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Abstract

A path in an edge-coloring graph G, where adjacent edges may
be colored the same, is called a rainbow path if no two edges of
G are colored the same. A nontrivial connected graph G is rain-
bow connected if for any two vertices of G there is a rainbow path
connecting them. The rainbow connection number of G, denoted
r¢(G), is defined as the minimum number of colors by using which
there is coloring such that G is rainbow connected. In this paper, we
study the rainbow connection numbers of line graphs of triangle-free
graphs, and particularly, of 2-connected triangle-free graphs accord-
ing to their ear decompositions.
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1 Introduction

All graphs in this paper are simple, finite and undirected. Let G be a
nontrivial connected graph with an edge coloring ¢ : E(G) — {1,2,--- ,n},
k € N, where adjacent edges may be colored the same. A path (trail) of
G is called rainbow if no two edges of it are colored the same. An edge
colored graph G is rainbow connected if for any two vertices there is a
rainbow path connecting them. Clearly, if a graph is rainbow connected,
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it must be connected. Conversely, any connected graph has a trivial edge
coloring that makes it rainbow connected, i.e., the coloring such that each
edge has a distinct color. Thus, we define the rainbow connection number
of a connected graph G, denoted r¢(G), as the smallest number of colors
for which there is an edge coloring of G such that G is rainbow connected.
An easy observation is that if G has n vertices then r¢(G) < n — 1, since
one may color the edges of a spanning tree with distinct colors, and color
the remaining edges with one of the colors already used. Generally, if
G, is a connected spanning subgraph of G, then r¢(G) < rc(Gy). We
note the trivial fact that 7¢(G) = 1 if and only if G is complete, the fact
that r¢(G) = n — 1 if and only if G is a tree, and the easy observation
that a cycle with k > 3 vertices has rainbow connection number [%7 ([3}).
As a Hamiltonian graph G has a Hamiltonian cycle which contains all n
vertices, then G has rainbow connection number at most [%]. Also notice
that, clearly, rc¢(G) > diam(G) where diam(G) denotes the diameter of G.

Chartrand et al. in [3] determined that the rainbow connection numbers
of some graphs including trees, cycles, wheels, complete bipartite graphs
and complete multipartite graphs. Y. Caro et al. [4] observed that rc(G)
can be bounded by a function of §(G), the minimum degree of G. They
proved that if 6(G) > 3 then r¢(G) < an where a < 1 is a constant and n =
|[V(G)|. They conjectured that a = 3/4 suffices and proved that a < 5/6.
Specifically, it was proved in [4] that if § = 6(G) then r¢(G) < min{'—"sén(l-l-
05(1)), n418f43}, Their next two results give nontrivial sufficient conditions
for r¢(G) = 2, that is, any non-complete graph with §(G) > n/2+logn has
re(G) = 2 and p = y/logn/n is a sharp threshold function for the property
re(G(n,p)) < 2. Chakraborty et al. in [2] proved that for every € > 0
there is a constant C = C(¢) such that if G is a connected graph with n
vertices and minimum degree at least en, then r¢(G) < C, and there is
a polynomial time algorithm that constructs a corresponding coloring for
a fixed €. In that paper the authors mainly addressed the computational
aspects of rainbow connection numbers. They solved, and extended, the
complexity conjectures from [4]. It turns out that deciding whether r¢(G) =
2 is an N'P-Complete problem. Krivelevich et al. in [6] also determined
the behavior of r¢(G) as a function of §(G): a connected graph G with n
vertices has r¢(G) < 20n/6(G).

We use V(G), E(G) for the set of vertices and edges of G, respectively.
For any subset X of V(G), let G[X] be the subgraph induced by X, and
E[X] be the edge set of G[X]; similarly, for any subset E, of E(G), let
G[E;] be the subgraph induced by E;. For any two disjoint subsets X, ¥’
of V(G), we use G[X, Y] to denote the bipartite subgraph with vertex set
X UY and edge set E[X,Y] = {uv € E(G)|lu € X,v € Y}. We define a
clique in a graph G to be a complete subgraph of G, and a mazimal clique
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is a clique that is not contained in a larger clique. The clique graph K(G)
of G is the intersection graph of the maximal cliques of G-that is, the
vertices of K(G) correspond to the maximal cliques of G, and two of these
vertices are joined by an edge if and only if the corresponding maximal
cliques intersect. A graph containing no triangle is a triangle- free graph.
Let [n] = {1,:--,n} denote the set of the first » natural numbers. For
a set 9, |S| denotes the cardinality of S. We follow the notations and
terminology of [1] for those not defined here.

2 Results on line graphs of triangle-free
graphs

2.1 Some basic observations

By deleting some edges of a rainbow trail connecting two vertices, we
can obtain a rainbow path between these two vertices, that is the following
simple remark:

Remark 2.1 If there is a rainbow trail connecting vertices u and v in an
edge colored graph G, then there is a rainbow path connecting them. |

Using the above Remark, we have the following simple observation
which will be used in the sequel.

Observation 2.2 If G is a connected graph and {E;}ic|y is a partition of
the edge set of G into connected subgraphs G; = G[E;] and rc¢(G;) = ¢,
then

t
re(G) < Zq
i=1

We just give ¢; fresh colors to subgraph G; for each ¢ such that it is
rainbow connected, and find a rainbow u — v trail satisfying that each
section belongs to distinct G;s for any two vertices u,v € G.

Let G be a connected graph, and X a proper subset of V(G). To shrink
X is to delete all edges between vertices of X and then identify the vertices
of X into a single vertex, namely w. We denote the resulting graph by
G/X.
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Observation 2.3 Let G’ and G be two connected graphs, where G’ is ob-
tained from G by shrinking a proper subset X of V(G), that is, G' = G/X,
such that any two vertices of X have no common adjacent vertez in V\ X,

then
re(G') < re(G).

2.2 The line graph of a general graph

The line graph of a graph G is the graph L(G) whose vertex set
V(L(G)) = E(G) and two vertices e, ez of L(G) are adjacent if and only
if they are adjacent in G. The star, S(v), at a vertex v of graph G, is the
set of all edges incident to v. A clique decomposition of G is a collection
¥ of cliques such that each edge of G occurs in exactly one clique in ¥.
The clique decomposition number c¢p(G) of G is the minimum size of all
clique decompositions of G. A minimum clique decomposition is a clique
decomposition % with |%p| = cp(G).

We now introduce new terminology: For a connected graph G, we call
G a clique-cycle-structure, if it satisfies the following three conditions:

Ci. G has at least three maximal cliques;

C,. Each edge belongs to exactly one maximal clique;

C3. The clique graph K(G) is a cycle.

By condition Cs, we know that any two maximal cliques of G have at
most one common vertex. Furthermore, G is formed by its maximal cliques.
An example is shown in Figure 2.1. The size of the clique-cycle-structure
is the number of its maximal cliques. We call a clique-cycle-structure odd
if its size is odd, otherwise, it is an even clique-cycle-structure. A clique-
cycle-structure of size 5 is shown in Figure 2.1. Note that a triangle is
not a clique-cycle-structure, but a cycle with length [ > 4 is a clique-cycle-
structure of size I.

Similarly, we call a connected graph G a clique-path-structure if
P;. Each block is a maximal clique;
P>. The clique graph K(G) is a path.

By condition P;, we know that any two maximal cliques of G have at
most one common vertex. Similarly, the size of a clique-path-structure is
the number of its maximal cliques. Clearly, the diameter of a clique-path-
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Figure 2.1 A clique-cycle-structure of size 5 and a clique-path-structure of
size 3.

structure is equal to its size. A clique-path-structure of size 3 is shown in
Figure 2.1.

An inner vertez of a graph is a vertex with degree at least two. For
a graph G, we use V; to denote the set of all inner vertices of G. Let
ny = |[{v: dege(v) = 1}|, nz = |V2|. (S(v)) is the subgraph of L(G) induced
by S(v). Clearly, it is a clique of L(G). Let Jf5 = {(S(v)) : v € V(G)},
X = {{S(v)) : v € Va}. It is easy to show that J% is a clique decomposition
of L(G) ([7]) and each vertex of the line graph belongs to at most two
elements of ¥p. We know each element (S(v)) of ¥ \ ¢, a single vertex
of L(G), is contained in the clique induced by u that is adjacent to v
in G. ¢p(L(G)) = nz([7]) when G(# K3). So J¢ is a minimum clique
decomposition of L(G) for any G # K3. We give each element of ¢ a
fresh color, and as the diameter of a clique-path-structure is just its size.
We have the following theorem:

Theorem 2.4 If G is a connected graph with ny inner vertices, then
re(L(G)) € na.

In particularly, if the induced subgraph G|Va] of G is a path, then the equal-

ity holds. [ ]

2.3 The line graph of a triangle-free graph

Next, we will consider the rainbow connection number of the line graph
of a triangle-free graph. We need to know the rainbow connection number
of clique-cycle-structures:
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Lemma 2.5 Let G be a clique-cycle-structure of size I, then

i 1 .
3 s+1 liseven
G) = 30T 3
re(C) {Hz-l lis old

Proof. As the conclusion clearly holds for each cycle of length at least 4,
we only need to consider the case that G is not a cycle, that is, at least one
maximal clique of G has order at least 3.

Case 1. ! = 2t where ¢ > 2 is a positive integer.

Let the set of all maximal cliques be ¥ = {C1,Ca, - ,Ca}. v; is the
common vertex between C; and C;+; (1 £ i < 2t) where the subscripts are
taken modulo 2¢. As shown in Figure 2.2, we give a (¢ + 1)-edge-coloring
of G as follows: For 1 < i < t, we assign the edges of C; which are incident
to v; with color z; for t + 1 < 7 < 2t, we assign the edges of that C; which
are incident to v; with color ¢ — ¢t. For other edges, we just give them color
t+ 1. It is easy to show G is rainbow connected. As we used ¢ + 1 colors
in total, r¢(G) < -% + 1. On the other hand, the diameter of G is at least

-é-,sorc(G)-—-% or %-{-1.

Figure 2.2 Rainbow edge-coloring of two cases of Lemma 2.5.

Case 2. | =2t + 1 where ¢ is a positive integer.

Let the set of all maximal cliques be € = {C1,Ca,- - ,Cat+1}. v; is the
common vertex between C; and Ciy; (1 £ <t). As shown in Figure 2.2,
for 1 < i < t, we give color ¢ to the edges of C; which are incident to v; and
give color ¢ + 1 to the remaining edges of these cliques; we give all edges of
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Ci41 with color t + 1; for t +2 < ¢ < 2t + 1, we give all edges of clique C;
with the same color 7 — (¢ + 1). It is easy to show that with above coloring,
G is rainbow connected. As we used ¢+ 1 colors in total, r¢(G) < ’—'2"—1 On

the other hand, the diameter of G is %‘—1, so re(G) = 52’—1 |

Now we only consider triangle-free graphs. There are some useful con-
clusions for a triangle-free graph and its line graph:

Theorem 2.6 [5] A graph L(G) is the line graph of a graph G without
triangles if and only if |C; N Cj| < 1 holds for any two mazimal cligues of
L(G) and K(L(G)) has no triangles, where C;,C; are two mazimal cliques
of L(G). 1

Theorem 2.7 [5] For the line graph L(G) of a connected triangle-free
graph G, the set of all its mazimal cliques are € = J¢ = {(S(w)) : v; € Va},
where (S(v;)) is a mazimal cliqgue and it corresponds to ezactly one vertex
v; for any two mazimal cliques (S(v;)) and (S(v;)), they have at most one
common vertez and they are adjacent (have a common vertez) if and only
if v; and v; are adjacent in G. |

We now introduce some new terminology: A set of maximal cliques
of G is called its clique-set, denoted by CS. The size of a clique-set is
the number of its elements. If the size of a clique-set is 1, it is a trivial
clique-set; if the elements (maximal cliques) of some clique-set induce a
clique-cycle-structure of size at least 4 in G, that is, the subgraph induced
by those vertices contained in the elements of this clique-set is a clique-
cycle-structure, it is called a cyclic clique-set.

A clique-cycle-structure decomposition of a connected graph G, de-
noted CCSP, is an edge decomposition of G by a family of clique-sets,
and each clique-set is either trivial or a cyclic one of size at least 4. For-
mally, let CCSP={CS;, ---, CS), -+ ,CS;} be a clique-cycle-structure de-
composition of some graph G, where the former ! elements are the cyclic
clique-sets of G, and the remaining t — ! elements are trivial clique-sets.
For any triangle-free graph G, if it contains no cycle, then it is a tree, and
its line graph has no clique-cycle-structure (otherwise, there is a cycle in
G by Theorem 2.7, a contradiction) and each element of its clique-cycle-
structure partition is trivial. If G contains at least one cycle, we choose
a minimal cycle (which has no chord), namely C : v;,v3,-+ ,v,v1. Then
by Theorem 2.7, in the line graph L(G), vertices contained in all maximal
cliques < S(v;) >(1 < ¢ < t) induce a clique-cycle-structure, and so its
line graph has at least one clique-cycle-structure decomposition containing
at least one cyclic clique-set. Let s = ¢t — I. Then we have the following
conclusion:
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Theorem 2.8 If L(G) is the line graph of a connected triangle-free graph
with at least 8 vertices, CCSP is a clique-cycle-structure decomposition of
L(G) with s trivial elements, then

re(L(G)) < —nz + Z

Furthermore, if the equality holds, then the size of each nontrivial element
of CCSP is 4.

Proof. Let CCSP = {CS;,---,CS5,CSi41, -+ ,CSi45}, |CSi| =

(1 £ <1+ s), and the subgraph of L(G) induced by vertices contained in
the element(s) of C'S; be G;. Then by the above definition, for 1 < ¢ < {,
G; is a clique-cycle-structure of size m; > 4 and for l +1 < i<l + s, G;
is a maximal clique of L(G). So by the definition of clique-cycle-structure
decomposition, { E(G;)}'t? is an edge partition of L(G).

i=1

For l+1 < i <1+ s, we assign each G; a fresh color such that edges in
the same G; have the same color and edges in distinct cliques have distinct
maximal colors. This procedure costs us s colors. For 1 < 7 < {, each G;
is a clique-cycle-structure of size m;. Without loss of generality, let the
former p m;s are odd, by Lemma 2.5, for 1 < i < p, we give each G; a
rainbow edge coloring using &2;42 fresh colors; for p+ 1 < i < I, we give
each G; a rainbow edge coloring using ¢ + 1 fresh colors. So the number
of colors we used is at most

s+2t_1 _-‘_+_+2t.-p+1(—1+ 1)
3+E;— -l+2+([_p)
s+2(n2—s)+(l—2)

-?n2+ zs+i-—
_n2+.'_'3—_5+ . 4

g 2

ZnZ + %)

INIAT

So if the equality holds, then m; = 4 for all 1 < 7 <! (in this case we have
p=0). ]

There are inﬁnitely many graphs whose rainbow connection numbers
equal 3 in2 + §. One example is the graph shown in Figure 2.3 which is
formed by some paths and 4-cycles. In its line graph, the 4 vertices (and
their adjacent edges) of each 4-cycle induce a clique-cycle-structure of size
4 and diameter 3; each 2-degree vertex (and their adjacent edges) in each
path induces an edge in its line graph. It is easy to show that the diameter
of L(G) is just 3ny + 4.
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Figure 2.3 The figure for the example of Theorem 2.8.

3 The line graph of a 2-connected triangle-
free graph '

Let H be a subgraph of a graph G. An ear of H in G is a nontrivial
path in G whose ends lie in H but whose internal vertices do not. A
nested sequence of graphs is a sequence (Go, Gy, - ,Gy) of graphs such
that G; C Giy1, 0 € i < k — 1. An ear decomposition of a 2-connected
graph G is a nested sequence (Gg, Gi,- - ,Gi) of 2-connected subgraphs
of G such that

1. Gy is a cycle;
2. Gi41 =G;UP,; where P,y isanearof G;inG,0<i<k—-1;

3. Gv=G.

We now let G be a 2-connected triangle-free graph. We know that each 2-
connected graph has an ear decomposition [1]. Furthermore, each vertex of
a 2-connected graph has degree at least 2. So each vertex is an inner vertex,
that is, V2 = V(G), na = n. Let (Go, G, * , Gk) be an ear decomposition
of G. As G is a triangle-free graph, the length of Gy is at least 4.

In [4], the authors observed that the lengths of the adding paths are
non-increasing: at each step, just adding the path with the maximal length
that can currently be added. Let lp, be the length of path P; where B; is
the path added in the ear decomposition (1 < ¢ < k). Then lp, > lp, >
ce2lp22,lp,,=-=lp=1(1<t<k)orlp =lp,=---=lp =1
(In this case, G is a Hamiltonian graph).

We first consider the case that there exists some ¢t € [k] such that
lP; ZIP22°"ZZPg 22,1P¢+1="'=1Pk =l (lstsk)'
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Let V§ = V(Go) = {vo,1, " ,p,s0} be the set of vertices of Gp and
V! = VI(P) = {vi1, +*,vis} be the set of inner vertices of path P;
(1<i<k) Clearly, V/ = @ (t+1 < i £ k). By the definition of an
ear-decomposition, V/ N V] = @ (0 < i # j < t) and V(G) = Uio V4,
that is, {V/,0 < 7 < t} is a partition of V(G). We know that ¢ =
{(S(m)) : vi € L}={(S(w)) : v; € V(G)}=o6U 4 U .- ¥, where
X = {(S(vij)) : 1 < j < s;} is the set of maximal cliques of L(G)
corresponding to the elements of V/ of G, 0 < ¢ < k.

_Let G; be the graph whose vertex set and edge set are just those of
Us=o e where 0 < i < k, and two maximal cliques (S(v;)) and (S(v;))
have (exactly) one common vertex (the common vertex corresponds the
common adjacent edge of v; and v; in G;) in G; if and only if v; and v; are
adjacent in G;. Let P; be the graph whose vertex set and edge set are just
those of J¢, and two maximal cliques (S(v;)) and (S(v;)) have a common
vertex if and only v; and v; are adjacent in P;. Note that G may not be
the line graph of the subgraph G;, G; and P; may not be the subgraphs of
L(G).

Clearly, by Remark 2.7, Gy is a clique-cycle-structure of size s >4
and P; is a clique-path-structure of size s;. So by Lemma 2.5, r¢(Gp) <
[22+1]. For 0 < i < t—1, by the definition of an ear decomposition,

o oo,

(S(vig1,1))

o
o
o

€i+1,2 e, IRy

(S(vi+1.9i+l))
Gin Ginl

Figure 3.1 The ﬁgures of Gi+1 and Gi+l°
P, is internally disjoint with G;. Let the two common vertices of them

be uiy1,1, %i+1,2, and let vi41,1, V41,2 be the adjacent vertices of ui41 1,
uip1,2 in Piyq (as Piyy (0 <4 <t —.1) contains at least one inner vertex),
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respectively. Let €j41,1 = %i41,1%i41,15 €i41,2 = Uit1,2Vit1,s,4,+ Lhen by
the definition of G411, G; and P,;; are subgraphs of G;;;; furthermore,
by Theorem 2.7 and the definition of a line graph, in the graph Gi;1, G;
and P;;; have only two common vertices, namely ei+1,1 and e;;12, and
{eir1,1} = (S(uir1,1)) N (S(vi41,1)), {€ir1,2} = (S(uit1,2)) N (S(Vi1,844))
(Figure 3.1).

Lemma 3.1 For0<i<t—1, we have

re(Gir1) < re(Gi) + i
where ¢4y = [2454].

Proof. Case 1. s;y; is even.

Let s;+; = 2b where b is a positive integer. We let the set of maximal
cliques of P.4; be {Cy,+++,C2}. The two common vertices between G;
and P;;; are u and v as shown in Figure 3.2. For 1 < j < 2b—1, the
common vertex between C; and Cj4 is vj, and let vo, = v. We give an

Ci+l ai-}-l

Figure 3.2 The figure of a rainbow edge coloring for the two cases of Lemma
3.1.

edge coloring as follows: We first give the subgraph G; a rainbow r¢(G5)-
edge coloring; for 1 < j < b, we give the edges of C; with the same fresh
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color 4; for b+ 1 < j < 2b, we assign the edges in C; incident to v; with
color j — b; for the rest edges of P, ;1, we assign them with the same color
b’ where b’ has been used in Gj.

It is not hard to show that with above edge coloring, Gi1 is rainbow
connected. As we used rc(G;) + b colors in total, r¢(Git1) < re(Gi) + 2.

Case 2. s;4) is odd.

Let s;11 = 2b+ 1 where b is a nonnegative integer. We let the set
of maximal cliques of P;y; be {Cy, -+ ,Caop+1}. The two common vertices
between G; and P, are u and v as shown in Figure 3.2. For 1 < j < b, the
common vertex between C; and Cj4, is v;. We now give an edge coloring
as follows: For 1 < j < b, the edges of C; incident to v; are assigned color
J, the rest edges of C; are assigned color b + 1; for j = b+ 1, we assign the
edges of C; with the same color b+ 1; for b+ 2 < j < 2b+ 1, we assign
the edges of the maximal clique C; with the same color j — (b + 1); for
remaining edges, that is, the edges in the graph G;, we assign them with
r¢(G;) fresh colors such that G is rainbow connected.

It is not hard to show that with the above edge coloring, G, is rainbow

connected. As we used r¢(G;) + b+ 1 colors in total, r¢(Gi+1) < re(G:) +
[241]. |

For t < i < k—1, as the length of P,Il is just 1, it has no inner vertex,
V!, = @, and so Hiy1 = @, that is, Uiro Ha = U, Ha.

Lemma 3.2 Fort <i<k-1, we have

re(Gin) < re(Gi)-

Proof. We know that for t < i < k — 1, G4 is obtained from G; by
just adding an edge between two nonadjacent vertices, namely e;1; =
Vj411V412. SO in the graph Gj, the maximal cliques (S(v},;,)) and
(S(vi4,2)) have no common vertex. Then by the definitions of Gi41 and a
line graph, in the graph Gin1, vertex e;1 is the common vertex of the max-
imal cliques (S(vjy;,)) and (S(v{,,2)). So graph Gi+1 is obtained from
G; by shrinking two nonadjacent vertices in (S(vjy,)) and (S(vi,;2)),
respectively, and this procedure produces a new vertex, e;+1 (shown in the
Figure 3.3). By Observation 2.3, r¢(Git1) < r¢(Gh). 1

From the definition of Gk, G = L(G). So by Lemmas 3.1 and 3.2, we
have the following theorem:



(Yi41,0))

+1
(’U;+1,2))

(;
Vit1,2

Gin Gin

Figure 3.3 The figures for Lemma 3.2.

Theorem 3.3 Let G be a 2-connected triangle-free graph of ordern,
(GO’GI" o aGk)

be an ear decomposition of G, where Giy; = G;U P;y,, and P; is an ear of

GiinG,0<i< k-1, and let m; denote the number of P;s with length

of positive even number, and so = |V (Go)|. Then

re(L(G)) < g +ee.

where
c _{ﬂzl+1 So is even
. =

mtl 59 is odd

In particular, if so > 6, and the length of each added path is at least 3, then
re(L(G)) < 2n.

Proof. The terminology is the same as above, and as discussed in above
paragraphs. We let |P;| > - - |Pg|, and s;(1 < ¢ < k) denote the number of
inner vertices of added path P;. We distinguish the following two cases:

Case 1. There exists some t € [k], such that [p, > lp, >--- > 1p, > 2,
lpy,==lp=1(1<t<k).

Then by Lemmas 3.1 and 3.2, we have
re(G) = re(Gk) < 7¢(Gk-1) < -+ S 7¢(Gy) < 7¢(Gr-1) + & < re(Gr—2) +
C-1+ ¢ < -+ < 1e(Go) + iy ci, Where

3 8; 15 even
C.i 3

[4] siisold
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So re(G) < re(Go)+ They S+ < [+ 00, 4 + B+=F+ce, Where

B 41 sois even
Ce = .
-'-"-lzﬂ s is odd

Case 2. lp,=---=lp, =1.

This means that G is obtained from Go by adding k edges, V(G) =
V(Go) = so, and m; = my = 0. So by Lemma 3.2, we have rc(L(G)) =
re(Gr) < 7¢(Gr—1) < -+ < 7¢(Go) = [25+L] = [2£1], and the conclusion
holds.

We know —3‘— <2 % for all s; > 2, and only when s; = 3, the equality

holds. So by the above discussion, the worst case for counting this upper

bound is when each path is length 4 (s; = 3). And as so > 6, r¢(L(G) <
4]+ 25% x 2 < 2n. '

From Theorem 3.3, while the order of G is large enough, and the lengths
of the added paths in an ear decomposition of G are large (at least 4), then
the rainbow connection number of the line graph L(G) is very close to half
of the order of graph G. There are many graphs whose rainbow connection
numbers are very close to the bound given in the above theorem. For
example, as shown in Figure 3.4, G is formed by a 4-cycle and two disjoint
paths with an even number of inner vertices. It is easy to show that the
diameter of the line graph L(G) is equal to half of the order n of G, and so
Tc(L(G)) = % is very close to the bound as m; = 0.

G

Figure 3.4 The figure for the last example.
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