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Abstract

Let v=k—1,0 or 1 (mod k). An RMP(k, A, v) (resp. RMC(k, A,
v)) is a resolvable packing (resp. covering) with maximum (resp.
minimum) possible number m(v) of parallel classes which are mu-
tually distinct, each parallel class consists of [(v — k + 1)/k] blocks
of size k and one block of size v — k(v — k + 1)/k], and its leave
(resp. excess) is a simple graph. Such designs were first introduced
by Fang and Yin. They have proved that these designs can be used
to construct certain uniform designs which have been widely applied
in industry, system engineering, pharmaceutics, and natural science.
In this paper, direct and recursive constructions are discussed for
such designs. The existence of an RMP(3,3,v) and an RMC(3, 3,v)
is proved for any admissible v.
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1 Introduction

Let v and A be positive integers. A packing (resp. covering) P(K,\,v)
(resp. C(K,A,v)) is an ordered pair (V,B) where V is a v-set of points,
and B is a collection of subsets of V' with sizes from K, called blocks, such
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that each pair of points of V occurs at most (resp. at least) A times in the
blocks.

For any pair e = {z,y} of distinct points , let m(e) be the number of
blocks containing e. The leave (resp. ezcess) of a packing (resp. covering)
P(K, )\ v) (resp. C(K,A,v)) is the multigraph spanned by all pairs e of
distinct points with multiplicity A — m(e) (resp. m(e) — A).

A packing (resp. covering) is called resolvable if its block set admits a
partition into parallel classes, each paralle!l class being a partition of the
point set V. Denote by RP(K,A;v,m) (resp. RC(K,\;v,m)) a resolv-
able packing (resp. covering) P(K, A,v) (resp. C(K, A,v)) with m parallel
classes.

Letv=k-1,00r 1 (mod k). An RMP(k,\,v) (resp. RMC(k,\,v))
is a resolvable packing (resp. covering) with maximum (resp. minimum)
possible number m(v) of parallel classes which are mutually distinct, each
parallel class consists of (v — k + 1)/k| blocks of size & and one block of
size v — k| (v — k + 1) /k], and its leave (resp. excess) is a simple graph.

Some simple computation shows:

Lemma 1.1 If there exists an RMP(k, \,v), then m(v) < n(v) where

[1\-5:’_—'11)-] v =0 (mod k)

n(v) = l.ui—'{%ﬁe%.l v=1 (mod k)

| 2% v= k-1 (mod k)

Lemma 1.2 If there exists an RMC(k, \,v), then m(v) > n(v) where

[%",—‘1’)—] v =0 (mod k)

n(v) = [wf—'{%—;—?_*_—l] v =1 (mod k)

[2% v=k—1 (mod k)

RMP and RMC were first studied by Fang etc in [6, 7]. They have
proved that these designs can be used to construct certain uniform designs
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in statistics which have been widely applied in industry, system engineering,
pharmaceutics and natural science.

Theorem 1.3 ([7]) Suppose n,k,\ and m are positive integers and n =
r (mod k) where r € {0,1,k — 1}. Then the factorial design derived from
an RMP(k,\,n) (resp. RMC(k, A, n))with m parallel classes is a uniform
design U,(q™), where g = |(n —k+1)/k] + 1.

When k£ = 3 and A € {1,2}, the existence of an RMP(3,\,v) or
RMC(3, A, v) has been solved for every positive integer v with five possible
exceptions [1, 2, 3, 4, 7, 14, 16, 18, 19, 21]. There are also some known
results on RMP(4, A, v) and RMC(4, A, v) for X € {1,2} [2, 7, 8, 10, 12, 15].

In this paper, we shall deal with the existence of an RMP(3, 3,v) and an
RMC(3, 3, v) for every positive integer v. Direct and recursive constructions
are discussed for these designs. The existence of an RMP(3,3,v) and an
RMC(83, 3, v) will be proved for any integer v > 5, except for RMP(3, 3, 6).

Theorem 1.4 There ezxists an RMP(3,3,v) and an RMC(3,3,v) for each
v > 5 except for an RMP(3,3,6).

2 Preliminaries

In this section we shall define some of the auxiliary designs and establish
some of the fundamental results which will be used later. The reader is
referred to [5] for more information on designs, and, in particular, group
divisible designs and frames.

Let K be a set of positive integers. A group-divisible design (K, A)-GDD
is a triple (X, G, B) which satisfies the following properties:

1. X is a finite set of points,

2. G is a partition of X into subsets called groups,
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3. B is a collection of subsets of X with sizes from K, called blocks,
such that every pair of points from distinct groups occurs in exactly
A blocks, and

4. No pair of points belonging to a group occurs in any block.

A (K,)\)-GDD (X,G,B) is resolvable if the blocks of B can be par-
titioned into parallel classes. When K = {k}, we write (K, ))-GDD as
(k,A)-GDD. Further, we denote (K,1)-GDD as K-GDD and (k,1)-GDD
as k-GDD.

The type of the GDD (X, G, B) is the multiset of sizes |G| of the G € G
and we usually use the “exponential” notation for its description: type
1243k ... denotes i occurrences of groups of size 1, j occurrences of groups
of size 2, and so on. An RB(v,k, }) is a resolvable (k, A)-GDD of type 1°.
A transversal design TD(k,n) is a k-GDD of type n*. It is well known
that a TD(k,n) is equivalent to k — 2 mutually orthogonal Latin squares

of order n.

A (K, \)-frame is a GDD (X, G, B) in which the collection of blocks B
can be partitioned into holey parallel classes, each holey parallel class being
a partition of X \ G; for some G; € G. The groups in a (X, A)-frame are
often referred to as holes. A uniform frame is a frame in which all groups
are of the same size. A (3,A)-frame is also called a Kirkman frame with
index A. In a (3, A)-frame, it is not difficult to prove that to each group G;
there are exactly A\|G;|/2 holey parallel classes that partition X \ Gj.

A design is called simple if all its blocks are distinct. From [22], we have

the following results for simple (3, 2)-frames and simple (3, 3)-frames.

Theorem 2.1 (1) There ezists a simple (3,2)-frame of type t* if and only
ifu>4andt(u—1)= 0 (mod 3). (2) There exists a simple (3,3)-frame
of type t* if and only if u > 4, t is even and t(u — 1) = 0 (mod 3).

The main technique that we will be using throughout the remainder
of the article is a variant of Stinson’s ‘Filling in Holes’ construction. To
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apply that construction, we will require simple (3, 3)-frames in which the
groups are not necessarily all of the same size. To get these, we shall use

the following recursive construction.

Lemma 2.2 ([20]) Suppose that there is a K-GDD of type gi'gs® - - gtm
and that for each k € K there is a simple (3,3)-frame of type h*. Then
there is a simple (3,3)-frame of type (hg1)" (hg2)®? --- (hgm)t™.

In order to use the ‘Filling in Holes’ construction, we need the notion
of an incomplete RMP (IRMP) (resp. RMC (IRMC)).

Let a = v—2n(v)/3 and v = h (mod 2), h > 3. For h > @, an
IRMP(3,3;v,h) (resp. IRMC(3,3;v,h)) is defined to be a triple (V, H, B)
which satisfies the following properties:

1. V is a v-set of points, H is an h-subset of V' (called “hole”) and B is
a collection of subsets of V' (called blocks), each block having size 3
orv—-3[(v-2)/3};

2. |JHNB| < 1for all B € B;

3. any two points of V' appear either in H or in ¢ blocks of B,2 <t < 3
(resp. 3 <t < 4);

4. B admits a partition into 3(v — h)/2 distinct parallel classes, each

consists of |(v—2)/3] blocks of size 3 and one block of size v — 3| (v—

2)/3] on V, and 3(h — a)/2 (3(h — a)/2 — 1 for IRMP(3, 3; 16, 4))

auxiliary parallel classes, each consists of (v — k)/3 triples on V\H.

For later use we will construct some IRMPs and IRMCs. Instead of list-

ing all the blocks of the parallel classes of the desired design, we only list the

blocks of some initial parallel classes. We write (a, ¢) as a;, IRMP(3, 3; v, h)

(IRMC(3, 3; v, b)) as IRMP(v, h) (IRMC(v, b)) and RMP(3, 3,v) (RMC(3,
3,v)) as RMP(v) (RMC(v)) for brevity.

Lemma 2.3 There ezists an IRMP(13,3).
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Proof: Take the point set V = (Z5 x Z3) U {001,002,003}. The required
15 parallel classes will be generated from the following three initial parallel
classes by (+1 mod 5, —).

Pr: 00lo2001 0013031 024041 003112

Py: 00201131 0014001 0022141 003lp30
Py: 00213141 0014011 0021020 0033901

It is easy to check that the leave of this IRMP(13, 3) consists of 3K3s
based on the point set {co;, 002,003} 0

Lemma 2.4 There ezists an IRMP(16,4).

Proof: Take the point set V = Z12U{00;, 002,003, 004}. The auxiliary par-
allel class will be generated from an initial block {0,4,8} by (+1 mod 12).
The required parallel classes will be generated from the following six initial

parallel classes by (+4 mod 12).

P: 0123 001 45 002 6 7 0389 004 10 11
P: 0257 00113 002 48 003611 004910
P3: 02511 o00;16 002410 00339 00478

Py: 03510 00126 00219 0378 004 411

Ps: 0369 00148 002711 003210 00415
Pg: 07910 o003311 o00216 03 58 00424

Lemma 2.5 There ezists an IRMP(28,4).

Proof: Take the point set V = Z34 U {001, 002,003,004}. The auxiliary par-
allel class will be generated from an initial block {0, 8, 16} by (+1 mod 24).
The required parallel classes will be generated from the following two initial
parallel classes by (+2 mod 24) and (+1 mod 24) respectively.

P: 0123 456 7810 91114 121517 o00;1318 0021621
00319 22 o004 20 23
Py: 04812 1615 2919 31420 71622 0015 18 00210 21

0031117 o004 13 23

Lemma 2.8 There ezists an IRMP(v,4) for each v € {22,34}.

Proof: Take the point set V = (Z, x Z2) U {001, 002,003,004}, where u =
(v—4)/2. The required parallel classes will be generated from the following
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two initial parallel classes by (+1 mod v, —) and (+1 mod v, +1 mod 2)
respectively.

v=22 00201131 406051 700127 0011071 0023081 0035041 0048061
00208051 106011 213161 0013040 0025071 0037001 ©004418;

v=34 00201:3; 301200, 49605; T0l102) 8010071 1304:110;
911113, 0011061 00250141 00390121 ©0041498;
004080131 2070140 6012011 3071101 509:112; 1104;11;
21318 00190100 00210141 00313001 0045:6;

For each v, the required auxiliary parallel class will be generated from
an initial block B by (+1 mod u, +1 mod 2) respectively, where B =
{00, 30,60} for v =22 and B = {09, 50,100} for v = 34. 1}

Lemma 2.7 There ezists an IRMP(25,7).

Proof: Take the point set V = (Zy x Z2)U {004,002, +,007}. The required
27 parallel classes will be generated from the following three initial parallel
classes by (+1 mod 9, ).
Pr: 0pleb6p31 012030 0027080 0034041 0045001 o0s5l1T)
00621 8; 0075161
Py: 0021337 0015171 0024187 0038027 0041050 0054060
0067061 0073001
P3: 00015161 ©0013p31 0026041 034021 0047181 0058011
oogloTo 0072050
The six auxiliary parallel classes will be generated from the following
two auxiliary parallel classes by (+1 mod 9, -).

Q1: 0Ooli51 408031 602171 1oB001 304181 207061
Q2: 002071 103151 608041 700121 305011 406181

Lemma 2.8 There exists an IRMP(31,7).

Proof: Take the point set V = (Z12 x Z3) U {001,002, -+,007}. The rth
parallel class will consists of two parts @, and F,, 0 < » < 35. The main
part @, will be generated from the following three initial classes Qq, @,
and Q2 by (+1 mod 12, —). Here, Q12i+; = Qi +j,0<i<2,0<j < 11.
Let Fi2i+5 = Fj. We assume that the ith 3-frame of type 2% is based on
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the set {7,3 +%,6 + 4,9+ i} x Z2. Suppose j = k(mod 3) 0 < k < 2, then
take Fj to be the holey parallel class with the hole {j} x Z; in the kth
3-frame. The blocks in @, @1 and @, are listed below.

Qo: 00192001 001718 o0211010; 0034021 0045011 0057051
0068041 00710011,

Q1: 0001214y 0012071 0021050 oozdolly 0047081 0058011
00610051 00711010

Q2: 00404181 0015070 0020;11; oo3lo2: 0042071 0058010
oogllgly ©0071005;

The six auxiliary parallel classes will be generated from the following
two auxiliary parallel classes by (+1 mod 12, -).

617111
61811

911012y
9111, 4

9010020
9011040

0;115
021

3:14:8;
315110,

0olo50
002070

304080
3050100

6070110
608010

Lemma 2.9 There ezists an IRMP(v,7) for each v € {37,49,61}.

Proof: Take the point set V = (Z, x Z2) U {001,002, -,007}, where u =
(v—T7)/2. The required parallel classes will be generated from the following
two initial parallel classes by (+1 mod u, —) and (+1 mod u, +1 mod 2)

respectively.

v=237 0021:13; 40609 701001317 108311, 805171 0013001
0025012) 0039021 00411p4; 00512061 006130101 007149143
004080149 1011051 201004: 70130ll; 01117y 00190129
0023014, 0035031 0046061 00521121 0068191 007101131

v=49 00201:3; 3020015, 40609: Tol70l7; 13019041 805171
14918011, 120219, 8:12:18; 00110163 00250147 0039061
004100131 005119203 00615901 00716010,

006012019; 20100200 30160190 501115) 1192:3; 1406, 16;
15041111 017112 914117, 001809 0057051 0031018,
0044010, 002170189 006130131 0078120

v=61 00201:3; 1070229 30130219 40609 90260261

10016913, 140918011y 20024015y 805172 12¢19,23;
01171214 4,10, 25; 611624, 0015014; 00211920,
00315022y 0041708, 0051902; 006230121 007250181
0080160251 50120219 304017: 6020081 10023021
15018026 24p250141 2016321 7051191 117,23,
14010;20, 0115122, 619118 001170229 002199260

0031024 0049031 005130131  oogli1dy 00711312
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The six auxiliary parallel classes will be generated from six initial blocks
Be {001151, 206011, 203171, 002071, 80113, 204091} by (+3 mod u,
+1 mod 2). 0

Note that the leave of the IRMP(v,7) for v € {25,31,37,49,61} con-
structed in Lemmas 2.7- 2.9 consists of 3K7s based on the point set {00y,
009, - +,007}. This is important for the constructions of the corresponding

RMPs and RMCs.
Lemma 2.10 There exists an JRMP(34,10).

Proof: Take the point set V = Zz4 U {001,002, --,0010}. The required 36
parallel classes will be generated from the following three initial parallel
classes by (+2 mod 24).

P: 0123 o001 46 00257 ooz 8 11 004 910 oo 12 15
06 1316 0071420 0031721 o009 1822 o000 1923

Py: 04912 00116 00227 003 38 004 513 oo 10 19
006 1420 0071521 0031118 o009 1723 0019 16 22

P3: 071321 o00;111 002 212 ooz 3 16 004 1020 o005 419
oo 517 oo7 6 15 oog 1422 oog 8 23 o010 9 18

For each block B€ {027,138,249,0111,1212,2313,0711,1812,
2 9 13}, we can generate an auxiliary parallel class from B by (+3 mod 24).
Thus we obtain 9 auxiliary parallel classes. The last auxiliary parallel class
will be generated from the block {0,8,16} by (+1 mod 24). 0

Lemma 2.11 There ezists an IRMP(v,10) for each v € {40,46}.

Proof: Take the point set V = Z,, U {001,002, --,0010}, where u = v — 10.
The required parallel classes will be generated from the following two initial
parallel classes by (+2 mod u) and (+1 mod u) respectively.

v=40 0123 469 5726 oo1 8 23 ooz 10 25
003 1116 o004 1229 o005 13 22 oo 14 27 o007 1518
00g 1728 009 1920 o030 21 24

03712 1511 21019 oco; 416 ooz 618

o3 8 24 004 9 22 oos 13 29 ocog 14 28 oo7 1523
oog 1725 o009 2026 o019 21 27
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v=46 0123
ooy 12
0o 21

469
29 0021433
26 oo7 2227

04814 1715
001 &5 25 ooz 6 26

ocg 17

32 0071830

578
oog 15 20
oog 23 30

21019
oog 9 27
oog 20 35

10 13 16
004 18 35
cog 24 31

31223
004 13 28
oog 21 31

11 17 34
oos 19 32
0010 25 28

11 24 33
oos 16 29
0010 22 34

For each block B€ {027,138,249,0111,1212,2313,0711,1812,
2 913}, we can generate an auxiliary parallel class from B by (+3 mod u).
Thus we obtain 9 auxiliary parallel classes. The last auxiliary parallel class
will be generated from the block {0,u/3,2u/3} by (+1 mod u). 0

Lemma 2.12 There ezists an IRMP(v,13) for each v € {55,67}.

Proof: Take the point set V = (Z, x Z;) U {001,002, ,0013}, where u =
(v-13)/2. The required parallel classes will be generated from the following
two initial parallel classes by (+1 mod u, —) and (+1 mod u, +1 mod 2)

respectively.

v=>55 0020013
0011p1ly
0067031
001117041

00204011
0013060
0610061
001110119

v=67 0020011,
6081251
0025018
00717011y
001225022;

00204011
140422y
0260260
00711020,
001214115,

100169190
0023010,
0079141
001218013;

801300;
00250149
00712014,
001212;15;

30120200
220419
0038015,
0018024
001326016,

10220250
2005111
003129150
00813010,
0013191263

1301406,
034071
ooglle2;
001320051

11017017;
00390160
00815018
001313120;

100150169
2307126
0049014,
00919923,

3018071
2:13,18;
004160219
00917017y

8017119
0045020
00912016

1807:8;
0041031
0091902;

701402
310112y
oosllp2l;
01021017

10024012;
819123,
00570241
001019025;

9;15,18;
0056081
001015012

2005111,
00570161
00104191

1013;19;
0014020,
00613061
001124051

806121
00150230
0069031
00110, 16,

The fifteen auxiliary parallel classes will be generated from the following

five initial blocks by (+1 mod u, +1 mod 2).

v=>55: 004080
v=67: 004080

0010051 0014071 0080160
0010051 0ol4071 008019
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Note that the leave of the IRMP(v,13) constructed above consists of
3K3s based on the point set {001,002, --,0013}. 1]

Lemma 2.13 There exists an IRMC(16,4).

Proof: Take the point set V = Z;2 U {001, 002,003,004}. Take a auxiliary
parallel class generated from the block {0, 4,8} by (+1 mod 12) and copy it.
This gives the required two auxiliary parallel classes. The required parallel
classes will be generated from the following six initial parallel classes by
(+4 mod 12).

P: 0123 0145 00267 003 89 004 10 11
P: 0257 00113 00246 o3 811 004910
P;: 03510 00126 002411 00319 004 78
Py: 05611 @ 00138 00229 003710 o0414
Ps: 001068 379 ooz 111 00324 04 510
Ps: 0011710 069 002 58 03211 00434

Lemma 2.14 There erists an IRMC(28,4).

Proof: Take the point set V = Za4 U {001,002,003,004}. Cycling the
block {0, 8,16} twice gives the required two auxiliary parallel classes. The
required parallel classes will be generated from the following two initial
parallel classes by (+2 mod 24) and (+1 mod 24) respectively.

P: 0123 456 7810 91114 121517 o0 1318
002 16 21 o003 1922 o004 2023
Py: 04813 1514 2919 31521 101623 oo0; 618

ooz 717 003 1120 o004 12 22

Lemma 2.15 There ezists an IRMC(v,4) for each v € {22,34}.

Proof: Take the point set V = (Z, x Z3) U {001, 002,003,004}, where u =
(v—4)/2. Cycle the block {0o, (/3)o, (2u/3)o} twice by (+1 mod u, +1 mod
2). This gives the required two auxiliary parallel classes. The required par-
allel classes will be generated from the following two initial parallel classes
by (+1 mod u, —) and (+1 mod u, +1 mod 2) respectively.
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v=22 0020113; 406051 70012y 0011071 0023081

0035041 0048061
00208051 105011 402,63 0016070 0023031
0030141 0047181
v=34 0020113 301200: 406051 70ll02: 8010071 1304110

9111,13; 0011061 0025914 00390121 00414081

004080131 50120121 69l4pl) 200161 307110 7011114,
21318; 00110139 0021001l 0039091 0044151

Lemma 2.16 There ezxists an IRMC(34,10).

Proof: Take the point set V = Zz4 U {001,002,++,0010}. The required
parallel classes will be generated from the following three initial parallel
classes by (+2 mod 24).
P: 0123 oo1 4 6 00257 oo3 8 11 o004 910 oos 12 15
06 1316 0071420 o00g 1721 o0p 1822 o030 1923
Pp: 04912 oo1 16 00227 o003 38 004 515 oos 10 19
o0 1321 0071118 0031420 0091723 0010 16 22

Py: 091521 o0;111 o002 212 ooz 3 14 004 416 o0os 5 18
oog 6 20 oo7 719 oog 8 23 o009 1017 0010 13 22

For each block B € {027,138,249,0111,1212,2313,0711,1812,
2 9 13}, we can generate an auxiliary parallel class from B by (+3 mod 24).
Thus we obtain 9 auxiliary parallel classes. The last two auxiliary parallel
classes will be generated from the block {0, 8,16} by (+1 mod 24). 1]

Lemma 2.17 There ezxists an IRM(C(82, 16).

Proof: Take the point set V = (Z33 x Z3) U {00;1,002,+-,0016}. The
required parallel classes will be generated from the following two initial
parallel classes by (+1 mod 33, —) and (+1 mod 33, +1 mod 2) respectively.

Py : 20601131 3080200 70140170 10030024; 2603206; 2702917,
16021128; 22¢8:14; 23027131 5110126, 9;12;22, 0010011y
00210231 ©0034030; 0045029 00590251 ooglle7y 00712018,

008130167 00915032; 0010180207 001119041 0012210197 00132400
001425021 0015280151 ©001631013;

Py: 20113151 80200329 1016022; 50250171 10024061 12013021
190280281 11g11;27; 1400, 18, 2115,20, 419,23 00100270
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o027018¢ 003210300 004220230 00526929 00630131 0074010,
00g8608; 009971 0010150251 00111791417 0012319167 ©001312;19;
0014241307 ©001526129) ©01831132;

Cycle the block {0p,119,22¢} twice by (+1 mod 33, +1 mod 2). This
gives two auxiliary parallel classes. The other 18 auxiliary parallel classes
will be generated from 6 initial blocks B € {0049111,0910051,007:17;,
0080160,0080191,00260131} by (+1 mod 33, +1 mod 2). ]

3 Direct constructions for small orders

In this section, we construct RMPs and RMCs with small orders, some of
which will be used as input designs in recursive constructions of Section 4.

Lemma 3.1 There ezists an RMP(T) and an RMC(7).

Proof: Take the point set V = Z;. The required 7 parallel classes will be
generated from an initial parallel class {0,1,2,5}, {3,4,6} by (+1 mod 7).
Note that the leave of this RMP(7) is an empty set. So, it is also an
RMC(7). 0

Lemma 3.2 There ezists an RMP(v) for each v € {10,28}.

Proof: Take the point set V = Z, U {o0}, where u = v — 1. Some of the
required parallel classes will be generated from the following initial parallel
classes by (+3 mod u).

v=10 1248 356 o 07
1367 045 o 28
0238 157 oo 46
v=28 03710 159 248 61118 121320 142324

151725 162126 o0 1922
061318 1814 2712 31122 41626 51719
920 23 102125 001524
0125 346 789 101116 122324 142225
151826 171921 001320
041323 1715 21720 3519 61222 81421
101625 111824 00926



Other parallel classes for v = 10 and 28 are listed below.

v=10: o0 012 345 678
co 348 015 267

v=28: 0021120 0918 11019 31221 41322 51423
61524 71625 81726

Lemma 3.3 There exists an RMP(12).

Proof: Take the point set V = Z;5. The following 5 initial parallel classes
Py, P, -, P will generate 15 parallel classes by (+4 mod 12). The last
parallel class contains the following 4 blocks: 04 8,159,26 10, 3 7 11.

P: 012 345 678 91011
P,: 012 347 5810 6911
P;: 036 179 248 51011
Py: 037 1510 268 4911
Ps: 049 1710 2611 358

Lemma 3.4 There ezists an RMP(13).

Proof: Take the point set V = Z;5 U {oo}. The required 15 parallel
classes will be generated from the following five initial parallel classes by
(+4 mod 12).

Pi: 012 345 678 o0 91011
P: 012 347 5810 o06911
P;: 0358 169 2711 o0410
Py: 0359 1610 2711 o048
Ps: 06710 139 248 oo 511

Lemma 3.5 There ezists an RMP(v) for each v € {16,22}.

Proof: Take the point set V = (Z, x Z3)U {oo}, where u = (v —1)/3. The
required 4u parallel classes will be generated from the following four initial
parallel classes by (+1 mod u, —) .

v=16 1p3041 400131 001122 210232 00 201242
00103022 40l141 200102 211242 00 3132
00314132 102022 300112 2;0242 00 401y
01114132 304031 000242 1pl222 00 202y
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v=22 102050 40316; 0gl122 304152 600112 295142 00 023262
00203001 602162 400222 504252 133147 511232 00 1961
00604142 103001 205132 502262 113152 210312 o0 4061
11213152 406022 100102 204132 505112 004262 00 3961

Lemma 3.6 There ezists an RMP(19).

Proof: Take the point set V = Z;5 U {00}. The required 24 parallel classes
will be generated from the following two initial parallel classes P and Q by
(+1 mod 18) and (+3 mod 18) respectively.

P: 1247 0614 3913 51215 81017 oo01116
Q: 00123 045 61317 71214 8910 111516

Lemma 3.7 There ezists an RMC(v) for each v € {10,13,16,22}.

Proof: By Lemma 3.5, there exists an RMP(16) whose leave is an empty
set, then it is also an RMC(16). For the other three values, we can obtain
an RMC(v) by adding a new parallel class P to the RMP(v) constructed in
Lemma 3.2, Lemma 3.4 and Lemma 3.5. The blocks in P are listed below.

v=10: 00567 012 348
v=13: 002610 057 4911 138
v=22: 00000102 1ol1lz 202122 303132 404142 505152 606162

Lemma 3.8 There ezists an RMC(12).

Proof: Take the point set V = Z;5. The following 4 initial parallel classes
Py, P, P3, Py will generate 12 parallel classes by (+4 mod 12). Q; will
generate 4 parallel classes by (+3 mod 12). The last parallel class will be
generated from the block {0,4,8} by (+3 mod 12).

Pi: 012 347 5810 6911
P,: 016 278 359 41011
Ps: 035 1710 268 4911
Py: 049 127 368 51011
G1: 0910 124 3711 568

Lemma 3.9 There exists an RMC(19).
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Proof: Take the point set V = Z;3 U {oo}. Cycle the block {0,6,12} by
(+1 mod 18) and add oo to the block {0,6,12}. This gives a parallel class.
The other 24 parallel classes will be generated from the following 4 initial
parallel classes by (+3 mod 18).

1215 101316 o0 111417
1416 111217 001315
1017 51415 00 616
812 5914 00 715

P: 012 345 678 9
P,: 0379 148 2510 6
P;: 04813 11112 279 3
Py: 041113 1617 21016 3

Lemma 3.10 There exists an RMC(28).

Proof: Take the point set V = Z37 U {o0}. The required 38 parallel classes
will be generated as follows. For each block B € {0 12, 3 7 11}, cycle
the block B by (+3 mod 27) and add oo to B to form a new block of
size 4. Thus we get two parallel classes. The other 36 parallel classes will
be generated from the following two initial parallel classes P, and P; by
(+3 mod 27) and (+1 mod 27) respectively.

P: 039 1415 2817 5618 1016256 111419 132126
202224 0071223
Pp: 0124 3612 51320 71721 81824 914 22 10 19 26

111623 o0 1525

Lemma 3.11 There ezists an RMC(v) for each v € {34, 40, 58}.

Proof: Take the point set V = (Z, x Z3)U{o0}, where u = (v—1)/3. Similar
to the construction in Lemma 3.10, all these required parallel classes consist
of three parts. For each block B € @, cycle the block B by (+1 mod u, —).
Thus we can get n(v) — 4u parallel classes by adding co to B to form a
new block of size 4. The other 4u parallel classes will be generated from
the following two initial parallel classes P, and P, by (+1 mod u, —) and
(+1 mod u, +1 mod 3) respectively. The blocks in P, P; and Q are listed
below.

P
v=34 0030% 405042 60l14) 706171 80012 102272
1003262 318;02 5312102 918292 00 2010;52
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v=40 60l0glly 30911 lo4072 20111124 802110,
508162 002282 12092102 047 310252
511242 932122 oo 7061112

v=>58 1p14,8; 201122 3017172 4912112, 509151182
60101172 7081162 804162 90161112 1002112
11013;42 12091132 13011392 1407,02 15051102
16901152 17931142 18018152 00006132

P;:

v=34 00l14122 10709 3060101 50900: 8010032
202152 4092102 317162 618182 021272
00 5142

v=40 00114122 10208; 5010051 408052 602:11;
1206, 71 3091112 7042102 907292 0131122
10112;32 026282 0o 11gl2

v=>58 30112252 TolOpllp 4050171 2016002 60140102
8012012 903116; 1306118; 15011114; 180519; .
17072172  2:8;10 0113132 71151122 4;1321892
12142142 6282152 92112162 oo 0glo

Q:

v=34 0pl122 307102 905132

v=40 0Opl;52 1207182 206112 303132

v=258 006;152 601172 807122 9012;19 2010;132

14031112 494142

Lemma 3.12 There exists an RMC(46).

Proof: Take the point set V = Z45 U {o0}. For each block B € {0 13 29,
114 30, 2 15 31}, cycle the block B by (+3 mod 45) and add oo to B to
form a new block of size 4. Thus we obtain 3 parallel classes. Further, cycle
the block {0, 15,30} to get 15 blocks. Add oo to the block {3,18,33} or
{6,21, 36} respectively. This gives 2 parallel classes. The other 60 parallel
classes can be generated from the following two parallel classes P, and P;
by (+3 mod 45) and (+1 mod 45) respectively.

P: 013 245 91011 121415 131618 171921
202225 232636 242930 273440 283238 313744
333943 354142 00678

P: 03711 182343 11529 102234 61632 19 37 42
172838 41324 52041 8 25 31 23039 92735
122644 213340 o0 1436

4 Main results

In this section, we shall prove Theorem 1.4. For our purpose we need the

following constructions.
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Construction 4.1 If there exists an IRMP(v,h) (resp. IRMC(v,h)) and
an RMP(h) (resp. RMC(h)), then an RMP(v) (resp. RMC(v)) ezists.

Lemma 4.2 There ezists an RMP(v) for each v € {25,31, 34,37, 40, 46,
49,55,61,67}.

Proof: From Lemma 2.7 to Lemma 2.12, we know that there exists an
IRMP(v,7) for each v € {25,31,37, 49,61}, an IRMP(v, 10) for each v €
{34,40,46} and an IRMP(v,13) for each v € {55,67}. Using Construc-
tion 4.1, we obtain the required RMP. The input designs RMP(7), RMP(10),
RMP(13) exist by Lemma 3.1, Lemma 3.2 and Lemma 3.4. 1]

Lemma 4.3 There ezists an RMC(82).

Proof: By Lemma 2.17 and Lemma 3.7, there exists an IRMC(16) and an
RMC(16). Then there exists an RMC(82) by Construction 4.1. O

Construction 4.4 If there exist
1. @ (3,3)-frame of type 91,92 gu, 9i = gj(mod 6), 1 <i < j <,
2. IRMP(3,3;gi+h,h)s (resp. IRMC(3,3;g;+h,h)s) for1<i<u-1,
3. an RMP(3,3, g, + h) (resp. RM(C(3,3,g9, + h)).

Then an RMP(3,3, %, gi + h) (resp. RMC(3,3, %, g; + h)) exists.

Proof: For 1 < i < u, there are 3g;/2 holey parallel classes missing the
group of size g;, and the same number of parallel classes in the IRMP(3, 3; g;+
h, h); match them up arbitrarily, placing the g; points of the IRMP on the
ith group of the frame and the % points in its hole on ~ new points.

Next, each IRMP contains 3(h—a)/2 auxiliary parallel classes of triples.
From unions of these with 3(h—a)/2 parallel classes of the RMP(3, 3, gy+h),
to form 3(h — a)/2 additional parallel classes. There remain 3g,/2 parallel
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classes of the RMP(3, 3, g,, + h), which can be matched arbitrarily with the
39./2 holey parallel classes of the uth group to complete the construction.

It is easy to check that this construction gives an RMP(3,3,Y";_, gi+h).
The proof of RMC is similar to RMP. 0

We can also use some known results about RMP(3,1,v)s (resp. RMC
(3,1,v)s) and simple (3,2)-frames to construct RMP(3, 3, v)s (resp. RMC
(3737'0)3)‘

Construction 4.5 If there exists an RMP(3,1,3t) (resp. RMC (3,1, 3t))
with %52 (resp. |3¢]) parallel classes and a simple (3,2)-frame of type
3¢, then an RMP(3,3,3t) (resp. RMC (3,3, 3t)) exzists.

Proof: Start from an RMP(3,1, 3t) with [3—‘,‘,‘—‘-J parallel classes. Take a
parallel class P from them arbitrarily and construct a simple (3, 2)-frame
of type 3¢ whose groups are these ¢ blocks in P. For every group, there are
3 holey parallel classes. Match them up with the corresponding hole. Thus
we have 3t new parallel classes. Now we get 3t — 1+| 361 | parallel classes.
Clearly, each pair of points occurs at most 3 times in the blocks, and the
leave is the same as that in the beginning RMP(3, 1, 3t), so it is a simple
graph. It is easy to check that these parallel classes are mutually distinct.
So this construction gives an RMP(3, 3, 3t).

Similarly, we can get an RMC(3, 3, 3t) by using an RMC(3,1,3t) and a
simple (3,2)-frame of type 3°. 0

A resolvable 3-GDD of type 1Y is called a Kirkman triple system and
denoted by KTS(v). Two KTS(v)s on the same set X are said to be
disjoint if there is no common block. A set of v — 2 pairwise disjoint
KTS(v)s is called a large set of Kirkman triple systems, briefly an LKTS(v).
LKTS(v) can also be used to construct some kinds of RMP and RMC.

Construction 4.6 Suppose v = 3 (mod 6), if there ezists an LKTS(v),
then an RMP(3,,v) and an RMC(3, \,v) exzists for any 1 < A <v-—2.
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For our main results, we also need some frames with different group
sizes. To construct these frames, we need the notation of PBD. A pairwise
balanced design (v, K)-PBD is a K-GDD of type 1. From [5], we have the

following known results.

Lemma 4.7 There ezists a (v, {4, 5,6})-PBD for each integer v > 4 except
forv e {7-12,14,15,18,19,23,47}.

Lemma 4.8 For each t > 13, t ¢ {14,15,18,19,23,47}, there ezists a
simple (3, 3)-frame of type 18224°30°, where v = 6(t — 1) = 18a + 24b+ 30c,
a,bc>0.

Proof: By Lemma 4.7, we have a (¢, {4,5,6})-PBD based on X for every
positive integer ¢ > 13 except for ¢t € {14,15,18,19,23,47}. Deleting a
point from X, then we get a {4, 5,6}-GDD of type 3°4°5¢ for certain a, b,c >
0. Applying Lemma 2.2 with h = 6, we get the required simple (3, 3)-frame,
the input simple (3, 3)-frames of type 6* exist by Theorem 2.1. 1]

To get more frames we also need the following results on 4-GDD of type
g*ml. From Rees [11] and [17] we have:

Theorem 4.9 There exists a 4-GDD of type g*m! with m > 0 if and only
ifg=m=0 (mod 3) and 0 < m < 3g/2.

Lemma 4.10 If g =m = 0 (mod 6) and 0 < m < 3g/2, then there ezists
a simple (8,3)-frame of type g*m!.

Proof: Since g = m = 0 (mod 6) and 0 < m < 3g/2, then g/2 = m/2 =
0 (mod 3) and 0 < m/2 < 3g/4. From Theorem 4.9, there exists a 4-GDD
of type (£)*(%3)!. Applying Theorem 2.1 and Lemma 2.2 with h = 2, we
get the required simple (3,3)-frame of type g*m!. 0

Theorem 4.11 There exists an RMP(v) and en RMC(v) with n(v) paral-
lel classes for each v =0 (mod 3), v > 9.
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Proof: By [14, 18, 19], there exists an RMP(3,1,3t) with | 252 | parallel
classes when ¢ # 2,4. By Theorem 2.1, there is a simple (3,2)-frame of type
3! when ¢ > 4. Applying Construction 4.5, we obtain an RMP(v) for each
v = 0 (mod 3), v > 15. From Lemma 3.3, we get an RMP(12). From [13],
we have an LKTS(9). Applying Construction 4.6 we get an RMP(9). So
there is an RMP(v) for v = 0 (mod 3), v > 9. The proof of RMC is similar

to RMP. 0

Deleting a point from these designs constructed above, we get the fol-

lowing lemma.

Theorem 4.12 There ezists an RMP(v) and an RMC(v) with n(v) paral-
lel classes for each v = 2 (mod 3) and v > 8.

Lemma 4.13 There ezists an RMP(v) and an RMC(v) for each v =
1 (mod 6), v 2 79 and v ¢ {85,91,109, 115,139, 283}.

Proof: Let v; = v — 7. By Lemma 4.8, there exists a simple (3,3)-frame of
type 18224%30°, where v; = 18a + 24b + 30c ¢ {78,84,102, 108, 132, 276}.
Apply Construction 4.4 with A = 7. The input designs IRMP(25,7),
IRMP(31,7), IRMP(37,7) and RMPs exist by Lemmas 2.7- 2.9 and 4.2.
Thus we obtain the required RMP(v).

It is easy to see that the leave of the RMP(v) consists of 9 edges which
form a parallel class H of the hole. Furthermore, we partition these v;
points into v;/3 triples which form an auxiliary parallel class Q. Let
P = HUQ. It is a parallel class on v points. Adding P to the RMP
constructed above, we obtain an RMC(v). 0

Lemma 4.14 There ezists an RMP(v) for each v = 1 (mod 6) and v €
{7-173,85,91, 109,115, 139, 283}.

Proof: The order v = 7,13,19 comes from Lemmas 3.1, 3.4, 3.6, respec-
tively. By Lemma 4.2, there exists an RMP(v) for each v € {25, 31,37, 49,
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55,61,67}. From Theorem 2.1, we have simple (3,3)-frames of type 10%,
u € {4,7,28}. Apply Construction 4.4 with h = 3 to fill in holes using
IRMP(13,3) and RMP(13) from Lemma 2.3 and Lemma 3.4. Thus we get
an RMP(v) for every v € {43,73,283}. Similarly, from Lemma 4.10, we
have simple (3,3)-frames of type ab', a € {18,24,30} and b € {6,12}.
Applying Construction 4.4 with A = 7, we obtain an RMP(v) for v €
{85,91,109,115,139}. Here the input designs IRMP(a+7,7) and RMP(b+
7) come from Lemmas 2.7- 2.9. This completes the proof. 0

Lemma 4.15 There exists an RMP(v) for each v = 4 (mod 6), v > 76
and v ¢ {82,88,106,112,136,280}.

Proof: Let v1 = v — 4. By Lemma 4.8, there exists a simple (3,3)-frame of
type 18°24%30°, where v; = 18a + 24b + 30c ¢ {78,84,102, 108, 132, 276}.
Apply Construction 4.4 with h = 4. The input designs IRMP(22,4),
IRMP(28,4), IRMP(34,4) and RMPs exist by Lemmas 2.5, 2.6, 3.2, 3.5
and 4.2. Thus we obtain the required RMP(v). 0

Lemma 4.16 There ezists an RMP(v) for each v = 4 (mod 6) and v €
{10 - 70, 82, 88,106,112, 136, 280}.

Proof: The order v € {10, 16,22, 28, 34,40, 46} comes from Lemmas 3.2, 3.5
and 4.2. From Theorem 2.1, we have simple (3,3)-frames of type 12%,
u € {4,5}. Apply Construction 4.4 with A = 4 to fill in holes using
IRMP(16,4) and RMP(16) from Lemma 2.4 and Lemma 3.5. Then we
get an RMP(v) for each v € {52,64}. Further, we have simple (3,3)-
frames of type a%b!, a € {12,18,24,30} and b € {6,12,18} by Lemma 4.10.
Applying Construction 4.4 with h = 4, we get an RMP(v) for each v €
{58, 70,82, 88,106,112,136}. Here the input designs IRMP(a + 4,4) and
RMP(b + 4) exist by Lemmas 2.4- 2.6, 3.5 and 3.2. Deleting a point from
a 5-GDD of type 8% ([9]), we get a {5,8}-GDD of type 41971, Delete a
point from the group of size 7. This gives a {4,5,7,8}-GDD of type 41°6'.
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Applying Theorem 2.1 and Lemma 2.2 with h = 6, we get a simple (3,3)-
frame of type 241936'. Apply Construction 4.4 with h = 4 to fill in holes
using IRMP(28,4) and RMP(40) from Lemma 2.5 and Lemma 4.2. Thus
we get an RMP(280). The proof is complete. 0

Combining Lemmas 4.13- 4.16, we have the following theorem.

Theorem 4.17 There exists an RMP(v) with n(v) parallel classes for each
v=1 (mod3) andv >T.

Lemma 4.18 There ezists an RMC(v) for each v =1 (mod 6), v € {7 —
37,49 - 67}.

Proof: An RMC(7) exists by Lemma 3.1. The order v = 13,19 comes
from Lemma 3.7 and Lemma 3.9 respectively. By Lemmas 2.7- 2.9 and
Lemmas 2.12, there exists an IRMP(v,7) for each v € {25,31,37,49,61}
and an IRMP(v, 13) for v = 55,67. Partition these points which are not in
the hole arbitrarily to form an auxiliary parallel class. Add this auxiliary
parallel class to the known IRMPs. Thus we get an IRMC(v, 7) for each
v € {25,31,37,49,61} and an IRMC(v, 13) for v = 55,67. Using Construc-
tion 4.1 to fill in holes with an RMC(7) or an RMC(13), we obtain the
required RMC. 0

Lemma 4.19 There ezists an RMC(v) for v € {43,73,85,91,109,115,
139, 283}.

Proof: From Theorem 2.1, we have simple (3,3)-frames of type 10%, u €
{4,7,28}. Apply Construction 4.4 with A = 3 to fill in holes using IRMP

(13, 3). This gives an IRMP(10u+3, 13). Similar to the proof of Lemma 4.18,
we get an RMC(v) for every v € {43,73,283}. Similarly, from Lemma 4.10,
we have simple (3,3)-frames of type a*b!, a € {18,24,30} and b € {6,12}.
Applying Construction 4.4 with A = 7, we obtain an IRMP(v,b + 7) for
v € {85,91,109,115,139}. Here the input designs IRMP(a+7, 7) come from
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Lemmas 2.7- 2.9. Then we obtain an RMC(v) for v € {85,91,109, 115, 139}.
This completes the proof. 0

The proof of the following lemma is similar to the proof of Lemma 4.15.
Here, the input designs IRMC(22,4), IRMC(28, 4), IRMC(34, 4) and RMCs
exist by Lemmas 2.14 and 2.15, Lemmas 3.10 and 3.11 and Lemma 3.7.

Lemma 4.20 There ezists an RMC(v) for each v = 4 (mod 6), v > 76
and v ¢ {82,88, 106, 112, 136, 280}.

Lemma 4.21 There ezists an RMC(v) for each v = 4 (mod 6), v € {10 -
70,82, 88, 106, 112, 136, 280}.

Proof: By Lemmas 3.10- 3.12 and Lemma 3.7, there exists an RMC(v) for
every v € {10, 16,22, 28, 34, 40,46, 58}. From Theorem 2.1, we have simple
(3,3)-frames of type 12%, u € {4,5,7,9,11,23}. Apply Construction 4.4
with A = 4 to fill in holes with an RMC(16) and an IRMC(16,4) from
Lemma 2.13. Then we get an RMC(v) for v € {52,64, 88,112,136, 280}.
Similarly, start from a simple (3,3)-frame of type 24%. Applying Construc-
tion 4.4 with h = 10 to fill in holes with an RMC(34) and an IRMC(34, 10)
from Lemma 2.16, we get an RMC(106). An RMC(70) can be obtained
from a simple (3,3)-frame of type 12*18! from Lemma 4.10. By Lemma 2.17,
there exists an IRMC(82,16). Apply Construction 4.1 with h = 16 to fill
in hole with an RMC(16). Then we get an RMC(82). This completes the
proof. 0

Combining Lemma 4.18 to Lemma 4.21, we have the following theorem.

Theorem 4.22 There exists an RMC(v) with n(v) parallel classes for each
v=1 (mod3) andv > 7.

It is easy to see that there doesn’t exist an RMP(3, 3,v) and an RMC(3,
3,v) for v = 2,3,4. Now we consider the case v = 5,6.
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Lemma 4.23 There doesn’t exist an RMP(6).

Proof: Let the point set V = Zg. It is easy to see that 5§ < m(6) < 7. We
distinguish 3 cases.

Case 1. m(6) = 5.

In this case, the RMP(6) is an RB(6, 3, 2) indeed. But by [5], this design
doesn’t exist, then m(6) # 5.

Case 2. m(6) = 6.

In this case, the leave is a 3-regular graph. Without loss of generality,
suppose these three edges {0,2}, {0,3}, {0,4} are in the leave. Now we con-
sider these blocks which contain the point 0. Furthermore, we distinguish
2 cases as follow, the other cases must isomorphic to one of them.

(1) If the blocks containing {0,1} are {0,1,2}, {0,1,3} and {0,1,4},
then the other three blocks containing the point 0 must contain the point
5 also. So, the edge {1,5} doesn’t appear in any block. That is a contra-

diction.

(2) If the blocks contain {0,1} are {0,1,2}, {0, 1,3} and {0, 1, 5}, since
the edge {0, 4} must be contained in two of the other three blocks containing
the point 0, so there is at most one block containing the edge {1,4}. This

is a contradiction.
Case 3. m(6) = 7.

It is easy to prove that the leave in this case is a 1-factor. Suppose
it consists of three edges {0,3}, {1,4} and {2,5}. Now we consider these
blocks containing the point 0. similarly to Case 2, we distinguish 2 cases
as follow.

(1) If the blocks containing {0,1} are {0,1,2}, {0,1,3} and {0,1,4},
then in the other parallel classes 0,1 must appear in distinct blocks. Since
the edge {0,5} must be contained in three blocks, so there is at most one
block containing the edge {1,5}. This is a contradiction.
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(2) If the blocks containing {0,1} are {0,1,2}, {0,1,4} and {0, 1,5},
then in the other parallel classes 0, 1 must appear in distinct blocks. Since
there exactly two blocks contain the edge {0,4}, so the edge {1,4} must
be contained in three blocks. But the edge {1,4} is in the leave, this is a

contradiction.

So there doesn’t exist an RMP(6). 0

Lemma 4.24 (1) There doesn’t ezist an RMP(5) with n(5) = 7 parallel
classes. (2) There exists an RMP(5) with 6 parallel classes.

Proof: Let V = Zs. Suppose there are seven parallel classes in an RMP(5),
then the leave consists of two disjoint edges. So there is a point who does
not appear in the leave. Suppose this point is 0. It is not difficult to
prove that the point 0 must appear in five blocks of size three and two
blocks of size two. Without loss of generality, suppose these two blocks
of size two are {0,1} and {0,2}. Then each of the two edges {0,1} and
{0,2} must be contained in the other five blocks twice. We distinguish
2 cases. (1) If these blocks are {0,1,z}, {0,1,%}, {0,2,2} and {0,2,w},
where z,y,2,w € {3,4}. Then there is at most one block containing the
edge {1, 2}, this is a contradiction. (2) If these blocks are {0,1,2}, {0,1,z}
and {0,2,y} , where z,y € {3,4}. Then there exist two same parallel
classes. This is a contradiction. So there doesn’t exist an RMP(5) with 7

parallel classes.

Now we construct an RMP(5) with 6 parallel classes. The required
parallel classes are listed below.

012 013 014 023 024 034 O
34 24 23 14 13 12

Lemma 4.25 (1) There doesn’t exist an RMC(6) with n(6) = 8 parallel
classes. (2) There exists an RMC(6) with 9 parallel classes.
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Proof: Let the point set V = Z; U {a,b}. In this case, it is not difficult
to show that the excess is a 1-factor. Suppose the excess consists of three
edges {a,b}, {0,1} and {2,3}. Since these parallel classes are distinct, we
can take four parallel classes as follows:

ab0 abl ab2 ab3
123 023 013 012
In these parallel classes, the point pairs in Z, are all appear twice. Since

the two edges {0, 1} and {2, 3} are in excess, we can fix another two parallel

classes:
a0l a23
b23 b0l

The last two parallel classes must contain the following 12 edges, {a,0},
{a,1}, {a,2}, {a,3}, {b,0}, {b,1}, {b, 2}, {b,3}, {0,2}, {0,3}, {1,2}, {1,3},
and each edge is contained in exactly one block. Then the last two parallel
classes is the block set of an 3-RGDD of type 23, it is well known that such
a design does not exist. This is a contradiction. The proof is completed.

Now we construct an RMC(6) with 9 parallel classes. The required
parallel classes are listed below.

012 013 014

023 024 0
345 245 235 1

5 034 035 0
145 135 4

015 2
234 3 125 124

Lemma 4.26 (1) There doesn’t ezist an RMC(5) with n(5) = 8 parallel
classes. (2) There ezists an RMC(5) with 9 parallel classes.

Proof: Take the point set V = Zs. Suppose there are 8 parallel classes in
an RMC(5), then the excess consists of two disjoint edges. So there is a
point who does not appear in the excess. Suppose this point is 0. It is
easy to prove that the point 0 must appear in four blocks of size three and
four blocks of size two, and these blocks of size two must be {0,1}, {0, 2},
{0,3} and {0,4}. So in the other blocks, each of the four edges must be
contained in two blocks. We distinguish 2 cases. (1) If these blocks are
{0,1,2}, {0,1,y}, {0,2,2} and {0,2,w}, where z,y,2,w € {3,4}. Then
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the edge {1,2} appears only twice in all the eight parallel classes, this is a
contradiction. (2) If these blocks are {0,1,2}, {0,1,z} and {0,2,y}, where
z,y € {3,4}. Then the edge {1,3} or {1,4} appears only twice in all the
eight parallel classes, this is a contradiction. So there doesn’t exist an
RMC(5) with 8 parallel classes.

Now we construct an RMC(5) with 9 parallel classes. The required
parallel classes are listed below.

012 023 013 014 024 034 123 124 134 ' 0
34 14 24 23 13 12 04 03 02

Combining Theorems 4.11, 4.12, 4.17, 4.22 and Lemmas 4.23- 4.26,

we obtain our main results.

Theorem 1.4 There erists an RMP(3,3,v) and an RMC(3,3,v) for each
v 2 5 ezcept for an RMP(3,3,6).
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