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Abstract

A digraph D is said to be super-mixed-connected if every mini-
mum general cut of D is a local cut. In this paper, we characterize
non-super-mixed-connected line digraphs. As a consequence, if D
is a super-arc-connected digraph with §(D) > 3, then the n-th it-
erated line digraph of D is super-mixed-connected for any positive
integer n. In particular, Kautz network K(d,n) is super-mixed-
connected for d # 2, and de Bruijn network B(d,n) is always
super-mixed-connected.
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Local cut; de Bruijn network; Kautz network

1 Introduction

A network can be modelled as a graph or a digraph. In this paper, we
consider digraphs in which loops or digons (arcs uv and vu form a digon)
are permitted but multiple arcs (arcs with the same head and tail) are not

present.

Besides the classical connectivity x and edge-connectivity A, some other
concepts were proposed to measure the fault-tolerance of networks. A
strongly connected digraph D is said to be super-connected, if every mini-
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mum vertex cut of D is either the out-neighbor set or the in-neighbor set of
a vertex. It is super-arc-connected if every minimum arc-cut of D is either
the out-going arcs or the in-going arcs of a vertex. In 2004, Ramras pro-
posed the concept of super-mixed-connectedness for (undirected) graphs
[2]. We generalize this concept to digraphs. A general cut of a strongly
connected digraph D is a set S of vertices and/or arcs such that D — S is
no longer strongly connected. Denote by «4(D) the cardinality of a mini-
mum general cut. For u € V(D), a local cut at u is a general cut consisting
of, for each neighbor v of u, either the vertex v or one arc of {uv,vu}, but
not both. Call a graph D super-mized-connected if every minimum general
cut of D is a local cut.

In (2], Ramras showed that any hyper-connected graph with girth at
least 4 is super-mixed-connected (a graph is hyper-connected if the dele-
tion of every minimum vertex-cut results in exactly two connected compo-
nents, one of which is an isolated vertex [3].) As a corollary, the hypercube
Qk (k 2 3) is super-mixed-connected.

An intuitive guess may be that D is super-mixed-connected if D is both
super-connected and super-arc-connected. But this is generally not true,
as can be seen from the following digraph.
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Figure 1. The lines without arrows are all bidirectional arcs.
A minimum general cut which is not a local cut is blackened.

Then, how about special classes of digraphs, such as line digraphs? In
the design of communication networks, line digraphs are often used as the
topology, for they meet many requirements such as small delays and high
reliability [4]. The line digraph L(D) of a digraph D = (V(D), A(D)) has
A(D) as its vertex set and a vertex zy is adjacent to a vertex wz in L(D)
if and only if y = w. For an integer n, the n-th iterated line digraph of D
is recursively defined as L™(D) = L(L"~}(D)) with L%(D) = D. The well
known de Bruijn networks and Kautz networks can be defined as iterated
line digraphs. For any integers d > 2 and n > 1, the de Bruijn network
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B(d,1) = K} and B(d,n) = L"~'(KJ), where K is the digraph obtained
from a complete digraph Ky by adding a loop at each vertex; the Kautz
network K(d, 1) = K441 and K(d,n) = L™} (K441).

In this paper, we characterize non-super-mixed-connected line digraphs.
As a consequence, if D is super-arc-connected with minimum degree §(D) >
3, then L™(D) is super-mixed-connected for any positive integer n. In par-
ticular, K(d, n) is super-mixed-connected for d # 2, and B(d,n) is always
super-mixed-connected.

In the remaining of this section, we introduce some terminologies used
in this paper. For u € V(D), denote by N;(u) the set of out-neighbors of
u, Np(u) the set of in-neighbors of u. Write df,(uv) = |NJ(u)|, dp(u) =
|Np(u)]. When there is no danger of confusion, the subscriptions are omit-
ted in the above notation. A general cut S of D is said to be associated
with a vertez cut C of D, if S is composed of a subset of vertices C' C C
and a subset of arcs A’, such that each arc in A’ is incident with exactly
one vertex in C\ C’, and every vertex in C\ C’ is incident with exactly one
arc in A’. We follow [1] and [5] for terminologies and notation not given
here.

2 Main Results

First, we show the relation between k4(D) and (D).

Lemma 1. Let D be a strongly connected digraph. Then k4(D) = k(D).

Proof. Since every minimum vertex cut is a general cut, we have x4(D) <
k(D). On the other hand, let S be a minimum general cut of D. Set
A=8nV(D), B=SnA(D), D' =D — A. By the choice of S, B is
a minimum arc cut of D’. Let A’ be a minimum vertex cut of D’. Then
|[A'] = k(D) £ A(D') = |B|. Since AU A’ is a vertex cut of D, we have
x(D) < |A| + |A'| < |A| +|B| = Kg(D). O

Lemma 2. Let D be a strongly connected digraph with k(D) = M(D), then
every minimum general cut of D is associated with some minimum vertez

cut of D.

Proof. If k(D) = |V(D)| — 1, then D is a complete digraph, and the result
is obvious. So, assume x(D) < |V(D)] — 1 in the following. Let S be a
minimum general cut of D. Use the notation as in the proof of Lemma 1.
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Since B is a minimum arc cut of D', there exists a vertex subset X C V/(D'),
such that there is no arc from X to X in D’ — B, where X = V(D) \ X.
By the minimality of B, every arc in B has its tail in X and head in X.

Write
Ni={z € X : z is the tail of some arc in B},

N, ={z € X: z is the head of some arc in B}.

In the case |[N1| < | X|, set T = N;. In the case |[N;| = |X| and [N2| < | X],
set T = Np. In the case that N} = X and N = X, there must be
two vertices £ € X and y € X, such that zy ¢ D’. In fact if this is
not true, then |B| = |X||X| = [X|(IV(D")| - |XI) 2 [V(D')| - 1, and thus
k(D) = K4(D) = |Al+|B| > |V(D)|-1. Set T = N1\ {z}u{z € X|zz € B}
in the third case. In any case, T is a vertex cut of D', and |T'| < |B|. Note
that k(D') = k(D) — |A| = AX(D) - |A| = |B] = MD'), it follows from
k(D') < |T| £ |B| = &(D’) that |T| = |B| = &(D'). So, T is a minimum
vertex cut of D', and every vertex in T is incident with exactly one edge
of B. Then S is associated with T U A. O

For simplicity of statement, use N, to denote N*(u) or N~(u). So,
N, = N, refers to either N*(u) = N*(v) or N~ (u) = N~ (v) or N*(u) =
N~(v) or N~ (u) = N*(v). The following theorem characterizes non-super-
mixed-connected digraphs.

Theorem 1. Let D be a super-connected digraph with minimum degree 6.
If D is not super-mized-connected, then there ezist two vertices u and v
of degree & such that either N*(u) = N~(v), or [INyN Ny| =8 -1 and
u'v' € A(D) where ' is the only vertex in N, \ N, and v’ is the only vertez
in Ny \ Ny.

Proof. Let S be a minimum general cut of D which is not a local cut. By
Lemma 2, S is associated with a minimum vertex cut C of D. Since D is
super-connected, C is the out-neighbor set or the in-neighbor set of a vertex
u with degree §. Suppose, without loss of generality, that C = N*(u).
Since D is not super-mixed-connected, there is an arc u'v’ or v'«’ in § with
v € Nt(u) and v/ ¢ N*(u) U {u}. By the minimality of S, for any arc
zy € S, y is not accessible from z in D - S.

In the case that v'v’ € S and N+ (v') = N*(u), in order that S is not a
local cut, there must be another arc uw € S. Then uu’ ¢ S and v'w ¢ S.
By the minimality of S, there is an (u/,v')-path P in D — (S\ {v'«'}).
Clearly, v'u’ € P, and thus P is also an (v/,v')-path in D — S. But then
{uv'}U PU {v'w} is an (u,w)-path in D — S, contradicting that w is not
accessible from v in D — S..
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Suppose v'u’ € § and N*+(v') # N*(u). Since d}(u) = § < d}(v'),
uu' ¢ S, and ' is not accessible from v/ in D — 3, we see that there is
a vertex w € V(D) \ (N*(u) U {u}) with v'w € A(D). Note that neither
w € § nor vw € S, since w and vw are not associated with C. So any w, v’
path in D — (S \ {v'u'}) uses the arc v/, since otherwise a (v, v’)-path
in D - (S\ {v'v} is also a (v, u')-path in D — S, and thus v’ is accessible
from v' in D — S. Then C' = (N*+(u) U {v'}) \ {v'} is a minimum vertex
cut of D. By the super-connectedness of D, there is a vertex v in D such
that N, = C’. Therefore, we arrive at the second case of the theorem.

Suppose u'v' € S and N*+(u) # N~(v'). Then there is a vertex w €
V(D) \ (N*(u) U {u}) such that wv’ € A(D). Similar to the above, w ¢
S, wv' € S, and thus w is not accessible from v’ in D - S, since otherwise
v’ is accessible from v’ in D — S. Then, ¢/ = (N*(u)U {v'}) \ {v'} is a
minimum vertex cut of D, and again we arrive at the second case of the
theorem. a

Note that a non-super-connected digraph can not be super-mixed-connected.
So the requirement of D being super-connected in Theorem 1 is natural.
The following two results were obtained in (5]

Lemma 3. [5] Let D be a strongly connected digraph. Then L(D) is super-
connected if and only if D is super-arc-connected.

Lemma 4. [5] Let D be a strongly connected digraph, and u,v be two
diitinct vertices -m V(L(D))_. If Nz'( D)(u)ﬁNz'( py(v) # @, then NZ'( py(w) =
Nipy(w). If Ny ) (u) N Ny (v) # 8, then Npp)(u) = Ny (v).

The following theorem characterizes super-arc-connected digraph whose
line digraph is not super-mixed-connected. .
Theorem 2. Let D be a super-arc-connected digraph which does not have
a substructure as in Figure 2 (some vertices may coincide, as will be seen
from Figure 3), where §(D) = 2 and d}(u2) =2, dp(v1) = 2. Then L(D)
is super-mized-connected.

Figure 2. The structure which is excluded by Theorem 2
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Proof. When 6(L(D)) = 1, the result is obvious. So, suppose §(L(D)) > 2
in the following. By Lemma 3, L(G) is super-connected. Suppose L(G) is
not super-mixed-connected. Then there exist two vertices u,v € V(L{D))
satisfying the conditions of Theorem 1. Suppose they correspond to two
arcs a, = ujts and a, = v1vg in D.

If NZ'( D)(u) =N L(D) (v), note that uzv; is the only possible vertex of
L(D) common to Ng'( D)(u) and Np, D)(v), we have 6(L(D)) = 1, contra-
dicting our assumption that §(L(D)) > 2.

So, suppose that the second case of Theorem 1 occurs, and the two
vertices u’, v’ of L(D) as in Theorem 1 correspond to arcs a,,a, in D. By
Lemma 4, and the assumption that §(L(D)) > 2, we only need to consider
the case that Ny = N p,(u) and Ny = Ny p\(v), or Nu = Npp(u)
and N, = Nz'( D)('v). By symmetry, assume without loss of generality
that N, = z’(D)(u) and N, = NZ(D)(v). In this case, ay = usw and
a, = wv; for some w € V(D). Note that uov; is the only possible element
common to N p,(u) and Ny, (v). So §(L(D)) =2, and thus §(D) = 2.
Furthermore, dz'( py(w) = L D)(v) = 2 (thus df(u2) = dp(v1) = 2), and
D has a substructure as in Figure 2, a contradiction. O

The following example shows that a digraph having a substructure as
in Figure 2 may be non-super-mixed-connected.

v
(a) K(2,2) (0 K(2,1)

Figure 3. Kautz network K(2,2) = L(K(2,1)). In (@), a general
cut which is not a local cut is indicated by blackened lines. In (b), a
substructure as in Figure 2 is indicated by blackened lines.

In [5], we have proved
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Lemma 5. Let D be a strongly connected digraph with 6(D) > 3. If
D is super-arc-connected, then L™(D) is super-arc-connected and super-
connected for any positive integer n.

Note that 6(L*(D)) = 6(D) and any digraph with minimum degree at
least 3 does not have a substructure as in Figure 2. So we have
Corollary 1. Let D be a super-arc-connected digraph with (D) > 3. Then
L™(D) is super-mized-connected for any positive integer n.

In [5], we also proved that
Lemma 6. K(d,n) is super-connected and super-arc-connected for any

d > 3. B(d,n) is super-connected and super-arc-connected for any d > 2.

Since K(d,n) and B(d,n) are both constructed by line digraph tech-
nique, we have

Corollary 2. K(d,n) is super-mized-connected if d # 2. B(d,n) is super-
mized-connected for any d.
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