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Abstract
A proper edge coloring ¢ of a graph G is said to be acyclic if
G has no bicolored cycle with respect to c. It is proved that every
triangle-free toroidal graph G admits an acyclic edge coloring with
(A(G) + 5) colors. This generalizes a theorem from [8).
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1 Introduction

We only consider finite and simple graphs. Undefined signs are all from [6].

Let G be a graph. If G can be drawn on the torus such that any two
edges intersect only at their common endvertex, then G is called a toroidal
graph. Let G be a toroidal graph. For convenience, we use G to denote an
embedding of G on the torus, and use V(G), E(G) and F(G) to denote the
sets of vertices, edges and faces of G, respectively. For a face f of G, we
use dg(f) (d(f) for short in case without confusion) to denote the degree
of f that is defined to be the length of the closed walk bounding f.

Let G be a graph, k be a positive integer, and let c be a proper k-edge
coloring of G. If G contains no bicolored cycle with respect to ¢, then c is
called an acyclic k-edge coloring of G. G is said to be acyclically k-edge
colorable if it admits an acyclic k-edge coloring. The acyclic chromatic
indez of G, denoted by o/ (G), is defined to be the least integer k such that
G is acyclically k-edge colorable.

The concept of acyclic edge coloring was first introduced by Fiamcik
(9] in 1978. In 1991, Alon et al. (1] proved that o’(G) < 64A(G) for
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all graphs. Molloy and Reed [12] improved this upper bound to o/(G) <
16A(G) in 1998. In 2005, Muthu, Narayanan and Subramanian {13] proved
that o/(G) < 4.52A(G) for graphs with girth at least 220, where the girth of
a graph is the length of a shortest cycle in it. Subramanian [18] presented
a simple greedy heuristic algorithm for acyclically (5A(log A + 2))-edge
coloring a graph of maximum degree A.

In 2001, Alon, Sudakov and Zaks [2] proved that o/(G) < A(G) + 2
for almost all regular graphs, and for all graphs whose girth are at least
cA(G)log A(G) for some constant c. In 2005, Nesetfil and Wormald [16]
improved the former result to o/(G) < A(G) + 1 for almost all regular
graphs. The long-standing conjecture [2, 9] that o/(G) < A(G) + 2 for
all graphs G is still open. Some known results verify this conjecture on
restricted families of graphs including connected graphs with A(G) < 4 and
|E(G)| < 2|V(G)| —1 [4], complete bipartite graphs K, , with p being an
odd prime [5], grid-like graphs [14], outerplanar graphs [15], and subcubic
graphs [17]. It is also proved that each non-regular subcubic graph admits
an acyclic 4-edge coloring [3].

There are quite a few papers (see (7, 8, 10, 11, 19, 20]) studying the
acyclic edge colorability of graphs embedded into some surface. In (8],
the authors improved a theorem of [10] and proved that every triangle-free
planar graph admits an acyclic (A(G) + 5)-edge coloring.

In this paper, we extend the above result to toroidal graphs, and show
that every triangle-free toroidal graph admits an acyclic (A(G) + 5)-edge
coloring.

Theorem 1 Let G be a triangle-free toroidal graph. Then, o/ (G) < A(G)+
5.

Let G and H be two graphs. The Cartesian product of G and H, denoted
by Go H, is defined to be the graph with vertex set V(G) x V(H) and edge
set consisting of the edges joining (u1,u2) and (vy,v2) iff either u; = v;
and ugvy € E(H) or ug = vy and u1v; € E(G). The following theorem will
be used in the proof of Theorem 1.

Theorem 2 ([14]) Let G and H be two connected graphs of order at least
2 such that max{ca'(G),o/(H)} > 2. Then,

o' (Go H) < d(G) + o' (H).

A k-vertez is a vertex of degree k, a k™ -vertex is a vertex of degree at
most k, and a k*-verter is defined similarly.
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2 Proof of Theorem 1

To prove Theorem 1, we first need to extend a technical lemma from [10].
In [10], the authors presented some configurations that may appear in a
graph G with §(G) > 2 and |E(G)| < 2|V(G)| - 1.

Lemma 1 ([10]) Let G be a graph such that |[E(G)| < 2|V(G)| — 1 and
6(G) > 2. Then, G contains one of the following configurations.

(C1) a2-vertez adjacent to a 5~ -vertez;

(C2) a 3-vertez adjacent to at least two 5~ -vertices;
(C3) a 6-verter adjacent to at least five 3~ -vertices;
(C4) a T-vertex adjacent to seven 3~ -vertices;

(Cs) a vertez x such that at least d(z) — 3 of its neighbors are 3~ -vertices,
and moreover one of them is a 2-vertex.

Before stating our lemma, we need to define a configuration, called B-
figure. A B-figure in a toroidal graphs consists of two adjacent 4-faces f;
and fa such that (1) f; and f, share an edge joining to 3-vertices, and (2)
all the other four vertices are 7-vertices (see Figure 1).
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Figure 1: A B-figure

With the same method, we show that for a triangle-free toroidal graph G
with 6(G) > 2, if G is not 4-regular, and contains non of the configurations
(C2) ~ (Cs), then it has either a 2-vertex adjacent to a 6~-vertex, or a
3-vertex adjacent to a 6-vertex and a 4™ -vertex, or a 7+-vertex v adjacent
to exact (d(v) — 4) 2-vertices etc. To be precisely, we have

Lemma 2 Let G be a triangle-free toroidal graph with 6(G) > 2. If G is
not 4-regular, and does not contain any of the configurations (Ca) ~ (Cs)
as listed in Lemma 1, then G contains one of the following configurations.
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(C1) a 2-vertez adjacent to a 6~ -vertex;

(C3) a 3-vertex adjacent to a 6-verter and a 4~ -vertex;
(C3) a B-figure;

(C}) a 7t -vertex v adjacent to exact (d(v) — 4) 2-vertices;
(C§) a T-vertez adjacent to siz 3-vertices and a 4-vertex;

(Cg) an 8-verter adjacent to eight 3-vertices.

Proof. Assume to the contrary that G does not contain any one of the
configurations (Cz) ~ (Cs) and (Cj) ~ (C§), and is not 4-regular.

By the Euler’s Formula on toroidal graphs, |V(G)|+|F(G)|—|E(G)| = 0.
For element = € V(G) U F(G), let w(z) = d(x) — 4. We see that

Yo w@)=4E@G) - V() -IF(@G) <0,
z€V(G)JF(G)

and hence 6(G) < 3 as G is triangle-free but not 4-regular by our assump-
tion.

We will redistribute the weight w between vertices following a discharg-
ing rule below, and denote the resulting new weight as w*. Let z be a
6*-vertex, and let y be a neighbor of z.

e z transfers 1 to y if d(y) = 2, and transfers  to y if d(y) = 3.

Now, let us calculate the new weight w*. It is certain that w*(f) >0
for each face f, and
W*(f) > 0 if d(f) 2 5. (1)

Let v be a k-vertex.

If k = 2, then v is adjacent to two 7*-vertices of which each sends 1 to
v, and thus w*(v) = -2+2=0.

If k = 3, then v is adjacent to at least two 6*-vertices, as G contains
no (Cz), of which each sends 4 to v, and so w*(v) = -1+2- 3 =0.

If k = 4 or 5, then w*(v) = w(v) 20, and

w*(v) > 0 whenever k = 5. (2)

If k = 6, then v is not adjacent to 2-vertices as G contains no (C1),
and is adjacent to at most four 3-vertices as G contains no (Cs). By the
discharging rule, v totally sends out at most 4- % to its neighbors, and thus
w*(v) 2 w(v)—4-3=0.
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Suppose that k > 7. If v is not adjacent to 2-vertex, then v is adjacent
to at most (k — 1) 3~ -vertices whenever k < 8 as G contains neither (C,)
nor (Cg). Hence, w*(v) > w(v) — 6 - 1 = 0 whenever k =7,

w*(v) 2 w(v) -7 % > 0 whenenver k = 8, (3)
and 1 k-8
w(v) 2 wv) —k- 3= -g—- > 0 whenenver k > 9, (4)

If k > 7 and v is adjacent to a 2-vertex, then v is adjacent to at most
(d(v)—4) 3~-vertices as G contains no (C5), and furthermore if » is adjacent
to exact (d(v) — 4) 3~-vertices then at least one of the 3~-vertices is a 3-
vertex as G contains no (C}). By the discharging rule, v totally transfers
out at most (d(v) — 3) to its neighbors, and thus

w*(v) 2 w(v) — (d(v) — 5) - % > 0 if k > 7 and v is adjacent to a 2-vertex.

(5)

We have shown that w*(z) > 0 for each z € V(G) U F(G). Note that
the discharging procedure does not change the total sum of the weights.

0< Z w*(z) = Z w(v) < 0.

z€V(G)UF(G) z€V(G)UF(G)
It follows that
w*(z) = 0 for each element z € V(G) U F(G). (6)

Therefore, G has no 5*-face by (1), has no 5-vertex as w*(u) > 0 for each 5-
vertex u by (2), A(G) < 7 by (3), (4) and (5), and each 7-vertex is adjacent
to six 3-vertices. »

If (G) = 2, let v be a 2-vertex, and let u be a neighbor of v, then
d(u) 2 7 and thus w*(u) > 0 by (5). Therefore, §(G) = 3.

Let v be a 6-vertex. Since w*(v) = 0 by (6), v must be adjacent to
four 3-vertices. Let = be a 3-vertex adjacent to v. Then, z is adjacent to
three 6%-vertex as G contains neither 5-vertex nor configuration (C}), and
thus w*(v) = —1+ 3 > 0, a contradiction to (6). Therefore, G contains
no 6-vertex, and thus every vertex in G has degree 3, 4, or 7, and each
7-vertex is adjacent to six 3-vertices and a 7-vertex as G contains neither
(C4) nor (C%).

By (1), each face of G is a 4-face. Let v be a 7-vertex, let u be a 7-vertex
adjacent to v, and let f be the 4-face bounded by wvwzu. If d(w) = 7,
then v is adjacent to two 7-vertices implying w*(v) > 0, contradicting (6).
Therefore, both w and z are 3-vertices by symmetry. Let f/ be the other
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face incident with wz bounded by wzyzw. Since G contains no (C), each
of y and z is a 7-vertex, and hence (C}) occurs in G. This contradiction
completes the proof of our lemma. |

Now we are ready to prove Theorem 1. The approach is the same as
that of [8] and [10]. Assume to the contrary that the theorem does not hold.
We choose G to be a counterexample with minimum number of vertices.
Suppose that k = A(G) + 5. Let H be a proper subgraph of G. By the
minimality of G, H is acyclic k-edge colorable. Let ¢ be an acyclic k-edge
coloring of H. We use C(v) to denote the set of the colors appearing on
the edges incident with vertex v.

It is certain that G is connected, and A(G) > 3. If G has a cut edge, say
uv, let G; and G; be the two components of G — uv. Then, both G; and
Gq are acyclically k-edge colorable. By rearranging the colors appeared at
u and v, we can always choose a color for uv and get an acyclic k-edge
coloring of G. Therefore, G is 2-edge connected, and hence §(G) > 2.

By the Euler’s Formula on toroidal graphs, 3 (d(z)—4) <0.
zeV(G)UF(G)

If G is 4-regular, then each face is of degree 4 as G is triangle-free, and
hence G is isomorphic to C, ¢ C, for some integers r, s > 4. By Theorem 2,
a/(G) < 6 < k as each cycle has acyclic chromatic index 3. Therefore, G is
not 4-regular.

If G contains one of the configurations (Cz) ~ (C5) listed in Lemma 1,
then o/(G) < k as proved in [8]. So, we assume that G does not contain
any configuration of (C2) ~ (C5). By Lemma 2, G contains one of the
configurations (C{) ~ (C§). Our proof is divided into six cases according
to the configuration contained in G. Let L = {1,2,-- , k} be the color set.
Case 1. G contains (C}).

Let v be a 2-vertex with neighbors u and w. Suppose that d(u) < 6.
By the minimality of G, H = G — vw admits an acyclic k-edge coloring
c. If ¢(vu) € C(w), we can always choose a color in L\ (C(w) U {c(vu)})
for vw to get an acyclic k-edge coloring of G. Otherwise, we suppose that
c(vu) € C(w), then |C(v)UC(w)| < A(G) —1+5 =k —1, and we can also
choose a color in L\ (C(u)UC(w)) for vw to get an acyclic k-edge coloring
of G. .

Case 2. G contains (C3).

Let v be a 3-vertex with neighbors ug, u; and uz. Suppose that d(up) <
4 and d(ug) = 6. Let H = G — vuo, and let ¢ be an acyclic k-edge coloring
of H with minimum |C(v) N C(uo)|. Suppose that c(vu;) =4 for i = 1,2.

If C(v) N C(uo) = @, then we can choose a color in L \ (C(up) U {1,2})
for vug to obtain an acyclic k-edge coloring of G. Therefore, we assume
that C(v) N C(ug) # 0.

First assume that |C(v) N C(uo)| = 1. If i € C(uo), then |C(u;) U
C(uo)| £ A(G) +2 < k —1, and we can choose a color in L\ (C(u1) U
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C(u2)UC(up)) for vuy to get an acyclic k-edge coloring of G, contradicting
the choice of G.

Now, we assume that [C(v)NC(uo)| = 2. Then, {1,2} = C(v) C C(uo).

If i € C(us—;) for some i € {1,2}, note that |C(ug) UC(ua_;)| < A+2,
we may choose a color in L \ (C(uo) U C(u3—;)) to recolor vua—; and get
an acyclic k-edge coloring ¢’ of H with [C'(v) N C’(up)| = 1, contradicting
the choice of c.

So, we suppose that 1 € C(uz) and 2 € C(u;), and hence C(v) =
{1,2} € C(uo) N C(u1) N C(u). If C(u1) N C(ug) # {1,2}, then |C(up) U
Clup) UC(ug)] < A+ (6—3)+1 =k~ 1, we can choose a color in
L\ (C(u0)UC(u1)UC(uz)) for vup and get an acyclic k-edge coloring of G.
The similar occurs whenever C(ug) N C(u1) # {1,2} or C(up) N C(uz) #
{1,2}. Therefore,

{1,2} = C(uo) N C(w1) = C(uo) N C(uz) = C(u1) N Cuy).

Without loss of generality, we may assume that C(uo) = {1,2,3},
C(uz) = {1,2,4,5,6,7} and C(u;) = {1,2,8,...,k}. Then, we recolor
vuy with color 3, recolor vuy with color 8, and get an acyclic k-edge color-
ing ¢” of H with |C"(v) N C"(ug)| = 1, contradicting the choice of ¢. This
completes the proof of Case 2.

Case 3. G contains (C3).

1 2 1 1

v u v u

2 <1 2 2

; w Y ; w Y <
(0)

(a)
Figure 2: B-figure

Let u and v be two adjacent 3-vertices in the B-figure. Suppose that
N(v) = {u,w,z}, and N(u) = {v,y, 2} (see Figure 2).

Let H = G — vu, and let ¢ be an acyclic k-edge coloring of H with
minimum |C(v) N C(u)|. Suppose that c(vz) = 1 and c(vw) = 2. The
situations that [C(v) N C(u)| < 1 can be dealt with the same arguments
on v as that used in Case 2. So, we suppose that |C(v) N C(u)| = 2, i.e.,
C(u) =C(v) ={1,2}.

If 1 ¢ C(w), we choose a color in L\ ({1} U C(w)) to recolor vw to
produce an acyclic k-edge coloring ¢/ of H with [C'(v) N C'(u)| = 1. If
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2 & C(z), we choose a color in L\ ({2} UC(z)) to recolor vz to produce an
acyclic k-edge coloring ¢” of H with |C"(v) N C"(u)| = 1. Both contradict
the choice of c.

Suppose that 1 € C(w) and 2 € C(z), and hence C(u) = C(v) =
{1,2} € C(w)NC(z). If C(w)NC(z) # {1,2}, then |C(u)UC(w)UC(x)| <
A+ (7—3) =k — 1, we choose a color in L \ C(u) U C(w) U C(z) for vu
and get an acyclic k-edge coloring of G. Therefore,

{1,2} = C(x) N C(w) = C(u) N C(z) = C(w) N C(x).
By symmetry, we may also suppose that
{1,2} =C(v)NC(y) = C(u) N C(2) = C(y) N C(2).

Without loss of generality, we may assume that C(w) = {1, 2, 3,4, 5,6, 7}
and C(z) = {1,2,8,...,12}.

First, we consider the situation that c(uy) = 1 and c(uz) = 2 (see
Figure 2(a)). Then, at least one color, say 8 € {8,9,10,11,12} does not
appear in C(y). By coloring uv with 8, we get an acyclic k-coloring of G.

So, we suppose that c{uy) = 2 and c(uz) = 1 (see Figure 2(b)). If
C(w)\ C(y) # 0, we choose a color in C(w)\ C(y) for uv and get an acyclic
k-edge coloring of G. So, we suppose, by symmetry, that C(w) = C(y) and
C(z) = C(z). Since c is an acyclic edge coloring of H, either ¢(zz) # 2
or c(wy) # 1 as otherwise vzzuywv would be a cycle with color 1 and 2.
By symmetry, we suppose that ¢(zz) # 2. Then, by recoloring vw with
¢(zz), we get an acyclic k-edge coloring ¢ of H with [C"'(v)NC"'(u)] = 1,
contradicting the choice of ¢. This completes the proof of Case 3.

Case 4. G contains (Cy).

Let v be an l-vertex (! > 7). Suppose that N(v) = {u1,ug,...,w},
and suppose that u;,us,...,u;—4 are all 2-vertices. Let w; be the other
neighbor of u; for i =1,2,...,l—4,and let H =G — Uﬁ;‘}{vu;}. By the
minimality of G, H admits an acyclic k-edge coloring c.

Let L' = {c(vu-3), c(vui—3), c(vui-1), c(vw)}. Let § = {c(uyw,),
c(ugws), . - ., c(ui—qwi—q)}, and let s = |S|. Since k = A(G) + 5, we may
assume that SN L' = 0. Without loss of generality, we suppose that
c(ujwi) =i fori€ {1,2,...,s},and L' = {k -3,k -2,k — 1,k}. Then, we
color vu; with color i +1 for i € {1,2,...,8—1}, color vu, with k—4, and
color Y41, . . - , VU4 sequentially with colors from {s+1,s8+2,...,A(G)}.
This yields an acyclic k-edge coloring of G.

Case 5. G contains (Cg).

Let v be a 7-vertex adjacent to a 4-vertex u,, and six 3-vertices uz, ua,
ooy U7,

Let H = G —vuy, and let ¢ be an acyclic k-edge coloring of H. Suppose,
without loss of generality, that c(vy;) =i fori=1,2,...,86.



If |C(ur) N C(v)| = 0, we color vuy with a color in L\ (C(v) U C(uz)
(since [(C(v) U C(ur)| < A(G) + 1, this color always exists), and get an
acyclic k-edge coloring of G.

Suppose that [C(u7) N C(v)| = 1, and suppose i € C(uy). Note that
[C(v) UC(u7) UC(w;)] <10 < k as A(G) > 7. We can always color vur
with a color in L\ (C(v)UC(u7)UC(w;)), and get an acyclic k-edge coloring
of G.

So, we suppose that [C(u7)NC(v)| = 2, and suppose that C(ur) = {i, j}
for some 1 < i < j < 6. Since |C(v) U C(u;) U C(u;) UC(ur)| = |C(v) U
C(u;) U C(uy)| < 11, there always exists a color 8 € L\ C(v) U C(u;) U
C(uj) U C(ur). By coloring vuy with 8, we extend ¢ to G. This proves
Case 5.

Case 6. G contains (C}).

This case is almost the same as above Case 5. Let v be an 8-vertex
adjacent to eight 3-vertices uy,uo,...,us.

Let H = G—vus, and let ¢ be an acyclic k-edge coloring of H. Suppose,
without loss of generality, that c(vu;) =i fori=1,2,...,7.

If |C(us) N C(v)| = 0, we color vug with a color in L \ (C(v) U C(us),
and extend c to G.

If |C(ug) N C(v)| = 1, suppose by symmetry that C(ug) = {1, 8}. Since
|C(v) U C(u1) UC(us)| < 10 < k as A(G) > 8, we can color vug with a
color in L \ (C(v) U C(u1) U C(ug)), and extend c to G.

Suppose that |C(ug) N C(v)] = 2, and suppose by symmetry that
C(us) = {1,2}. Since |C(v) U C(uy) U C(uz) U C(ug)| = |C(v) U Cuy) U
C(ug)| < 11, there always exists a color 8 € L\C(v)UC(ul)UC(uz)UC(us)
By coloring vug with 83, we extend c to G. This proves Case 6.

Acknowledgments: Thank the referees for helpful comments.
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