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Abstract

Let G be an even degree multigraph and let deg(v) and u(uv,G)
denote the degree of vertex v in G and the multiplicity of edge (u,v)
respectively in G. A decomposition of G into multigraphs G and
G is said to be a well-spread halving of G into two halves G; and
Gy, if for each vertex v, deg(v, G1) = deg(v,G2) = 3deg(v,G), and
|u(uv, G1) — p(uv, G2)| < 1 for each edge (u,v) € E(G). A sufficient
condition was given in [7] under which there exists a well-spread
halving of G if we allow the addition/removal of a Hamilton cycle
to/from G. Analogous to [7), in this paper we define a well-spread
halving of a directed multigraph D and give a sufficient condition
under which there exists a well-spread halving of D if we allow the
addition/removal of a particular type of Hamilton cycle to/from D.

ARS COMBINATORIA 100(2011), pp. 485-491



1 Introduction

Let G be a multigraph with vertex set V(G) and edge set E(G). We denote
the degree of a vertex v in V(G) by deg(v,G) and the maximum degree
of G by A(G). The multiplicity of an edge (u,v) € E(G) is the number
of edges joining u and v and is denoted by p(uv, G). The maximum edge-
multiplicity of G is denoted by p(G). G is said to be simple if u(G) = 1.
We will say that multigraph G is an even degree multigraph if deg(v,G)
is even for all v € V(G). Let red(G) denote the simple graph obtained
from G by deleting all edges of even multiplicity and replacing all edges
of odd multiplicity by single edges. We refer the reader to ([2,3]) for all
terminology and notation that is not defined in this paper.

Let G be an even degree multigraph. A decomposition of G into multi-
graphs G; and Gj is said to be a well-spread halving of G into two halves G,
and Gy, if for each vertex v, deg(v,Gi) = deg(v,G2) = %deg(v, G), and,
{u(uv, Gy) — u(uv,Ga)| < 1 for each edge (u,v) € E(G). The following
theorem from (7] gives a simple necessary and sufficient condition for the
existence of a well-spread halving of an even degree multigraph.

Theorem 1 Let G be an even degree multigraph. There exists a well-spread
halving of G if and only if red(G) has no components with an odd number
of edges.

If G is an even degree multigraph and if red(G) has some component
with an odd number of edges then by Theorem 1, there does not exist
a well-spread halving of G. However, the following theorem in [7] shows
that if G is a A-regular multigraph on n vertices with n and A being
even, then, generally there exists a well-spread halving of G if we allow the
addition/removal of a Hamilton cycle to/from G. We denote by K the
complete multigraph on n vertices with r parallel edges between each pair
of vertices.

Theorem 2 Let G be a A-regular multigraph of even order n and magi-
mum multiplicity u(G) < p with p end A being even.

(i) If A > p(} +1), then G contains a Hamilton cycle H such that there
exists a well-spread halving of G — E(H).

(i) If A < p(3 — 2), then the complement of G relative to K contains
a Hamilton cycle H such that there erxists a well-spread halving of
GUE(H).

Let D be a directed multigraph with vertex set V(D) and arc set A(D).
For a vertex v € V(D), the indegree (respectively, outdegree) of v in D
denoted by indegree(v, D) (respectively, outdegree(v, D)) is the number
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of arcs of D directed into v (respectively, directed out of v), and we de-
note by deg(v, D) the sum indegree(v, D) + outdegree(v, D). Note that
Y vev(p) indegree(v, D) = 3_ v (p) outdegree(v, D) = |A(D)|. The mul-
tiplicity of an arc (u,v) € A(D) is the number of arcs directed from
to v and is denoted by u(uv,D). The maximum arc-multiplicity of D
is denoted by u(D). D is said to be simple if u(D) = 1. The simple
directed graph underlying a directed multigraph D, denoted by Dsimp, is
the directed graph obtained from D be replacing all arcs of multiplic-
ity greater than one by single arcs. We will say that a directed multi-
graph D is an even degree directed multigraph if deg(v, D) is even for all
v € V(D). An anti-directed walk (correspondingly, path/circuit/Fuler cir-
cuit/Hamilton cycle) in a directed multigraph D is a walk (correspond-
ingly, path/circuit/Euler circuit/Hamilton cycle) in the graph underlying
D such that no pair of consecutive arcs in the walk (correspondingly,
path/circuit/Euler circuit/Hamilton cycle) form a directed path in D in
either direction. Note that an anti-directed circuit in D must have an
even number of arcs. The reduced directed graph of D denoted by red(D)
is the simple directed graph obtained from D by deleting all arcs of even
multiplicity and replacing all arcs of odd multiplicity by single arcs.

Let D be an even degree directed multigraph. A decomposition of D
into directed multigraphs D; and D, is said to be a well-spread halving of
D into two halves Dy and Dy, if

(1) indegree(v, Dy) = indegree(v, D3), and, outdegree(v, D; ) = outdegree
(v, D3), for each v € V(D), and,

(2) |u(uv, D1) — p(uv, Ds)| < 1, for each arc uv € D.

In Section 2 we prove the following characterization of directed multigraphs
that have a well-spread halving. This characterization of directed multi-
graphs that have a well-spread halving is simpler than the characterization
{Theorem 1) of multigraphs that have a well-spread halving.

Theorem 3 Let D be a directed multigraph. There exists a well-spread
halving of D if and only if indegree(v) and outdegree(v) are even for each
v € V(D).

Let D be a directed multigraph, and let V(D) = PU @ be a partition of
V(D). A (P,Q)-directed Hamilton cycle in D is a Hamilton cycle H in D
such that for each v € P, consecutive arcs of H incident on v do not form a
directed path in D, and, for each v € Q, consecutive arcs of H incident on
v form a directed path in D. Hence, a usual directed Hamilton cycle in D
is a (0, V(D))-directed Hamilton cycle. We note that if D is an even degree
directed multigraph, then V(D) partitions into V(D) = P U Q, where for
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each v € P, indegree(v) is even and outdegree(v) is even, and, for each
v € Q, indegree(v) is odd and outdegree(v) is odd.

If D is an even degree directed multigraph and if the indegree/outdegree
of some vertex is odd, then by Theorem 3, there does not exist a well-spread
halving of D. However, analogous to Theorem 2 in (7], we prove the fol-
lowing theorem in Section 2 that shows that if D is an even degree directed
multigraph of even order n, then, often there exists a well-spread halving of
D if we allow the addition/removal of a particular (P, Q)-directed Hamil-
ton cycle to/from D. We denote by K, ) the complete directed multigraph
on n vertices with r parallel arcs directed from each vertex to every other
vertex.

Theorem 4 Let D be an even degree directed multigraph of even order n
and mazimum multiplicity u(D) < p. Let V(D) = PU Q be the partition
of V(D), where for each v € P, indegree(v) is even and outdegree(v) is
even, and, for each v € Q, indegree(v) is odd and outdegree(v) is odd, and,
suppose that |P| = 2j for some integer j > 0.

(i) If indegree(v, D) > p(% +j) and outdegree(v, D) > p(3 +J) for each
v € V(D), then D contains a (P, Q)-directed Hamilton cycle H such
that there exists a well-spread halving of D — A(H).

(4) Ifindegree(v, D) < p(§—3j—1) and outdegree(v, D) < p(5—3j—1) for
each v € V(D), then the complement of D relative to R contains a
(P, Q)-directed Hamilton cycle H such that there exists a well-spread
halving of DU A(H).

We note that the degree conditions in Theorem 4 that we have been able
to prove to be sufficient for the existence of a (P, Q)-directed Hamilton
cycle H in a directed multigraph D that guarantees the existence of a well-
spread halving of G — A(H) depend on |P| and are not as strong as those
in Theorem 2. Our proof of Theorem 4 is based on a sufficient condition
for the existence of a (P, Q)-directed Hamilton cycle in a directed graph D
that we prove in Theorem 7 in Section 2. Note that in the special case when
V = P, Theorem 4 follows trivially from Theorem 3. We note here that
a (V, 0)-directed cycle in a directed graph D is an anti-directed Hamilton
cycle in D. Grant [5] and Haggkvist and Thomason [6] have given sufficient
conditions for the existence of an anti-directed Hamilton cycle in a directed
graph D = (V, A) that are interesting in their own right.

We recall that the motivation behind studying well-spread halvings of
multigraphs in [7] was to split a given set of games between teams into
two halves such that multiple encounters between teams are well-spread
over the two halves of the season. The model corresponds to a multigraph
whose vertices are the teams and whose edges are the games between teams
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that need to be scheduled. If we wish to incorporate the notion of ‘home’
games and ‘away’ games we are naturally led to consider directed multi-
graphs where an arc uv might correspond to a game that team u plays with
team v at the home field of team v. A well-spread halving of the directed
multigraph in this model would correspond to a split of the given set of
games between teams into two halves such that multiple ‘home’ encounters
and multiple ‘away’ encounters are well-spread over the two halves of the

season.

2 Proofs of Theorems 3 and 4

We first prove Theorem 3 stated in the Introduction.

Proof of Theorem 3. Clearly if D has a well-spread halving then indegree(v)
and outdegree(v) must be even for each v € V(D). Now suppose that
indegree(v) and outdegree(v) are even for each v € V(D). For each arc
uv € A(D), we begin by including [M";'—Dnj parallel arcs directed from
vertex u to vertex v in each of D; and D, and deleting these arcs from D.
This leaves us with red(G). This pre-processing of D will guarantee that
the decomposition of D into D; and D, that we produce satisfies condition
(2) in the definition of a well-spread halving of D. Since indegree(v, D)
and outdegree(v, D) are even for each vertex of v € V(D), we have that
indegree(v, red(D)) and outdegree(v,red(D)) are also even for each vertex
of v € V(red(D)). Hence |E(red(D))| must be even, and red(D) contains
an anti-directed circuit C. We place arcs of C alternately in Dy and Ds.
Now, all vertices in red(D) — E(C) have even indegrees and outdegrees. We
now find an anti-directed circuit in red(D) — E(C) and place its arcs alter-
nately in D; and D,. Continuing in this fashion we obtain a well spread
halving of D into halves D; and D,. W

Note that if D is a connected directed graph with indegree(v) and outdegree(v)
being even for each v € V(D), then D contains a directed Euler circuit.
In contrast, we point out here that if D is a connected directed graph
with indegree(v) and outdegree(v) being even for each v € V(D), then
D need not contain an anti-directed Euler circuit. A simple example to
illustrate this is the following D. Let D = (V,A4) with V = {1,2,3,4}
and 4 = {12,21,23, 32, 34,43, 14,41}. Then, the indegree and outdegree of
each vertex of D is 2 but D does not contain an anti-directed Euler circuit.
The following theorem [1] gives a necessary and sufficient condition for a
directed graph to have an antidirected Euler circuit. We state this theorem
without proof and purely as a matter of side interest.

Theorem 5 [1] A directed graph D has an anti-directed Euler circuit if
and only if indegree(v) and outdegree(v) are even for each v € V(D), any

489



two vertices in V(D) are joined by an anti-directed path in D, and, there
ezists an anti-directed walk of odd length from v to itself for each v € V(D)
with indegree(v) > 0 and outdegree(v) > 0.

In order to prove Theorem 4 in the Introduction, we will use the follow-
ing theorem that gives a sufficient condition for the existence of a directed
Hamilton cycle in a directed graph. This theorem is a direct corollary of a
theorem by Ghouila-Houri [4).

Theorem 6 [4] If D is a directed graph of order n with indegree(v) > %
and outdegree(v) > % for each v € V(D), then D contains a directed
Hamilton cycle.

The proof of Theorem 4 in the Introduction will follow easily from the
following theorem.

Theorem 7 Let D be a directed graph of even order n and let V(D) =
PuUQ be a partition of V(D). If |P| = 2j for some integer j > 0, and
indeg(v) > % + j and outdeg(v) > % + j for each v € V(D), then D
contains a (P, Q)-directed Hamilton cycle.

Proof. We proceed by induction on j. If j = 0, then P = @ and indeg(v) >
2 and outdeg(v) > 5 for each v € V(D). Theorem 6 implies that D
contains a directed Hamilton cycle which is a (@, V(D))-directed Hamilton
cycle in D. Now suppose the theorem is true for all integers j < k~1 and
suppose that j =k > 1.

Let p and p’ be distinct vertices in P. We claim that there exists a
vertex ¢ € Q such that pg € A(D) and gp’ € A(D). Let B={ve V(D) :
pv € A(D)} and let C = {u € V(D) : up’ € A(D)}. The conditions that
indeg(v) > § + j and outdeg(v) > % + j for each v € V(D) imply that
|BNC|=|B|+|C|-|BUC|2(5+5)+(3+4)—n=2j. Sincep¢ B
and p’ € C, we have that the required vertex ¢ € Q exists with pg € A(D)
and gp’ € A(D).

We now construct a new directed graph D* from D with V(D*) =
(V(D) —{p,9,7'}) U {g*} and with E(D*) obtained from A(D) as follows:
Delete arcs vp € A(D) for each v € V(D), delete arcs p'v € A(D) for
each v € V(D), delete all arcs incident on g, replace arc pv € A(D) by
an arc ¢*v for each v € V(D), and, replace arc vp’ € A(D) by an arc vg*
for each v € V(D). Let P* = P — {p,p'} and Q* = (Q — {q}) V {¢*}.
Clearly, if D* contains a directed (P*,@Q*)-directed Hamilton cycle then D
contains a (P, Q)-directed Hamilton cycle that includes the arcs pg and
gr'. Now, |V(D*)] = n -2 and |P*| = 2(k — 1). In addition, it is
easy to verify that indeg(v,D*) > 2+k—2 = "—;—2- + (k — 1), and that
outdeg(v,D*) > 3+ k-2 = "—2'3 + (k — 1), for each v € D*. Hence,
by the induction hypothesis we have that D* contains a (P*, Q*)-directed
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Hamilton cycle and therefore D contains a (P, Q)-directed Hamilton cycle.

We are now ready to prove Theorem 4 in the Introduction.

Proof of Theorem 4. Let Dgmp be the simple directed graph under-
lying D. Since indegree(v, D) > p(% + j) and outdegree(v,D) > p(% +
J) for each v € V(D), we have that indegree(v, Dsimp) > (3 + j) and
outdegree(v, Dsimp) > (§ + j) for each v € V(Dsimp). Hence, Theorem 7
implies that Dgimyp contains a (P, Q)-directed Hamilton cycle H. Now, the
indegree and outdegree of each vertex in D — A(H) is even and therefore
Theorem 6 implies that D — A(H) has a well-spread halving into halves
D, and D,. To prove (ii) in Theorem 4 let D denote the complement of
D relative to K\’ and note that because indegree(v,D) < p(3 —J7 - 1)
and outdegree(v,D) < p(§ —j — 1) for each v € V(D), we have that
indegree(v, D) > p(3 + j) and outdegree(v, D) > p(2 + j) for each v €
V(D). Now applying the result in (i) to D yields the result in (ii). I
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