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Abstract

In this paper we study linear transformations preserving log-
convexity, when the triangular array satisfies some ordinary convo-
lution. As applications, we show that the Stirling transformations of
two kinds, the Lah transformation, the generalized Stirling transfor-
mation of the second kind and the Dowling transformations of two
kinds preserve the log-convexity.
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1 Introduction

Let 9, z1,z5,... be a sequence of nonnegative numbers and with no
internal zeros. By the latter we mean that there are no three indices
i < j < k such that z;,zx # 0 and z; = 0. We say that the sequence
is log-convex (LCX) if 22 < z;_1 241 for all i > 0 and is log-concave (LC)
if 22 > z;_17;4) for all i > 0. Although the log-convexity of a sequence of
positive numbers is formally equivalent to the log-concavity of its reciprocal
sequence, we would have a hard time proving the log-convexity by the log-
concavity of its reciprocal. One possible reason for this is that the sequence
satisfies nice recurrence relations since its strong background in combi-
natorics, but the reciprocal sequence does not. Many famous sequences
in combinatorics, including the Bell numbers, the Catalan numbers and
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the Motzkin numbers, are log-convex respectively [14], but log-convexity
has not received nearly as much attention as log-concavity. For the log-
concavity problems, there have been quite a few attempts (see the survey
articles [5, 16] and some recent developments [18, 19, 20, 21]). However,
there is only a little study of the log-convexity of sequences [14].

Let {a(n,k)}o<k<n be a triangular array of nonnegative numbers. De-
fine two linear transformations by

n
Zn = Za(n, k)zx, n=0,1,2,... (1.1)
=0
and
n
Zn = Za(n,k)xkyn_k, n=0,1,2,... (1.2)
k=0

respectively. We say that the linear transformation (1.1) has the PLCX
(resp. PLC) property if it preserves the log-convexity (resp. log-concavity)
of sequences, i.e., the log-convexity (resp. log-concavity) of {Zn}n>0 implies
that of {zn}n>0. We say that the linear transformation (1.2) has double
PLCX (resp. PLC) property if the log-convexity (resp. log-concavity) of
{Zn}n>0 and {yn}n>o0 implies that of {z,}.>0. The corresponding triangle
{a(n, k)}o<k<n is also called PLCX and double PLCX (resp. PLC). Clearly,
the double PLCX property implies the PLCX property (resp. PLC).

Given two triangles {a(n, k) }o<k<n and {b(n, k)}o<k<n, define their or-
dinary convolution {T'(n, k)}o<k<n by

T(n,k) =) a(n,j)b(j,k), n=0,1,2,....

j=k
The paper is devoted to the study of the PLCX property of linear
transformations whose triangular array satisfies some ordinary convolution.
There are many triangles satisfying this recurrence in combinatorics. For

example, it is well known that the Stirling number of the second kind S(n, k)
satisfies the recurrence

S(n, k) = nf (";I)S(j,k—l)

j=k-1

(see [9] for instance). So far there have been found some important trans-
formations that are PLC (see [4, 18, 19, 21] for instance). But linear trans-
formations which preserve the log-convexity of sequences have not been
attached importance to since H. Davenport and G. Pdlya showed the fol-
lowing result.
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Proposition 1.1. [10] The binomial convolution

"_Z( )xk’yﬂ_k, n=0,12,...,

k=0
has the double PLCX property.

Only till recently, Liu and Wang [14] showed that linear transformations
given by the triangular arrays of binomial coefficients and Stirling numbers
of two kinds preserve the log-convexity respectively. And using a result
of [14], Chen et. al. [6, 7, 8] obtained that the Narayana transformation, the
Bessel transformation and the Narayana transformation of type B preserve

the log-convexity.
In this paper, we present that the linear transformation

Zn = Zn:T(n, k)z

k=0

has the PLCX property when the triangular array {T'(n,k)}o<k<n satis-
fies some ordinary convolution. As applications, we show that the Stirling
transformations of two kinds, the Lah transformation, the generalized Stir-
ling transformation of the second kind and the Dowling transformations of
two kinds preserve the log-convexity.

2 Main Results

In this section, we give the main result of the PLCX property first.

Theorem 2.1. Suppose that {a(n,k)}ock<n and {b(n,k)}o<k<n are two
triangles of nonnegative numbers. If linear transformationst, = 3, _,a(n,
k)zi and s, = 3 p_, b(n, k)zi preserve log-converity, then so does

2z = ZT(n K)zr, n=0,1,2,.
k=0
where T(n, k) = 3}, a(n, 1)b(j, k).
Proof. Note that
ZT(n k)zy = Zﬂ’?k ZG(R,J)b (4, k).
k=0 k=0  j=k
After changing the order of the summation, we have

o= 3 a(md) [Zb(j, k)ka.

3=0 k=0
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Let y; = > 30 b(j, k)zk for 0 < j < n. Then the sequence yo,v1,...,Yn is
log-convex by the condition that the triangle {b(n, k) }o<k<n preserves the
log-convexity, so is the sequence 29, z,. . ., 2z, by the PLCX property of the
triangle {a(n, k)}o<k<n. This completes the proof. a

When the triangle {T'(n, k)}o<k<n is the ordinary convolution of itself
and another triangle {a(n, k) }o<k<n, Theorem 2.1 is particularly interesting
and useful as we shall see in the next section.

Corollary 2.1. Suppose that {a(n,k)}o<k<n is a triangle of nonnegative
numbers with a(n, n) = 1. If the linear transformation t, = Y p_, a(n, k)zx
preserves log-convezity, then so does

n
z,.,=ZT(n,k)a:k, n=0,12,...,
k=0

where T(n, k) = Zj;,:_l a(n — 1,5)T(j,k — 1) and T(n,0) = T(0,k) =0
unless T'(0,0) = 1.
Proof. Let {zx}x>0 be a log-convex sequence. We need to show that the
sequence {z, }n>0 is log-convex. We proceed by induction on n. Since

zg = T(0,0)z9 = zo,

2 T(1,0)z0 + T'(1, 1)z = a(0,0)x;, = =1,

Zg = T(2, O)xo + T(2, 1)2)1 +T(2, 2)2}2 = a(l,O)xl + x9,

we find 27 < zp2, by the log-convexity of {xk}kzo- Now assume that n > 3
and 2g,21,...,2n—1 is log-convex, i.e., z; = Y }_oT(j, k)zx preserves the
log-convexity for 0 < j < n — 1. Note that

n-1
T(n,k)= Y a(n—1,5)T@G,k-1).
j=k—-1
So we have
n n n-—1
2n = ZT('I’I, k)xk = sz Z a(n—-1,5)T(5,k-1)
=0 k=0 j=k-1
n-1 K]
= > a(n-1,3) [Z TG, k)xk+1J :
j=0 k=0
Hence the sequence zg, zi,..., 2n—1, 2n is log-convex by Theorem 2.1 and
the induction hypothesis. This completes the proof. O
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For the double PLCX property, we have the following results. Using the
result that the log-convexity is preserved by componentwise product, they
can be proved by the same technique used in the proof of Theorem 2.1 and
Corollary 2.1. So we omit their proof for brevity.

Theorem 2.2. Suppose that sequences {ux}x>0 and {vi }r>0 are log-convez.
If the linear transformation t, = Y p_q a(n, k)Zkyn—k preserves double log-
convezity and s, = Y p_o b(n, k)xi preserves log-convezity, then the linear

transformation

n
Zy = ZT(n,k)zk, n=0,12,...,
k=0
where T(n, k) = 2;::: a(n, j)b(j, k)ujvn—j and T(n,0) = T(0, k) = 0 unless
T(0,0) = 1, also preserves log-convezity.
Theorem 2.3. Suppose that the sequence {vi}x>0 s log-convez. If the lin-

ear transformation t, = Y p_q a(n, k)Tryn—r preserves double log-convezity
with a(n,n) = 1, then the linear transformation

n
Zn =) T(mk)ze, n=0,1,2,...,
k=0

where T(n, k) = 370, a(n—1,5)T(j, k~1)vn_;—1 and T(n,0) = T(0, k) =
0 unless T(0,0) =1, also preserves log-convezity.

3 Applications

In this section we apply results obtained in the previous section to
present that the Stirling transformations of two kinds, the Lah transfor-
mation, the generalized Stirling transformation of the second kind and the
Dowling transformations of two kinds preserve the log-convexity.

3.1 The Stirling transformations of two kinds

Following Riordan [15], the Stirling number s(n, k) of the first kind and the
Stirling number S(n, k) of the second kind are defined by relations

n

(x)n = zs(n:k)xk’

k=0

n > S k)@, n=0,1,2,...,
k=0

8
i
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where (z)n, = z(z —1)--- (z — n + 1) is the falling factorial. Let ¢(n, k) =
(=1)"t+*s(n, k) be the signless Stirling number of the first kind, i.e., the
number of permutations of [n] which contain exactly k permutation cycles.
It is known that Stirling numbers of two kinds satisfy recurrences

n—1

n-—1 , .
o(n k) = j=§k_:l( ; )c(J,k—lxn—a—l)!, (3.1)
n—1 n—l .
Sn k) = j=§k_:1( ; )so,k—l) (3.2)

respectively, with ¢(n,0) = ¢(0, k) = S(n,0) = S(0,k) = 0, except ¢(0,0) =
5(0,0) =1 [9].

For the signless Stirling number of the first kind, we have the following
result immediately from Theorem 2.3 and the recurrence (3.1).

Proposition 3.1. [14] The Stirling transformation of the first kind 2, =
Y ko c(n, k)zx preserves log-convexity.

For the Stirling number of the second kind, we have the following result
immediately from Corollary 2.1 and the recurrence (3.2).
Proposition 3.2. [14] The Stirling transformation of the second kind z, =
Y k=0 S(n, k)xi preserves log-converity.

A combinatorial interpretation of the Stirling number S(n,k) of the
second kind is the number of partitions of the set [n] having exactly &
blocks. The number closely related to S(n, k) is the Bell number, defined
as the total partition number of [n], i.e.,

B. =3 S(n.k)
k=0

The log-convexity of the Bell numbers follows immediately from Proposi-
tion 3.2, which is originally due to Engel [12]. On the other hand, the Bell
numbers satisfy the recurrence

Bpy1= Z (:) By
k=0

(see [17] for instance). So we can give another interpretation of the log-
convexity of the Bell numbers using Proposition 1.1.
A more general number related to S(n, k) is

F,= z": kIS(n, k),

k=0
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which can be given a combinatorial interpretation analogous to the Bell
numbers B,,: if X is an n-set, then F, is the number of distinct ordered
partition of X [17]. Since the factorial sequence {k!}«>0 is log-convex, we
can get the following more general result.

Corollary 3.1. The linear transformation z, = Y p_ok!S(n, k)zx pre-
serves log-convezity.

Corollary 3.1 or Proposition 3.2 gives a natural interpretation to the
log-convexity of the sequence {Fy}n>0-

3.2 The Lah transformation

The Lah numbers L, i are coefficients expressing rising factorials in terms
of falling factorials, i.e.,

(=2)n = (-1)™(@)n = D _ Lo (@i
k=0
where (2}, = z(z + 1)---(z + n — 1) is the rising factorial and (z), =
z(z—1)-- - (z—n+1) is the falling factorial (see [15] for instance). Let £, x =
(—=1)*L, x be the unsigned Lah numbers, i.e., the number of partitions of
the set [n] into k nonempty linearly ordered blocks. It is known that the
Lah numbers satisfy the recurrence

Ln,lc = Z(—I)JS(’H,,J)S(], k)
i=k

(see[9] for instance). So the unsigned Lah numbers satisfy

bng =Y c(n,5)S(, k). (33)
i=k

Thus the following corollary is an immediate consequence of Theorem 2.1
and Propositions 3.1, 3.2.

Corollary 3.2. The Lah transformation z, = Y ;_o €n kZr preserves log-
convexity.

3.3 The generalized Stirling transformation of the sec-
ond kind

Given a finite Coxeter group W, define the Eulerian polynomial of W by
P(W,z) = Z gdw (™),

TEW
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where dw () is the number of W-descents of m. For Coxeter group of
type By, Brenti [5] defined a g-analogue of P(By,, z), which reduces to the
Eulerian polynomial A, (z) when ¢ = 0 and to P(By,,z) when ¢ =1, by

Bu(zig)= ) ¢" Pz,
c€B,

where N(m) = |i € [n] : m(3) < 0. Liu and Wang [13] showed that B,(z;q)
has only real zeros for ¢ > 0. Now we consider coefficients of By, (z;g) when
expressed in powers of (z — 1). Brenti showed that

By (z;q9) = zﬂ: k!Sp(n, k; g)(z — 1)"*.
k=0

And he also showed that the sequence {Sg(n, k; ) }n>0 satisfies the relation

n

Se(mkia) =3 (7). 1 +)" (3.4

i=k

In particular, if ¢ = 0, then Sg(n,k;q) = S(n,k), where S(n,k) is the
Stirling number of the second kind.

Using Propositions 1.1, 3.2 and Theorem 2.2, we can obtain the following
result, which reduces to Proposition 3.2 when ¢ = 0.

Corollary 3.3. The linear transformation z, = Y p_, Sg(n, k;q)zx pre-
serves log-convezity for ¢ > 0.

3.4 The Dowling transformations of two kinds

The Dowling lattice Q,(G) is a geometric lattice of rank n over a finite
group G of order m and has many remarkable properties (see [1, 2, 3, 11]
for instance). When m = 1, that is, G is the trivial group, @Q.(G) is
the lattice J],,,, of partitions of an (n + 1)-element set. So the Dowling
lattices can be viewed as group-theoretic analogs of the partition lattices.
Let wpy(n, k) and W, (n, k) be the Whitney numbers of the first kind and
the second kind respectively. Denote by tn(n, k) = (—1)"**w,(n, k). It is
known that the Whitney numbers of two kinds satisfy recurrences

tm(n, k) = ic(n, i) (;) mr=t = mn zn: o(n, i) (,':) m=i, (3.5)

i=k i=k
n

Winl(n, k)= (’:) S@, k)ymi~* = m~* Zn: (’:) SGkym' (3.6)

i=k i=k
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respectively (see [2] for instance).
Using Theorem 2.1, we can give a more direct approach to the PLCX

properties of t,(n, k) and Wi (n, k).

Corollary 3.4. Suppose that the sequence {ur}r>o is log-convez. If linear
transformations t, = Y p_oa(n,k)zx and s, = Y p_ b(n, k)zx preserve
log-convezity, then so does

n
Zn = ZT(n,k)zk, n=0,1,2,...,
k=0"
where T(n, k) = z;=k a(n,j)b(j, k)Uj-
We next give another interpretation of the PLCX property of W, (n, k).
It is also known that W, (n, k) satisfies the recurrence

n-1

Win(n, k) = Win(n = 1,k) + Y (”;l)wm(i,k—nmﬂ-*-l (3.7)
1

i=k—
(see [2] for instance). Note that the log-convexity is preserved under com-
ponentwise sum.
Lemma 3.1. [14] If both {Zp}n>0 and {yn}n>0 are LCX, then so is the
sequence {Tn, + Yn }n>o0-
Proof. By the log-convexity of {Zn}n>0 and {yn}n>0 and the arithmetric-
geometric mean inequality, we have

(-Tn—l + yn—l)(xn-l-l + yn+l) = Zp-1Tn4+1 + ($n—lyn+1 + xn+1yn—1)
FYn-1Yn+1

2 1’12: + 2Znyn + yr2¢ = (Tn + yn)2'

a

Thus we can also obtain the following result by induction and Theo-
rem 2.3.

Proposition 3.3. The Dowling transformation of the second kind z, =
Y reo Wi (n, k)zi preserves log-converity.

Dowling (11] has given combinatorial interpretations for sequences
{k!Wm(n, k)}0<k<n and {k!mka (n, k) }()()‘,<ﬂ

for m > 0. From Proposition 3.3 and the log-convexity of sequences {k} x>0
and {m*}«>0, we have the following.

Corollary 3.5. Linear transformations z, =Y p_o KW (n, k)z and z, =
Y reo kImEWon(n, k)z) preserve log-converity.
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