We define a function $f_D(H_i)$ $(0 \le i \le k-1)$ counting the number of crossings related to H_i in a drawing D as follows: $$f_D(H_i) = cr_D(H_i) + \sum_{0 \le j \le k-1, \ j \ne i} cr_D(H_i, H_j)/2.$$ With the above notations, we get Lemma 2.3. $$cr_D(Y) = \sum_{i=0}^{k-1} f_D(H_i)$$. **Lemma 2.4.** Let D be a good drawing of P(3k, k) for $k \geq 3$. If the edges in $\{E_i | i = 0, 1, \ldots, k-1\}$ are all clean in D, then $\forall i, 0 \leq i \leq k-1$, $f_D(H_i) \geq 1$. *Proof.* We prove this by contradiction. Suppose that the edges in $\{E_i|i=0,1,\ldots,k-1\}$ are all clean in D, but there exists i $(0 \le i \le k-1)$ such that $f_D(H_i) < 1$. Let $C_i = v_i v_{i+k} v_{i+2k} v_i$, C_i divides the plane into two regions, $int C_i$ and $ext C_i$. Since the edges in E_i are all clean, the edges $u_i v_i$, $u_{i+k} v_{i+k}$, $u_{i+2k} v_{i+2k}$ must lie in either $int C_i$ or $ext C_i$. Without loss of generality, we may assume that they lie in $ext C_i$. Since the edges in E_i and E_{i+1} are all clean, the vertices of E_{i+1} must lie in $ext C_i$, otherwise C_i must be crossed by $u_i u_{i+1}, u_{i+k} u_{i+k+1}$ and $u_{i+2k} u_{i+2k+1}$, see Figure 1(a). Figure 1 (a) Figure 1 (b) Because $f_D(H_i) < 1$, the edge $u_i u_{i+1}, u_{i+k} u_{i+k+1}, u_{i+2k} u_{i+2k+1}$ cannot cross each other, or else $f_D(H_i) \ge cr_D(H_i) \ge 1$. Up to isomorphism, the only possible way to label the vertices of E_{i+1} and draw edges $u_i u_{i+1}$, $u_{i+k} u_{i+k+1}$, $u_{i+2k} u_{i+2k+1}$ is shown in Figure 1(b), and the ext C_i is divided into 4 regions: f_1, f_2, f_3 and f_4 . It is clear that the vertices of E_{i+2} cannot lie in f_4 , or else the 3-cycle $v_{i+1}v_{i+k+1}v_{i+2k+1}$ must be crossed. Without loss of generality, we may assume that the vertices of E_{i+2} lie in f_3 . Since the edges in E_i and E_{i+1} are all clean, the edge $u_{i+2k+1}u_{i+2k+2}$ and the path $u_{i+k+2}u_{i+k+3}\dots u_{i+2k-1}u_{i+2k}$ (which excludes vertices $u_i, u_{i+1}, u_{i+k}, u_{i+k+1}$) must cross H_i , so $f_D(H_i) \geq 1$, contradicts the previous assumption! By Lemma 2.2, Lemma 2.3 and Lemma 2.4, we have Lemma 2.5. Let D be a good drawing of P(3k,k) for $k \geq 3$. If the edges in $\{E_i|i=0,1,\ldots,k-1\}$ are all clean in D, then $cr(D) \geq k$. Proof. By Lemma 2.2, Lemma 2.3 and Lemma 2.4, $$cr(D) = cr_D(X \cup Y)$$ $$\geq cr_D(Y)$$ $$= \sum_{i=0}^{k-1} f_D(H_i)$$ $$\geq k.$$ In the following parts, we will prove the Theorem by induction on k $(k \ge 4)$. First of all, the induction basis needs to be proved. So, the crossing number of P(12,4) is studied in the next section. ## 3 The Crossing Number of P(12,4) As we have referred to in the former section, P(9,3) can be obtained from P(12,4) by deleting the edges in E_i ($0 \le i \le 3$), see Figure 2. Some properties of P(9,3) will be studied in the following paragraphs. Figure 2: A good drawing of P(12,4) **Lemma 3.1.** For any vertex v of P(9,3), $cr(P(9,3)-v) \ge 1$. Proof. Figure 3(a) is a drawing of P(9,3), for any vertex v of P(9,3), Figure 3(b) shows that P(9,3)-v contains a subgraph homeomorphic to $K_{3,3}$, so $cr(P(9,3)-v) \ge cr(K_{3,3}) = 1$. Figure 3(a): A drawing of P(9,3) Figure 3(b): A subdivision of $K_{3,3}$ **Corollary 3.2.** If D is a good drawing of P(9,3) with cr(D) = 2, then the 4 edges involved forms a matching in P(9,3). **Lemma 3.3.** If D is a good drawing of P(9,3) with cr(D) = 2, then up to isomorphism, D must be one of the three possibilities shown in Figure 5 and Figure 7(a). *Proof.* First, we can assert that the principal cycle C has at most one internal crossing in D, otherwise $cr(D) \geq 3$ since the edges of E_i are all clean. Case 1. Suppose that the principal cycle C has no internal crossing. C divides the plane into two regions, the interior region f_1 and the exterior region f_2 . For i = 0, 1, 2, three vertices v_i, v_{i+3} and v_{i+6} must lie in the same region of C, otherwise, without loss of generality, we may assume that v_i lies in f_1 and v_{i+3}, v_{i+6} lie in f_2 , then the edges $v_i v_{i+3}, v_i v_{i+6}$ must be crossed, that contradicts with Corollary 3.2. Three vertices v_i, v_{i+3} and v_{i+6} must lie in the same region in D for the same reason. By the hypothesis of the lemma, we can also assert that there must exist $i (0 \le i \le 2)$ such that E_i doesn't have crossings with C. Without loss of generality, we may assume E_0 doesn't have crossings with C, and it lies in f_1 . Subcase 1.1. Suppose that E_0 has internal crossings. Then by Corollary 3.2, E_0 only have one internal crossing since the edges of E_0 cannot form a matching, see Figure 4(a) and Figure 4(b). Subcase 1.1.1. Suppose that the edges of E_1 are all clean, they must lie in f_2 , see Figure 4(a) and Figure 4(b). The drawing divides the plane into several regions with at most one vertex of u_2, u_5, u_8 on the boundary of every region. No matter which region do v_2, v_5 , and v_8 lie in, the edges of E_2 must be crossed at least twice, which contradicts with cr(D) = 2. Figure 4 (b) Subcase 1.1.2. Suppose that the edges of E_1 are crossed once. If the crossing is made by an edge of E_1 and an edge not belonging to E_2 , then the edges of E_2 are all clean, we change the roles of E_1 and E_2 and the remaining arguments are similar to Subcase 1.1.1, so the crossing is made by an edge of E_1 and an edge of E_2 . Then, both E_1 and E_2 don't have internal crossings and don't cross neither C nor E_0 , and E_1 must lie in f_2 , in Figure 4(a) and Figure 4(b) this is shown, but E_2 cannot be drawn with exactly one crossing with E_1 , a contradiction. Subcase 1.2. Suppose that E_0 does not have internal crossings, it divides f_1 into 4 regions, namely f_{11} , f_{12} , f_{13} and f_{14} , see Figure 5(a). By our earlier remark, for i=1,2, three vertices v_i , v_{i+3} , v_{i+6} must lie in the same region. And it is clear that the vertices of E_1 cannot lie in f_{14} , or the cycle $v_0v_3v_6v_0$ must be crossed at least three times by u_iv_i , for i=1,4,7. The same holds for E_2 . Subcase 1.2.1. Suppose that the vertices of E_1 lie in one of the inner regions of C, without loss of generality, we may assume that the vertices of E_1 lie in f_{11} . Then the edges u_1v_1 and u_4v_4 must be crossed exactly once respectively, and the vertices of E_2 must lie in f_2 and the edges of E_2 are all clean. By the hypothesis that cr(D) = 2, u_4v_4 can only be crossed by u_6v_6 and u_1v_1 can be crossed by either u_0v_0 or u_8u_0 . This is shown in Figure 5 (a) and Figure 5 (b) respectively. Subcase 1.2.2. Suppose that the vertices of E_1 lie in the outside region of C, f_2 . If the vertices of E_2 lie in f_{11} , f_{12} or f_{13} , the remaining arguments are similar to Subcase 1.2.1 by changing the roles of E_1 and E_2 . Then we can suppose that the vertices of E_2 lie in f_2 . If the edges of E_1 and E_2 have one crossing with C respectively, without loss of generality, we may assume that u_1v_1 is crossed by C, then it must cross u_2u_3 , see Figure 6 (a), no matter which region do the vertices v_2, v_5 and v_8 lie in, E_2 cannot be drawn with one crossing with C and satisfying cr(D) = 2. Thus either E_1 or E_2 doesn't have crossings with C, without loss of generality, we may assume that E_1 doesn't cross C. Subcase 1.2.2.1. Suppose E_1 has internal crossings. This subcase is similar to Subcase 1.1 by changing the roles of E_0 and E_1 . Subcase 1.2.2.2. Suppose E_1 doesn't have internal crossings, see Figure 6 (b). The edges of E_1 divide the region f_2 into 4 regions, f_{21} , f_{22} , f_{23} and f_{24} . E_2 can be drawn in f_{21} , f_{22} or f_{23} satisfying cr(D) = 2, this subcase is isomorphic to Subcase 1.2.1. Case 2. Suppose that the principal cycle C has an internal crossing, the crossing point is named v. The principal cycle C divides the plane into three regions, namely, f_1, f_2 and f_3 . By our earlier remark, for i = 0, 1, 2, three vertices v_i, v_{i+3}, v_{i+6} must lie in the same region. Up to isomorphism, we consider three subcases by the number of vertices on the boundary of f_1 . Subcase 2.1. Suppose that the boundary of f_1 has 7 vertices. Without loss of generality, we may label the vertices u_0, u_1, \ldots, u_8 as shown in Figure 7(a). By Corollary 3.2, the edges adjacent to u_0, u_6, u_7 and u_8 except u_0u_8 and u_6u_7 are all clean, so for i = 1, 2, three vertices v_i, v_{i+3}, v_{i+6} should lie in f_3 . And v_0, v_3, v_6 must lie in f_1 , or the cycle $u_0vu_6v_6v_0u_0$ will be crossed at least twice by the two paths $u_1v_1v_7u_7$ and $u_2v_2v_8u_8$, a contraction! The edge u_8v_8 is clean. If the edge u_5v_5 is crossed by C, then it must cross u_3u_4 , and there must be one more crossing on the path $u_1v_1v_4u_4$, contradicts the previous assumption! Analogously, we can get that all the edges $u_i v_i$ (i = 1, 2, 4, 5) are not crossed by C. This possibility is as shown in Figure 7(a). Subcase 2.2. Suppose that the boundary of f_1 has 6 vertices. Without loss of generality, we may label the vertices u_0, u_1, \ldots, u_8 as shown in Figure 7(b). By Corollary 3.2, the edges adjacent to u_0, u_5, u_6 and u_8 except u_0u_8 and u_5u_6 are all clean, so the vertices v_i ($i \neq 1, 4, 7$) should lie in f_3 . Furthermore, we can conclude that v_1, v_4 and v_7 should lie in f_3 too. It is clear that they cannot lie in f_2 , or the cycle $u_6u_7u_8vu_6$ will be crossed at least twice by the edges u_1v_1 and u_4v_4 , a contradiction! If the vertices lie in f_1 , then the edge u_7v_7 has a crossing with C, and it must cross one of the three edges, u_1u_2 , u_2u_3 or u_3u_4 . If u_7v_7 is crossed by u_1u_2 , then the cycle $u_1v_1v_7u_7u_8vu_0u_1$ divides the vertices u_3 and u_6 in two regions, there will be at least one more crossing on the path $u_3v_3v_6u_6$, a contradiction! And we can get that u_7v_7 cannot cross neither u_2u_3 nor u_3u_4 by the analogous arguments, which implies that v_1, v_4 and v_7 cannot lie in f_1 . If the edge u_7v_7 is crossed by C, then it will be crossed at least twice since v_7 lies in f_3 and the edge u_7v_7 cannot cross u_5u_6 , u_6u_7 , u_7u_8 and u_8u_0 , contradicts the previous assumption! If the edge u_1v_1 is crossed by C, then it must cross one of the three edges of u_2u_3 , u_3u_4 and u_4u_5 . If u_1v_1 crosses u_2u_3 , then the cycle $u_1v_1v_7u_7u_6vu_0u_1$ divides the vertices u_3 and u_0 in two regions, there will be at least one more crossing in path $u_0v_0v_3u_3$, a contraction. And u_1v_1 cannot cross neither u_3u_4 nor u_4u_5 by the similar arguments, which implies that u_1v_1 has no crossing with C. Analogously, u_4v_4 has no crossing with C neither, this is shown in Figure 7(b). It can be seen from Figure 7(b) that there will be at least one crossing on the path $u_2v_2v_5u_5$ and $u_3v_3v_6u_6$ respectively, contradicts the previous assumption! Subcase 2.3. Suppose that the boundary of f_1 has 5 vertices. Without loss of generality, we may label the vertices u_0, u_1, \ldots, u_8 as shown in Figure 7(c). By Corollary 3.2, the edges adjacent to u_0, u_4, u_5 and u_8 except u_0u_8 and u_4u_5 are all clean. Using the analogous arguments in Subcase 2.1 and Subcase 2.2, we can assert that the vertices v_i ($i = 0, 1, \ldots, 8$) should lie in f_3 , and the edge v_5v_8 cannot have a crossing with C. Thus the cycle $u_5v_5v_8u_8vu_5$ divides the vertices u_6 and u_0, u_7 and u_1 in different regions, there will be at least one crossing on the path $u_0v_0v_6u_6$ and $u_1v_1v_7u_7$ respectively, contradicts the previous assumption! In all, if D is a drawing of P(9,3) with cr(D) = 2, then up to isomorphism, the only three possibilities of D are shown in Figure 5 and Figure 7(a). **Theorem 3.4.** cr(P(12,4)) = 4. *Proof.* Figure 2 shows that $cr(P(12,4)) \le 4$. And we get that $cr(P(12,4)) \ge cr(P(9,3)) = 2$ since P(12,4) contains P(9,3) as a subgraph. Let D be an optimal drawing of P(12, 4). If cr(D) = 2, then it is clear that there exists $i (0 \le i \le 3)$ such that E_i is crossed, or $cr(D) \ge 4$ by Lemma 2.5. By deleting the edges of E_i , we can obtain a new drawing D_1 and the graph corresponding to D_1 is homeomorphic to P(9,3), then $$cr(D_1) \leq cr(D) - 1 = 1$$ a contradiction! If cr(D)=3, then there must exist $i\ (0 \le i \le 3)$ such that E_i is crossed. According to Lemma 2.1, it is easy to see that for each $i,\ 0 \le i \le 3$, E_i can be crossed at most once. Without loss of generality, we may assume that E_0 is crossed exactly once. A new drawing D_2 can be obtained by deleting the edges of E_0 , and the graph corresponding to D_2 is homeomorphic to P(9,3) with $cr(D_2)=2$. Then D_2 must be one of the three possibilities shown in Figure 5 and Figure 7(a). In any one of the three possibilities, it is impossible to insert 3 vertices of $E_0 \cap U$ in the edge segments u_iu_{i+1} , $u_{i+3}u_{i+4}$, $u_{i+6}u_{i+7}$ (i=0,1,2) of P(9,3) and draw 6 edges of E_0 with only one crossing increased. This impossibility shows that $cr(D) \neq 3$. Since D is an optimal drawing of P(12,4) and the above arguments show that $cr(D) \neq 2$ and $cr(D) \neq 3$, the crossing number of P(12,4) in D can only be equal to 4, that is cr(P(12,4)) = 4. #### 4 The Proof of the Theorem Figure 8: A good drawing of P(3k, k) proof. The drawing in Figure 8 shows that $cr(P(3k, k)) \le k$ for $k \ge 4$. We prove the reverse inequality by induction on k. - (i) By Theorem 3.4, cr(P(12,4)) = 4, the result is true for k = 4. - (ii) Suppose that for k = l 1 $(l \ge 5)$, cr(P(3(l-1), (l-1))) = l 1, consider P(3l, l). Let D be any good drawing of P(3l, l). Case 1. Suppose that there is at least one crossing in the edges of $\{E_i | 0 \le i \le l-1\}$ in D. Without loss of generality, we may assume that there is at least a crossing in E_0 . We can get a drawing D_0 by deleting E_0 in D, then $cr(D) \ge cr(D_0) + 1$ by Lemma 2.1. Since the graph corresponding to D_0 is homeomorphic to P(3(l-1), (l-1)), and cr(P(3(l-1), (l-1))) = l-1, we have $$cr(D) \ge cr(D_0) + 1 \ge cr(P(3(l-1), (l-1))) + 1 = l.$$ Case 2. Suppose that the edges in $\{E_i | 0 \le i \le l-1\}$ are all clean in D. Then $cr(D) \ge l$ by Lemma 2.5. According to Case 1 and Case 2, for any good drawing D of P(3l, l), we have $cr(D) \ge l$, so $cr(P(3l, l)) \ge l$. According to (i) and (ii), we have $cr(P(3k,k)) \ge k$ for $k \ge 4$. So, the crossing number of P(3k,k) is k for $k \ge 4$. #### References - [1] Jonathan L. Gross, Thomas W. Tucker, Topological Graph Theory, A Wiley-Interscience Publication, John Wiley & Sons, Canada, 1987. - [2] F. Harary, Graph Theory, Addision-Wesley, Reading, MA, 1969. - [3] Garey, M.R., Johnson, D.S, Crossing number is NP-complete, SIAM J.Algebraic Discrete Methods, 4, 1983, 312-316. - [4] Yang, Y., Lin, X., Lu, J., Hao, X., The crossing number of $C(n; \{1,3\})$, Discrete Math., 289, 2004, 107-118. - [5] Lin, X., Yang, Y., Lu, J., Hao, X., The crossing number of $C(mk; \{1, k\})$, Graphs and Combinatorics, 21, 2005, 89-96. - [6] D.Ma, H.Ren, J.Lu, The crossing number of the circular graph C(2m+2,m), Discrete Mathematics, **304**, 2005, 88-93. - [7] G.Exoo, F.Harary, J.Kabell, The crossing number of some generalized Petersen graphs, Math. Scand., 48, 1981, 184-188. - [8] Fiorini, S., On the crossing number of generalized Petersen graphs, Ann.Disrete Math., 30, 1986, 221-242. - [9] D.Mcquillan, R.B.Richter, On the crossing number of certain generalized Petersen graphs, Ann. Discrete Math., 104, 1992, 311-320. - [10] R.B.Richter, G.Salazar, The crossing number of P(N,3), Graphs and Combinatorics, 18, 2002, 381-394.