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Abstract

In this paper, we describe Cayley graphs of rectangular bands
and normal bands which are the strong semilattice of rectangular
bands, respectively. In particular, we give the structure of Cayley
graphs of rectangular bands and normal bands, and we determine
which graphs are Cayley graphs of rectangular bands and normal
bands.

Keywords: Cayley graph; Rectangular band; Normal band; Strong
semilattice of rectangular bands

1 Introduction

The definition of Cayley graph was introduced by Arthur Cayley in 1878
to explain the concept of abstract groups which are described by a set of
generators. Many algebraic and combinatorial properties are extensively
described on Cayley graphs of groups ([1], [2], [3], [5]). Cayley graphs of
semigroups are generalization of Cayley graphs of groups. The concept of
the Cayley graph of a semigroup was introduced by Bohdan Zelinka in [11).
It is natural to expect that the more general concept can be used to define
various types of graphs with new combinatorial properties. Let S be a
semigroup and A be a subset of S, the Cayley graph Cay(S, A) of S relative
to A is defined as the graph with vertex set S and edge set {(z,y) | ¥ =
az for some a € A}. A is said to be the connection set of Cay(S, A). There
are two possible directions one can pursue to study the Cayley graphs of
semigroups. The first is to infer properties of S from Cay(S, A), and the
second is to understand the possible combinatorial properties of the graph
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Cay(S, A) as S ranges over the class of semigroups. All vertex transitive
Cayley graphs produced by periodic semigroups were characterized in [8].
In [7], Kelarev studied Cayley graphs of inverse semigroups. Cayley graphs
of bands were characterized in [4]. Cayley graphs of Clifford semigroups
were investigated in [9].

The aim of this paper is to study Cayley graphs of rectangular bands
and normal bands, respectively. In particular, the structure of the Cayley
graphs of rectangular bands and normal bands is given, and which graphs
are Cayley graphs of rectangular bands and normal bands are determined.

Graphs considered in this paper are directed graphs without multiple
edges but possibly with loops. For a graph D, denote by V(D) and E(D)
its vertex set and edge set, respectively. We regard an edge (z,az) for
z € S,a € A as having color a.

Recall that an element z of a semigroup is an idempotent if zz = z.
A band is a semigroup entirely consisting of idempotents. A band B is
called a left zero (right zero, rectangular) band if it satisfies the identity
zy = z(resp., zy = y,zyx = z) for all z,y € B. A band satisfying
the identity zyzx = zzyz is a normal band. A rectangular band can be
represented as direct product I x A of a left zero band I and a right zero
band A.

A semigroup S is said to be a semilattice of semigroups (Sq,0q),a €Y,
if Y is a semilattice, § = U,eyS, and SoSs C S,p, in notation S =
(Y;Sa). Let S=(Y;S,) and assume that: for any o, 8,y €Y,

(1) if @ > B, there exists a homomorphism ®, s from S, to Sg, and
q’a,a = ]-S.,a

(2) if a > B> v, then &, 3Pg., = Pa,q,

(3) for any a € S,,b € Sg,

ab= ‘ba,aﬁ(a)éﬁ,aﬁ(b)i

where ab stands for the product of @ and b in S. Then we say that S
is a strong semilattice Y of semigroups S, (o € Y), and denote it by
S =85(Y;Sq; Pa,p). It is known that a band is a semilattice of rectangular
bands and a band is a normal band if and only if it is a strong semilattice
of rectangular bands.

For any element a in a rectangular band B, denote by i, and A, the first
and second components of a, respectively, that is a = (i5,2,). Let By, By
be two rectangular bands, and @ be a map from B, to B;. For any a € By,
denote by ®!(a) and ®(a) the first and second components of ®(a) in By,
respectively, that is ®(a) = (!(a), #%(a)).

For the terminology and notation not defined in this paper, the reader
refers to [6] and [10].
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2 Cayley Graphs of Rectangular bands

In this section, we shall explore Cayley graphs of rectangular bands.
For any nonempty subset A of a rectangular band B =1 x A, let

In={iel]| (i,pn) € A for some u € A}.

Lemma 2.1 Let B = I x A be a rectangular band and A a subset of B.
Then (§, pu) — (%, A) is an arc in Cay(B,A) if and only if \ = p andi € I 4.

Proof. If (j,) — (¢, A) is an arc in Cay(B,A), then there exists (k,&) € A
such that (i,A) = (k,€)(4, 1) = (k,u). Soweget A\=pandi=k € I,.
Conversely, if A = p and ¢ € 14, then there exists 7 € A such that (i,1) € A,
and hence (i,7)(j,1) = (¢, 1) = (3,A). Thus (j,u) — (i,A) is an arc in
Cay(B, A).

The next theorem gives a necessary and sufficient condition to coinci-
dence of two Cayley graphs of a rectangular band.

Theorem 2.2 Let B = I x A be a rectangular band and A,, As two subsets
of B. Then Cay(B, A;) = Cay(B, A2) if and only if 14, = I4,.

Proof. Sufficiency. It is clear that Cay(B, A,) and Cay(B, A;) have the
same vertex set. We shall show that E(Cay(B, A;)) = E(Cay(B, A2)).
Let (j,1) — (¢, A) be an arc in Cay(B, A;), then by Lemma 2.1, A = u and
i € I4,. Since Iy, = I4,, we get © € I4,. It follows that (j,u) — (¢, u) is
an arc in Cay(B, Az) by Lemma 2.1. So E(Cay(B, A,)) C E(Cay(B, Az2)).
Similar argument shows that E(Cay(B, Az)) C E(Cay(B, A;)). Therefore
E(Cay(B, A1)) = E(Cay(B, Az)) and Cay(B, A;) = Cay(B, Az).

Necessity. If i € I4,, then for any A € A, we have that (i, A) — (i, ) is
a loop in Cay(B, A;) by Lemma 2.1. Since Cay(B, A;) = Cay(B, Az), we
get that (¢,A) — (¢, ) is also a loop in Cay(B, A2). So by Lemma 2.1 we
have i € I4, and hence I4, C I4,. Dually, we may show that J4, C I4,.
Therefore J4, = 14,.

Given a family of graphs D; = (V;, E;) with ¢ € I, their union is the
graph D = U;c;D; defined by D = (Uie1V;,User E;). For any connected
graph D, let n.D be the union of n disjoint copies of D, which is to say that
nD is the graph with n connected components each of which is isomorphic
to D. Denote by Rm the complete graph with m vertices, that is, a graph
R . with m vertices in which (a,b) € E(E ) for any a,b € V(R ). Hence
each vertex has a loop in ?m. Denote by H, the graph with n isolated
vertices. Denote by Sy, , the graph obtained from the disjoint union Rm
and H, by adding the edges {y — z | z € V(K,,.),y € V(H,)}

Now we are ready to characterize the structure of Cayley graphs of
rectangular bands.
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Theorem 2.3 Let B =1 x A be a rectangular band, A a subset of B and
In={iel|(i,A)€ A for some A€ A}. If|I|=p, |A| =q and |[4] =m,
then Cay(B, A) = ¢Sm p—m.

Conversely, every graph qSp p—m with p,g € Nand 0 < m < p is
isomorphic to the Cayley graph of some rectangular band B = I x A relative
to a connection set A of B with |I| =p, |A| = q and |I4| =m.

Proof. For any A € A, let By = I x{\A}. Then by Lemma 2.1, Cay(B, A) =
UxeaCay(Ba, A). Also by Lemma 2.1, I4 x {\} forms a complete subgraph

of Cay(B), A) which is isomorphic to ?m and there is an arc from (i, \)
to (j,A) for all i € I\ I4 and j € I4. Hence Cay(Bj, A) = Sy p—m and so
Cay(B, A) = qSm p-m.

Conversely, for any graph ¢Sm p-m with p,g € Nand 0 < m < p, let
I={1,2,...,p} be a left zero band, A = {1,2,...,q} a right zero band
and A = {(1,1),(2,1),...,(m,1)}. Then B =1 x A is a rectangular band.
By the proof of the direct part we have Cay(B, A) & ¢Sm p—m.

As a direct consequence of Theorem 2.3, we have
Corollary 2.4 Let B = I x A be a rectangular band and A;, Az two
subsets of B. Then Cay(B, A;) = Cay(B, Az) if and only if |I4,| = |14,]-
Furthermore, the number of isomorphic classes of the Cayley graphs of B
is [I]+ 1.

Example 2.5 Let B = I x A be a rectangular band, where I = {1,2,3}
and A = {a,b}. Some of the Cayley graphs Cay(B,A) of B relative to its
subset A are indicated in the following:

(2,a) (3,a) (2,0) (3,b)

(1,0) (1,b)

Cay(B,{(1,a)})

(8,a) (3,b)

(1,a) (2,0) (1,0) (2,%)

Cay(B,{(1,0),(2,0)})
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(3,0) (3,b)
(1,a) (2,a) (1,0) (2,b)
C'ay(B, {(11 a‘)’ (21 a')v (31 a)})

Figure 1 The isomorphic classes of Cayley graphs of B.

Recall that a Cayley graph Cay(B, A) is called vertex-transitive if for
any two vertices =,y € B, there exists an automorphism ¢ of Cay(B, A)
such that ¢(z) = y. Using Theorem 2.3, we can easily get the following
result which is Proposition 3.4 of [4].

Corollary 2.6 Let B =1 x A be a rectangular band and A a subset of B.
Then Cay(B, A) is vertez-transitive if and only if A =0 or |I4| = |I|.

Proof. Sufficiency. If A = 0, then Cay(B, A) is a graph with |B| isolated
vertices, this implies that Cay(B, A) is vertex-transitive. If [I4] = |I|, then
by Theorem 2.3, we have Cay(B, A) = q?mh this implies that Cay(B, A)
is vertex-transitive.

Necessity. By Theorem 2.3, we have that Cay(B, A) & ¢Sm p-m With
p = |Il, ¢ = |A] and m = |[I4). If Cay(B, A) is vertex-transitive, then
m=0or m=p, that is A=0 or [I4| = |1|.

3 Cayley Graphs of Normal Bands

In this section, we explore Cayley graphs of normal bands. The next theo-
rem gives a result about the Cayley graph of a strong semilattice of semi-

groups.

Theorem 3.1 Let Y be a finite semilattice, S = S(Y;S,; ®a,p) a strong
semilattice of semigroups So (¢ € Y), and A a subset of S. For anyd €Y,
let As = {®as(a) |a€ A,a € Sy,a > 8} Then

(1) the Cayley graph Cay(S, A) contains |Y| disjoint induced subgraphs
Cay(Ss,As) (6 €Y), and

(2) if B# v and b € Sa,c € Sy, then b — ¢ is an arc in Cay(S, A) if
and only if B > v and there exista €Y anda € AN S, such that af = v
and &g (b) — c is an arc in Cay(S,, A,) with color &, (a).

Proof. (1) Let § € Y. Consider the subgraph (S5, Es) of Cay(S, A) induced
by Ss. We shall show that (S5, E5) = Cay(Ss, As). It is clear that (S5, Es)
and Cay(Ss, As) have the same vertex set. We only need to show that
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E((Ss, Es)) = E(Cay(Ss,A5)). Let b — c be an arc in (S5, Es). Since
(Ss, E5) is an induced subgraph of Cay(S, A), b — c s an arc in Cay(S, A),
and hence there exists a € A such that ¢ = ab. Suppose a € S,. Then
¢ =ab= 9, 05(a)Ps5,06(b) = By,as(a)b. Therefore § = ad and b — c is an
arc in Cay(Ss, As) with color ®4 5(a).

If b — cis an arc in Cay(Ss, As). Then there exists d € As such that
¢ = db. So there exist « € Y and a € AN S, such that @ > & and
d = ®,5(a). Hence c = db = ab and b — c is an arc in Cay(S, A). Since
(Ss, E5) is an induced subgraph of Cay(S, A), we have b — c is an arc in
(S5, Es), as required.

(2) Let b € Sg,c € S, with B # v and b — ¢ be an arc in Cay(S, A).
Then there exists a € A such that ¢ = ab. Suppose a € S,. Then c =ab =
®a,05(a)®s,05(b) and v = af. Hence B > v and $3,(b) — cis an arc in
Cay(S,, Ay) with color ®,(a).

Conversely, suppose § > v and and there exist « € Y anda € AN S,
such that a8 = v and $g,(b) — c is an arc in Cay(S,, A,) with color
®,,4(a). Thenc = &, ,(a)Pp (b) = aband so b — cis an arc in Cay(S, A).

If So,a € Y are groups in Theorem 3.1, then we get Theorem 4.1 of [9].
If S,,x € Y are rectangular bands in Theorem 3.1, then we have

Corollary 3.2 Let Y be a finite semilattice, B = S(Y; Bo; ®a,8) a strong
semilattice of rectangular bands B, = I, X A (@ €Y), and A a subset of
B. Foranyd €Y, let As = {®as(a) |a € Aja € By, > 8}. Then

(1) the Cayley graph Cay(B, A) contains |Y| disjoint induced subgraphs
Cay(Bs, As) = qSm,p-m, where p = |Is|, g = |As| and m = |I4,|, and

(2) if B# v and b € Bg,c € B, then b — c is an arc in Cay(B, A) if
and only if B > v and there exist a € Y, a € AN B, such that off =y and
®p5.(b) — c is an arc in Cay(B,, A,) with color ®, ,(a).

Proof. It follows from Theorems 2.3 and 3.1 immediately.

We need the following properties of normal bands.

Lemma 3.3 Let Y be a finite semilattice, B = S(Y; By; ®a,8) a strong
semilattice of rectangular bands B, = I, x Ay (a €Y), and b,c € Bg for
some BEY. If \p = A, then ‘1%,5(5) = @%'s(c) foranydeY withd < B,
and if iy = ic, then ®} ;(b) = ¥} 5(c) for any s € Y with § < B.

Proof. If Ay = Ao, let ®55(b) = (s, 1) and &p,6(c) = (t,v). Then
(5,1) = Bp,s(b) = Pp,5((i, Ao)(ic, Ac))

= Qﬁ,d((ih Ab))@ﬁ,&((ic, )‘c))
= (s, 1)(t,) = (5,0).
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So p = v and 3 ;(b) = 83 ;(c). Similarly, if i, = i., we may show that
‘I’k,s(b) = ‘I’k,a(c)-
Now we give the properties of the Cayley graph of a normal band.

Lemma 3.4 Let Y be a finite semilattice, B = S(Y; Ba; ®a,3) a strong
semilattice of rectangular bands By = Io X Ay (¢ €Y), and A a subset of
B. If b has a loop in Cay(B,A) with b € Bg for some B € Y, then there
eists a € A with a € Ba such that o > B and @}, 5(a) = ip.

Proof. Let b have a loop with b € Bg for some 8 € Y. Then there exists
a € A with a € B, for some a € Y such that b = ab. So o 2 § and
b= ®q,5(a)b = (B 5(a), As). Therefore B 5(a) = is, as required.

Lemma 3.5 Let Y be a finite semilattice, B = S(Y; Ba; ®a,8) @ strong
semilattice of rectangular bands B, = I, X A, (@ €Y), and A a subset of
B. Then '

(1) if b € Bg,c € B, with § > v and b — c is an arc in Cay(B, A)
with color a for some a € A, then for anyd € B, d — cd is an arc in
Cay(B, A), whenever ad and abd are in same rectangular component of B.
In particular, if Y is a finite chain, then d — cd is an arc in Cay(B, A)
for any d € B.

(2) if b,c € Bg for some B€Y, b— c is an arc in Cay(B, A), then for
any d € Bg, d — cd is an arc in Cay(B, A).

Proof. (1) Let b € Bg,c € B, with 8 > v and b — cbe an arc in Cay(B, A)
with color a. Then ¢ = ab. Let a € B, for some a € Y. Then v = of. For
any d € B with d € By for some @ € Y and ad,abd € B;s for some d € Y,
we have cd = abd = ®4,5(a)p,5(b)®s,5(d) = (8L 5(a), B 5(d)) = ad. So
d — cd is an arc in Cay(B, A). In particular, if Y is a finite chain, then
v = af and 8 > v imply that &« = . So ab,a € B, and abd,ad € B,g for
any § € Y and d € Bg. Therefore, d — cd is an arc in Cay(B, A) for any
de B. :

(2) Let b,c € Bg for some B €Y. If b — cis an arc in Cay(B, A), then
there exists a € A such that ¢ = ab. Let a € B, for some a € Y. Then
o 2> f. For any d € Bg, we get cd = abd = ®4,(a)bd = (D}, ;(a), Na) = ad.
So d — cd is an arc in Cay(B, A) for any d € Bg.

For any nonempty subset A of a normal band B, let
Ly ={i €Uaevla| (i,A) € A for some A € UaeyAr}.

Lemma 3.6 Let Y be a finite semilattice, B = S(Y; By; ®4,8) a strong
semilattice of rectangular bands By = Iq X Ay (@ € Y), and Ay, Ax two
subsets of B. If La, = La,, then Cay(B, A;) = Cay(B, Az).
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Proof. It is clear that Cay(B, A,) and Cay(B, A2) have the same ver-
tex set. We shall show that F(Cay(B, A1)) = E(Cay(B, A2)). Let b €
Bg,c € B, with § > v and b — ¢ be an arc in Cay(B,A;). Then
there exists a € A; such that ¢ = ab. Since L4, = Lg,, there is a’ €
B, N As such that i, = i,. So a’b =ab =cand b — cis an arc in
Cay(B, Az). Hence E(Cay(B, A;)) C E(Cay(B, Az)). Similar argument
shows that E(Cay(B, A2)) C E(Cay(B, A1)). Therefore E(Cay(B, A1)) =
E(Cay(B, A;)) and Cay(B, A;) = Cay(B, As).

The next example illustrates that the converse of Lemma 3.6 is not true.

Example 3.7 We consider the strong semilattice of rectangular bands G, (top
left), Gg(top right) and G, (bottom), where G, = {(1,a)}, Gg = {(2,b)},
G, = {(3,c)}. Let Ay = {(2,b),(3,c)} and A2 = {(1,a),(2,b),(3,¢)}.
Then Cay(B, A;) = Cay(B, A2) (see Figure 2). But Ly, # La,.

(21 b) (3: c)
(1,0)

Figure 2 Cay(B, A;) = Cay(B, A3).
If Y is a chain, then the converse of Lemma 3.6 is true.

Lemma 3.8 Let Y be a finite chain, B = S(Y; By; a,8) a strong chain
of rectangular bands B, = Iy x Ay (a €Y), and A;, Az two subsets of B.
Then Cay(B, A1) = Cay(B, Az) if and only if Ly, = L4,.

Proof. Necessity. Let ¢ € Ls,. Then there exists a € A; with a € B,
for some o € Y such that ¢ = i,. Hence d — ad is an arc in Cay(B, A)
for any d € B. Since Cay(B, A;) = Cay(B, A2), d — ad is also an arc in
Cay(B, Az). So there exists a’ € Ay with o’ € B,, for some ¥ € Y such that
ad = a’d. If o is not the greatest element of Y, then there exists 8 € Y
such that 8 > a. Let d € Bg. Then ad = a’d implies that v = a since Y’
is a chain. Hence i, = i,s € L4,. If a is the greatest element of Y, then
a = a? = a’a and s0 i, = iy € L4,. Consequently, La, C Ly,. Similar
argument will show that L, C L4,. Therefore L4, = L4,.
Sufficiency. It follows directly from Lemma 3.6.

To determine a connection set of a Cayley graph, we need the following
result which is true for any Cayley graphs of semigroups.

Lemma 3.9 Let S be a semigroup, A a subset of S, and let A, = {a €
S| (d,ad) € E(Cay(S, A)) for any d € S}. Then Cay(S, A) = Cay(S, A).
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Proof. It is clear that Cay(S, A) and Cay(S, A1) have the same vertex set.
We shall show that E(Cay(S, A)) = E(Cay(S, A1)). Let b — ¢ be an arc
in Cay(S, A). Then there exists a € A such that ¢ = ab. Since (d,ad) €
Cay(S, A) for any d € S, by the definition of A;, we have a € A;. Hence
b — cis also an arc in Cay(S, A;) and so E(Cay(S, A)) € E(Cay(S, Ay)).

On the other hand, let & — ¢ be an arc in Cay(S, A;). Then there
exists a € A; such that ¢ = ab. By the definition of A;, we get that
(d,ad) € Cay(S, A) for any d € S. In particular, take d = b, we have
(b,c) = (b,ab) € Cay(S,A). Therefore E(Cay(S, A;)) € E(Cay(S, A))
and Cay(S, A) = Cay(S, A1).

The next theorem gives some conditions under which a graph, whose
vertex set can be associated with elements of a normal band, is a Cayley
graph of a normal band for some appropriate connection set. Theorem 3.11
dose the same for the Cayley graph of a strong chain of rectangular bands.

Theorem 3.10 LetY be a finite semilattice, B = S(Y; By; ®a,8) 6 strong
semilattice of rectangular bands By = Io X Ay (@ € Y), and let (B, E) be
a graph such that:

(1) the graph (B, E) contains |Y| disjoint induced subgraphs (Bs, Es) =
Cay(Bs,As) (6 € Y), where A; is the set of vertices in Bs which have a
loop, and

(2) if c € By has a loop, then there exist « € Y and a € B, such that
a2, 8! . (a) =i and (d,ad) € E for any d € B, and

(3) if b € Bg,c € B with 8 # v and (b,c) € E, then 8 > v and there
erist a € Y, a € B, such that off = v, ¢ = ab and (d,ad) € E for any
de B.

Let A={a € B | (d,ad) € E for anyd € B}. Then (B, E) = Cay(B, A).

Proof. It is clear that (B, E) and Cay(B, A) have the same vertex set. We
shall show that £ = E(Cay(B, A)). Let b — ¢ be an arc in Cay(B, A).
Then there exists a € A such that ¢ = ab. So by the definition of A, we
have (b,c) = (b, ab) € F, and therefore E(Cay(B, A)) C E.

Let b € Bg,c € B, and (b,c) € E. If § # +, then by (3), 8 > v and
there exist « € Y, a € B, such that o8 = v, ¢ = ab and (d,ad) € E
for any d € B. Therefore a € A and (b,c) = (b,ab) € E(Cay(B, A)). If
B = 7, then by (1) and Lemma 2.1, A, = A, and c¢ has a loop in (B, E).
So by (2), there exist & € Y and a € B, such that o > S, (I>1 sle) =i.
and (d,ad) € E for any d € B. It follows that a € A and ab = ®, g(a)b =
(@} 5(a), As) = (ic, Ac) = c. Hence b — cis an arc in Cay(B, A). Therefore
E C E(Cay(B, A)) and (B, E) = Cay(B, A).

Theorem 3.11 LetY be a finite chain, B = S(Y'; Ba; ®a,g) a strong chain
of rectangular bands B, = Io x Aq (a € Y), and let (B, E) be a graph such
that:
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(1) the graph (B, E) contains |Y| disjoint induced subgraphs (Bs, Es) =
Cay(Bs,As) (6 € Y), where As is the set of vertices in Bs which have a
loop, and

(2) if c € By has a loop, then there exist « € Y and a € B, such that
a>7,8) ,(a) =i and (d,ad) € E for alld € B, and

(3) if b € Bg,c € B, with B # « and (b,c) € E, then 8 > v, A\ =
®2 (b) and (d,cd) € E for any d € B.

Forany @ €Y, let Cy = Ay if 0 is the greatest element of Y and Cy =
{a € Ag | (d,ad) € E for somed € Bs withd > 0} otherwise, and let
A =UgeyCy. Then (B, E) = Cay(B, A).

Proof. It is clear that (B, E) and Cay(B, A) have the same vertex set.
We shall show that E = E(Cay(B, A)). Let b € Bg,c € B, with 8 > v
and b — c be an arc in Cay(B, A). Then there exists a € A such that
c = ab. Let a € B,, then off = v and ¢ = ab = P, (a)Pp(b) =
(®3,4(a), @3, (b)). If a is not the greatest element of Y, then there exist
§ > a and d € Bgs such that (d,ad) € E by the definition of A. Since
ad € B, and @} , (ad) = &}, ,(a) by Lemma 3.3, we have

adb = ®q,4(ad)®p,+(b) = (B ,(ad), 83, (b)) = (B ,(a), B3 (b)) =c.

Since (d, ad) € E, by (3) we have (b,c) = (b,adb) € E. If a is the greatest
element of Y, then a has a loop in (B, E) by the definition of A. By (2)
there exists a’ € B, such that i, = i,/ and (d,a'd) € E for all d € B. Since
&L . (a) = &} ,(a') by Lemma 3.3, we have

a'b = Ba,(a')8p,4(b) = (25 ,(a'), BF (b)) = (B4 (), B3 , (b)) = c.

It follows that (b,c) = (b,a'd) € E. Therefore E(Cay(B, A)) C E.

Let b € Bg,c € B, and (b,c) € E. If 8 # v, by (3), B > v and
Ae = ®%  (b). So ch = c®p4(b) = (i, 8}, (b)) = (ic; Ac) = c and (b, cb) =
(b,c) € E. Hence ¢ € A by the definition of A and b — ¢ is an arc in
Cay(B, A). If § =+, by (1) and Lemma 2.1, A\; = A, and ¢ has a loop in
(B,E). By (2), there exist « € Y and a € B, such that a > v, ®} _(a) =i,
and (d,ad) € F for all d € B. Next we show that a € A. If a is not the
greatest element of Y, then (d,ad) € E for any d € B; with § > a and
s0 a € A by the definition of A. If o is the greatest element of Y, it
is clear that a has a loop in (B,E) and a € A. Since ab = ®,,(a)b =
(®L (@), o) = (ic, Ac) = ¢, we conclude that b — c s an arc in Cay(B, A).
Therefore E C E(Cay(B, A)) and (B, E) = Cay(B, A).
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