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Abstract

If X is a geodesic metric space and z1,z2,z3 € X, a geodesic
triangle T = {z1,%2,23} is the union of the three geodesics [z172),
[x223] and [z3z1] in X. The space X is §-hyperbolic (in the Gromov
sense) if any side of T is contained in a -neighborhood of the union
of the two other sides, for every geodesic triangle 7" in X. We denote
by 6(X) the sharp hyperbolicity constant of X, i.e. §(X) := inf{6 >
0: X is é-hyperbolic }. In this paper we find some relations between
the hyperbolicity constant of a graph and its order, girth, cycles and
edges. In particular, if g denotes the girth, we prove §(G) > ¢(G)/4
for every (finite or infinite) graph; if G is a graph of order n and
edges with length k (possibly with loops and multiple edges), then
8(G) < nk/4. We find a large family of graphs for which the first
(non-strict) inequality is in fact an equality; besides, we characterize
the set of graphs with 6§(G) = nk/4. Furthermore, we characterize
the graphs with edges of length k with 6(G) < k.

Keywords: Infinite Graphs; Graphs; Connectivity; Geodesics; Gromov
Hyperbolicity.
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1 Introduction
The study of mathematical properties of Gromov hyperbolic spaces and its

applications is a topic of recent and increasing interest in graph theory; see,
for instance [7, 3, 4, 10, 19, 20, 21, 23, 24, 26, 29, 30, 32, 33].
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The theory of Gromov’s spaces was used initially for the study of
finitely generated groups (see [12, 13] and the references therein), where it
was demonstrated to have an enormous practical importance. This theory
was applied principally to the study of automatic groups (see [25}), that
play an important role in sciences of the computation. Another important
application of this spaces is secure transmission of information by internet
(see [19, 20]). In particular, the hyperbolicity also plays an important role in
the spread of viruses through the network (see [19, 20]). The hyperbolicity
is also useful in the study of DNA data (see (7]).

In recent years several researchers have been interested in showing
that metrics used in geometric function theory are Gromov hyperbolic.
For instance, the Gehring-Osgood j-metric is Gromov hyperbolic; and the
Vuorinen j-metric is not Gromov hyperbolic except in the punctured space
(see [14])). The study of Gromov hyperbolicity of the quasihyperbolic and
the Poincaré metrics is the subject of [1, 2, 5, 15, 16, 17, 18, 26, 27, 28, 30,
31, 32). In particular, in [26, 30, 32, 33] it is proved the equivalence of the
hyperbolicity of Riemann surfaces (with their Poincaré metrics) and the
hyperbolicity of a simple graph; hence, it is useful to know hyperbolicity
criteria for graphs.

In our study on hyperbolic graphs we use the notations of [11]. We
give now the basic facts about Gromov’s spaces. If v : [a,b] — X is a
continuous curve in a metric space (X, d), we can define the length of v as

L(y) := sup { S d((tic1)v(E:) ta=to <ty <o <ta= b} .

i=1

We say that v is a geodesic if it is an isometry, i.e. L(7|[e,s]) = d(7(t),7(s)) =
|t — s| for every s,t € [a,b]. We say that X is a geodesic metric space if for
every =,y € X there exists a geodesic joining z and y; we denote by [zy]
any of such geodesics (since we do not require uniqueness of geodesics, this
notation is ambiguous, but it is convenient). It is clear that every geodesic
metric space is path-connected. If X is a graph, we use the notation [u, v]
for the edge of a graph joining the vertices u and v.

In order to consider a graph G as a geodesic metric space, we must
identify any edge [u,v] € E(G) with the real interval [0,1] (if  := L([u,v]));
hence, if we consider [u, v] as a graph with just one edge, then it is isometric
to [0,{). Therefore, any point in the interior of the edge [u,v] is a point of
G. A connected graph G is naturally equipped with a distance or, more
precisely, metric defined on its points, induced by taking shortest paths in
G. Then, we see G as a metric graph.

Along the paper we just consider graphs which are connected and
locally finite (i.e., in each ball there are just a finite number of edges).
These conditions guarantee that the graph is a geodesic space. We allow



loops and multiple edges in the graphs, and the edges can have arbitrary
lengths.

If X is a geodesic metric space and J = {J},Js,...,J,} is a poly-
gon, with sides J; C X, we say that J is é-thin if for every z € J;
we have that d(z,Ujx;J;) < 8. We denote by §(J) the sharp thin con-
stant of J, ie. 6(J) := inf{§ > 0 : J is 6-thin}. If z;,73,23 € X,
a geodesic triangle T = {z,,z3,2z3} is the union of the three geodesics
[z122], [z2z3] and [z3z;). The space X is d-hyperbolic (or satisfies the
Rips condition with constant §) if every geodesic triangle in X is d-thin.
We denote by §(X) the sharp hyperbolicity constant of X, i.e. 8(X) :=
sup{d(T) : T is a geodesic triangle in X }. We say that X is hyperbolic if
X is é-hyperbolic for some 6 > 0. If X is hyperbolic, then §(X) = inf{§ >
0: X is é-hyperbolic}.

A bigon is a geodesic triangle {zi,z2, 23} with zo = z3. Therefore,
every bigon in a d-hyperbolic geodesic metric space is d-thin.

Remark 1. There are several definitions of Gromov hyperbolicity (see e.g.
[6, 11]). These different definitions are equivalent in the sense that if X is
0 a-hyperbolic with respect to the definition A, then it is §g-hyperbolic with
respect to the definition B, and there erist universal constants c;,cy such
that c104 < dp < cy64. However, for a fired § > 0, the set of 6-hyperbolic
graphs with respect to the definition A, is different, in general, from the set
of 6-hyperbolic graphs with respect to the definition B. We have chosen this
definition since it has a deep geometric meaning (see e.g. [11]).

Remark 2. Some authors (see e.g. [7]) study Gromov hyperbolicity for
graphs G such that every edge has length 1; in this context, they define

8(G) as
sup{6(T) : T is a geodesic triangle in G with vertices in V(G)}.

This definition is equivalent (in the sense of the previous Remark) to our
definition if every edge in G has length 1. However, if we want to deal with
graphs with edges of arbitrary lengths, we must consider geodesic triangles
with vertices in G. Furthermore, our definition of hyperbolic graph is exac-
tly the classical one (see e.g. [11]) when the geodesic metric space is a
graph, and we think that it is more natural from a geometric viewpoint.

The following are interesting examples of hyperbolic spaces. The real
line R is O-hyperbolic: in fact, any point of a geodesic triangle in the real
line belongs to two sides of the triangle simultaneously, and therefore we can
conclude that R is O-hyperbolic. The Euclidean plane R? is not hyperbolic:
it is clear that equilateral triangles can be drawn with arbitrarily large
diameter, so that R? with the Euclidean metric is not hyperbolic. This ar-
gument can be generalized in a similar way to higher dimensions: a normed
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vector space E is hyperbolic if and only if dim E = 1. Every arbitrary
length metric tree is O-hyperbolic: in fact, all point of a geodesic triangle in
a tree belongs simultaneously to two sides of the triangle. Every bounded
metric space X is (diam X)-hyperbolic. Every simply connected complete
Riemannian manifold with sectional curvature verifying K < —k?, for some
positive constant k, is hyperbolic. We refer to [6, 11] for more background
and further results.

If D is a closed subset of X, such that D contains a rectifiable path
joining each z,w € D, we always consider in D the inner metric obtained
by the restriction of the metric in X, that is dp(z,w) :=inf {Lx(7): v C
D is a continuous curve joining z and w} > dx(z,w).

Consequently, Lp(y) = Lx(v) for every curve v C D. We always
have dp(z, w) < oo for every z,w € D.

We would like to point out that deciding whether or not a space is hy-
perbolic is usually extraordinarily difficult: Notice that, first of all, we have
to consider an arbitrary geodesic triangle T, and calculate the minimum
distance from an arbitrary point P of T to the union of the other two sides
of the triangle to which P does not belong to. And then we have to take
supremum over all the possible choices for P and then over all the possible
choices for T'. Without disregarding the difficulty of solving this minimax
problem, notice that in general the main obstacle is that we do not know
the location of geodesics in the space. Therefore, it is interesting to ob-
tain inequalities relating the hyperbolicity constant and other parameters
of graphs.

In this paper we find some relations between the hyperbolicity cons-
tant of a graph and its order, girth, cycles and edges. In particular, if g
denotes the girth, we prove 6(G) > ¢(G)/4 for every (finite or infinite)
graph in Section 3 (see Theorem 17); in Section 4 we prove that if G is a
graph of order n and edges with length k (possibly with loops and multiple
edges), then 6(G) < nk/4 (see Theorem 30). We find a large family of
graphs for which the first inequality is attained (see Theorems 23, 24 and
25); besides, we characterize the set of graphs with 0(G) = nk/4 (see
Theorem 30 and Proposition 29). Furthermore, we characterize the graphs
with edges of length k with §(G) < k in Section 2 (see Theorem 11).

2 Relations between the hyperbolicity cons-
tant and cycles of graphs

As usual, by cycle we mean a simple closed curve, i.e. a path with different
vertices, unless the last one, which is equal to the first vertex.
A subgraph T of G is said isometric if dr(z,y) = dg(z,y) for every



z,y€l.
The following results appear in [29, Lemma 4 and Theorem 10].

Lemma 3. IfT is an isometric subgraph of G, then 4(T) < 6(G).

Let us fix a positive constant k. We denote by C,, the cycle graph
with n vertices and n edges with length k which is a cycle of length kn.
By K, we denote the complete graph with n vertices and n(n —1)/2 edges
with length k. We denote by K, . the complete bipartite graph with m+n
vertices and mn edges with length k, i.e. the bipartite graph obtained from
a set M of m vertices and a set N of n vertices, by connecting with an edge
each vertex of M with each vertex of N. By W,, we denote the wheel graph
with n vertices and 2n — 2 edges with length k, obtained from C,_; and
another vertex v, by connecting with an edge each vertex of C,_; with ».

Theorem 4. The following graphs with edges of length k have these precise
values of 8:

o The cycle graphs verify §(Cr) = nk/4 for every n > 3.

o The complete graphs verify 6(K;) = 8§(K3) = 0, 6(K3) = 3k/4,
§(K,) =k for everyn > 4.

o The complete bipartite graphs verify §(K,,) = 6(K1,2) = 6(K2,) =0,
0(Km,n) = k for every m,n > 2.

o The wheel graph with n vertices W, verifies 6(W,) = 6(Ws) = k
8(Wp) = 3k/2 for every 7 < n < 10, and §(W,,) = 5k/4 forn =6
and for everyn > 11,

Proposition 5. Let G be a graph with edges of length k. If there exists a
cycle g in G with length L(g) = 3k, then 6(G) > 3k .

Proof. Since every edge has length k and L(g) = 3k, then g is an isometric
subgraph of G. Therefore, Lemma 3 gives 6(G) > 6(g) and Theorem 4
implies 6(g) = Tk . (m|

Given a graph G, we define A(G) as the graph G without its loops,
and B(G) as the graph G without its multiple edges, obtained by replacing
each multiple edge by a single edge with the minimum length of the edges
corresponding to that multiple edge.

‘We will need the following lemma (see [29, Theorem 7]):

Lemma 6. In any graph G the inequality 6(G) < 1 diam G holds.
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Theorem 7. Let G be a graph with edges of length k. If there ezists a
cycle g in G with length L(g) > 4k, then

§G) > % min {L(0) : o is a cycle in G with L(c) > 4k } .

Note that Theorem 7 improves Proposition 5: for instance, if there
are cycles of lengths 3k and 7k in a graph G and there are not cycles of
lengths 4k, 5k and 6k, then Proposition 5 gives §(G) > 3 and Theorem 7

gives 6(G) > ZE.

Proof. Let us consider a cycle go in G with length L(go) > 4k and such
that

L(go) =min {L(0) : o is a cycle in G with L(o) > 4k }.

Assume first that L(gg) = 4k. Let us consider the subgraph I" of G
with the four vertices of go and whose edges are the edges in G connecting
these four vertices. Then I is isomorphic either to the cycle graph Cjy, to
the complete graph K or to the graph H obtained by deleting an edge to
K, since G has not loops nor multiple edges. By Lemma 3 we have that
0(G) 2 4(T), since I is an isometric subgraph of G.

By Theorem 4 we know that §(C4) = §(K4) = k. Let us consider
the two vertices z,y in H with degree 2 (note that d(z,y) = 2k) and the
bigon B with vertices {z,y} and sides v;,~2 such that v, U2 = go. The
midpoint p of v, satisfies 6(H) > §(B) > d(p,y2) = k. Moreover, we know
that §(H) < 1 diam H = k by Lemma 6, and hence §(H) = k. Therefore,
in any case §(G) > 6(T') = k. ‘

Assume now that L(go) > 4k. Fix a vertex v in go, and consider the
point u € go such that the two subcurves gy, g2 C go with g;Ugs = go which
join u and v verify L(g1) = L(g2) = L(go)/2. We are going to show that g,
and g, are geodesics. Seeking for a contradiction assume that there exists
a curve 7 joining v and v with L(n) < L(go)/2; then g, U7 is a closed curve
in G with length L(g; Un) < L(go); therefore there exists a cycle o C g1 U7
with length L(o) < 3k, since L(go) > 4k is the minimum length of the
cycles in G with length greater or equal than 4k. Since G has not loops
nor multiple edges, we deduce that L(c) = 3k; then L(g; N o) = 2k and
L(nno) = k; therefore, if we replace in g) N7 the subcurve gy No by nNo,
then we obtain a cycle with length L(go) — k. This is the contradiction we
are looking for, and then d(u,v) = L(g1) = L(g2) = L(go)/2.

Finally, let us consider the bigon B = {v,72} and the midpoint p
of v, (note that B is a bigon just because d(u,v) = L(go)/2). We have
5(B) > d(p,v2) = L(go)/4 (this can be proved by assuming that there exists
a shorter curve joining p and -; and finding a contradiction with a similar



argument to the previous one). Hence, §(G) > §(T') > 6(B) = L(go)/4,
and this finishes the proof. a

Given a graph G and a family of subgraphs {Gy}nea of G verifying
UnGrn = G and that G, N G, is either a vertex or the empty set for each
n # m, we define a graph R as follows: for each index n € A, let us consider
a point vp, (vn is an abstract point which is not contained in G,,) and we
define the set of vertices of R as V(R) = {vp}nea; two vertices of R are
neighbors, i.e. v, vn] € E(R) if and only if G,,NG,, # @. We say that the
family of subgraphs {Gp}. of G is a tree-decomposition of G if the graph
R is a tree.

A tree-decomposition of G always exists, as we will show by introdu-
cing the canonical tree-decomposition of G, before Theorem 23.

We will need the following result (see [3, Theorem 5)):

Lemma 8. Let G be a graph and {Gp}n be a tree-decomposition of G.
Then §(G) = sup,, 8(Gp).

In [23], the authors characterize the bridged graphs with edges of
length 1 which have hyperbolicity constant 1, for a different (but equivalent
in the sense of Remark 1) definition of hyperbolicity constant.

An interesting question is how to characterize the graphs G with edges
of length k and §(G) = k, but it seems very difficult to give a description
of such graphs in a simple way. Theorem 4 and Theorem 28 show a large
variety of graphs with §(G) = k (e.g. K, for every n > 4, K, ,, for every
m,n > 2, and W, for n =4,5).

However, the following theorem allows to characterize the graphs with
0(G) < k.

We also have some results which guarantee that many graphs satisfy
0(G) > k (see Theorem 12).

We will need the following lemmas (see |3, Theorems 8 and 10]):

Lemma 9. If G is a graph with some loop and every edge has length k,
then

5(G) = max {5(A(G)), ;1’5 }.

Lemma 10. If G is a graph with some multiple edge and every edge has
length k, then

8(G) = max {J(B(G')), g } = max {J(B(A(G))), g }

Given any graph G we define, as usual, its girth g(G) as the infimum
of the lengths of the cycles in G.

Theorem 11. Let G be a graph with edges of length k.

49



e §(G) < k/4 if and only if G is a tree.

e §(G) < k/2 if and only if A(G) is a tree.

e §(G) < 3k/4 if and only if B(A(G)) is a tree.

o §(G) < k if and only if every cycle g in G has length L(g) < 3k.
Furthermore, if §(G) < k, then 6(G) € {0,k/4,k/2,3k/4}.

Proof. If G is a tree, we know that §(G) =0 < k/4.

Conversely, assume that 6(G) < k/4. Seeking for a contradiction
let us assume that there exists a cycle in G. By Theorem 17 we have
k < g(G) € 46(G) < k, which is the contradiction we are looking for;
therefore, G is a tree.

If A(G) is a tree, we know that 6(A(G)) = 0. If G has not loops, then
A(G) = G and §(A(G)) =0 < k/2. If G has some loop, then by Lemma 9,
we have that

5(G) = max{a(A(G)), g} = max {o, g} = g < g .

Conversely, assume that 6(G) < k/2. If G is a tree, then A(G) = G
is a tree. Assume that G has some cycle. There are not multiple edges in
G, since in other case Lemma 10 gives 6(G) > k/2. There are not cycles in
G with length 3k, since otherwise 6(G) > 3k/4, by Proposition 5. There
are not cycles in G with length greater than 3k, since otherwise Theorem
7 gives 6(G) > k. Consequently, every cycle of G is a loop, and A(G) is a
tree.

If B(A(G)) is a tree, we have §(B(A(G))) = 0. If G has not multiple
edges, then B(A(G)) = A(G) is a tree and then 6(G) < k/2 < 3k/4. If G
has some multiple edge, then by Lemma 10, we have that

k k k 3k
§(G) = max {J(B(A(G))), 5 } = max {o, 3 } =<7

Conversely, assume that §(G) < 3k/4. If G is a tree, then B(A(G)) =
G is a tree. Assume that G has some cycle. There are not cycles in G
with length 3k, since otherwise §(G) > 3k/4, by Proposition 5. There are
not cycles in G with length greater than 3k, since in other case Theorem 7
gives §(G) = k. Consequently, every cycle of G is a loop or a double edge,
and B(A(G)) is a tree.

Assume now that every cycle g in G has length L(g) < 3k. Then we
have either that B(A(G)) is a tree (and then we have seen that §(G) <
3k/4) or that every cycle g in B(A(G)) has length L(g) = 3k. In this last
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case, let us consider the set of cycles {gn}. in B(A(G)) with length 3k, and
the closures {Hy}m of the connected components of B(A(G)) \Un{gn}. It
is clear that the union of {g,}» and {Hm}m are a tree-decomposition of
B(A(G)), and then Lemma 8 gives that

8(B(A(G))) = max { sup 8(gn), sup 6(Hin) }

Since each g, is isometric to C3, Theorem 4 gives that §(g,) = §(C3) =
3k/4. Since every Hy, is a tree, we have 6(H,,) = 0. Hence, 6( B(A(G))) =
3k/4. By Lemma. 10, we have that

5(6) = max {(B(A(G), 3 } = max {3, 5} - f’f <k.

Conversely, assume that §(G) < k. Then Theorem 7 gives that every
cycle g in G has length L(g) < 3k. We have seen in the proof that if
0(G) < k, then §(G) € {0,k/4,k/2,3k/4}.

O

We give now some results which guarantee that many graphs satisfy
0(G) > k.

Theorem 12. Let G be a graph with edges of length k. If there ezists a cycle
g in G with length L(g) = 5k and a vertez w € g such that [w,w’] € E(G)
Jor just two vertices w' € g, then §(G) > 5k/4.

Remark 13. Note that the hypothesis about the vertex w is necessary in
Theorem 12, as shows Proposition 27 below (withn =5).

Proof. Let us consider the subgraph I of G with the vertices of g and whose
edges are the edges in G connecting these vertices.

We are going to show that T is an isometric subgraph of G: consider
two vertices z,y in T; if dg(z, y) = k, then [z,y] € E(G), and consequently,
[IC, y] € E(I') and dr(z,y) =k = da(z, y); ifdg(z, y) >k, then dr(z,y) > k
and therefore dr(z,y) = 2k (since I" has five vertices and contains the sub-
graph g isomorphic to Cg), and hence, dg(z,y) = 2k = dr(z,y). Con-
sequently, I' is an isometric subgraph of G and 6(G) > §(I"), by Lemma
3.

Therefore, it suffices to prove that §(T") > 5k/4. Since [w,w’] € E(G)
for just two vertices w’ € g, there exists a point z € g with d(w,z) =
5k/2. Let us consider the bigon {w, z} with sides v;,v; whose union is g.
The midpoint p of v, satisfies d(p, y2) = 5k/4, and then §(G) > §(T) >
5k/4. a

As a consequence of Theorem 12 we obtain the following result.
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Corollary 14. Let G be a graph with edges of length k. If there exists a
cycle g in G with length L(g) = 5k and @ vertez w € g with degree two,
then §(G) > 5k/4.

Now, as a consequence of Proposition 5 and Theorems 7, 11 and 12,
we have for every graph G with edges of length k:

If G has some loop, then §(G) > k/4.

If G has some multiple edge, then 6(G) > k/2.

If G has some cycle with three edges, then §(G) > 3k/4.

If G has some cycle with four edges, then §(G) > k.

If G has some cycle g with five edges and a vertex w € g such that
[w,w') € E(G) for just two vertices w’ € g, then §(G) > 5k/4.

3 Hyperbolicity constant and girth of a graph

Theorem 17 relates the hyperbolicity constant with an interesting para-
meter of a graph G, as is its girth g(G). We need two previous results.

Lemma 15. For any cycle graph C we have 6(C) = 5‘549 .

Proof. Since diam C = L(C)/2, Lemma 6 gives that §(C) < L(C)/4. Let
us consider a bigon B with vertices {z,y} at distance L(C)/2, with sides
71,72 such that 43 U, = C. The midpoint p of v; satisfies §(C) > §(B) >
d(p,12) = d(p, {z,y}) = L(C)/4. Consequently, §(C) = L(C)/4. a
The following result is the main tool in the proof of Theorem 17.
Furthermore, it is interesting by itself. Note that it holds trivially for finite
graphs.
Theorem 18. Let C be any cycle in any graph G. There ezists an isome-
tric cycle in G which contains at least an edge of C.

Proof. If there is not a simple curve 4 joining zo,y0 € V(C) with v not
contained in C, then 7 is an isometric cycle in G, and the claim holds.

In other case, there is a simple curve < joining zo,y0 € V(C) with =y
not contained in C. Let us define

C* := {(u,v) € V(C) x V(C) : there is a simple curve 7 joining u,v
with 7 not contained in C }

Let (z,y) € C* with de(z,y) < de(u,v) for every (u,v) € C*.
Let us define

C' := {n: n is a simple curve joining z,y with 7 not contained in C}.
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Consider ¢ € C’ with L(o) < L(n) for every n € C'.

We can write C = C! U C?, where C1,C? are curves in C joining z
and y. Without loss of generality we can assume that L(C*) < L(C?), and
we define a new cycle Cp :=C! Uo.

Now we prove that Cy is an isometric cycle in G. Seeking for a contra-
diction assume that there exist z1,y; € V(Co) with d(z1,¥1) < de,(z1,%1).

First, we show that it is not possible to have z,,y;, € C. If {z1,11} #
{z,vy}, then dc(z1,11) < do(z,y), and [z13,] is not contained in C; hence,
(z1,71) € C* and this fact contradicts the definition of z and y. If
{z1,m1} = {z,y}, then L([zy]) = d(z,y) < dg,(z,y) < L(o) and [zy]
is not contained in C since L{[zy]) = d(z,y) < dg,(z,y) < L(C?); hence,
[zy] € C’ and this fact contradicts the definition of o.

We check now that it is not possible to have z,,y, € 0. If {z;,11} =
{z,y}, we have seen that this fact contradicts the definition of . If
{z1,11} # {z,y} and we denote by o¢ the subset of ¢ joining z and y,
then 7 := [z1,1] U (¢ \ 00) is not contained in C and L(n) < L(o); hence,
7 € C’ and this fact contradicts the definition of o.

If z; € C*\ {z,y},51 € o\ {,y}, then consider a geodesic 7 joining
z; and y;; hence, the union 4 of v and a subcurve of ¢ is a simple curve
joining z, and y, and 4’ is not contained in C. Therefore, (z1,y) € C* and
dc(z1,y) < de(z,y), and these facts contradict the definition of = and y.
By symmetry, it is not possible to have z; € o \ {z,y},11 € C?\ {z,y}.

These are the contradictions we were looking for. Hence, Cp is an
isometric cycle in G. It is clear that Cp contains at least an edge of C. O

Theorem 17. For any graph G we have §(G) > ﬂ‘iﬂ and the inequality
is optimal.

Proof. The inequality in the statement of this Theorem is, in fact, an equa-
lity for every cycle graph, by Lemma 15.
If G does not contain cycles, then G is a tree and g(G) = 0 = §(G).
If there exists a cycle in G, then Theorem 16 gives that there exists
an isometric cycle Cp in G. Then Lemmas 3 and 15 give

56) > 8(Co) = 220 > 49
a

Note that it is not possible to obtain the reverse inequality §(G) <
cg(G) for some positive constant ¢: let us consider the graph G, obtained
by attaching a loop to C, (with edges of length 1); it is clear that g(G,) = 1
and 6(G,) = n/4.

In [3, Corollary 4] and [29, Theorem 11] we found the following results,
respectively.
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Lemma 18. In any graph G,
6(G) =sup{6(T): T is a geodesic triangle which is a cycle } .

Lemma 19. Let C, 5 . be the graph with two vertices and three edges joining
them with lengths a < b < c. Then §(Cy p,c) = Stmin{bde}

Proposition 20. Denote by Cy, q,,....a, the graph with two vertices and k
edges joining them with lengths a; < ap < -+ < ax. Then

(1) 8(Caya.iap) = SeFmin{or=sar}
(#) 8(Cayjaz,.mar) = 3 diam Coy as,...,0r #f and only if ax_y < 3a;.

Proof. Let us denote by z;, z2 the vertices of Cy, q5,...,ax» 2nd by Ay, A2, .. Ak
the edges with lengths a,,as,...,ak, respectively.

Let us consider a geodesic triangle T'; in order to compute §(Co, q,....,ax)
without loss of generality we can assume that T is a cycle, by Lemma 18.
Then the closed curve given by T is A; UA; with1<i<j<k.

If i = 1, then A; U A; is an isometric subgraph of Cq,q,,...,ax- If
i> 1, then A; UA;UA; is an isometric subgraph of Cj, a,,...,a,- Hence, by
Lemmas 3 and 19 we have

0(Cay,a2,0x) = ma.x{ 1’?}2’5: J(Cax,aj)’ 1<1?<83x‘5k a(Cax.ae.aj)}

=max{ max T 91 . mex a; + min{a;, 3a:} }
1<i<k 4 1<i<j<k 4
= max {ak +a ’ ax + min{ax_1,3a1} }
4 4
_ ar + min{ak_l, 30.1}
= 1 .

]
We have the following family of extremal graphs for Theorem 17.

Proposition 21. Cq, q,,....a. verifies 6(Ca, a;,....ar) = 9(Ca, aa,...a) /4 if
and only ifa; = ap =--- = a;.

Proof. Note that g(Ca, a,,....ax) = a1 + Q2.
If a; = ag = - -+ = a, then Proposition 20 gives that

46(001,02,...,ak) =ar + min{ak—l’ 30.1} =a)+az= g(Cal,ag,...,ak) .

A'ssume now that J(Calyaz"'-)ak) = g(Calya2t'~~|ak)/4' PropOSition 20
gives that

e t+a= Q(Cal,az,...,ak) = 46(Ca1‘a3,...,ak) =a + min{ak—l, 30.1} .
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We prove first that ex—; < 3a;. Seeking for a contradiction, assume that
min{ax—1,3a1} = 3a;. Then a; + a; = ax + 3a; and we conclude that
ax 2 a2 = ax + 2a; > ax, which is the contradiction we were looking for.
Hence, we have ax_; < 3a;, and we deduce @) +a3 = ax+ag—_; this implies
a) =Qg =--- = Q. O

We say that a vertex v of a graph G is a tree-vertez if G \ {v} is not
connected. Note that any vertex with degree at least two in a tree is a

tree-vertex.
We denote by {Gn}. the closures in G of the connected components

of the set
G\ {v € V(G): v is a tree-vertex of G }.

It is clear that {Gr} is a tree-decomposition of G; we call it the canonical
tree-decomposition of G. Given any positive number N, we say that G
belongs to £y if G is not a tree and for each n, the graph G, is either an
edge or isometric to Cj, q,,...., fOr some k, > 2, witha; = a3 =--. =
ax, = N/2.

Remark 22. Note that every G, in the canonical tree-decomposition of G
is an isometric subgraph of G.

The next result gives that the inequality in Theorem 17 is attained
for the graphs G in the class €y, with N = g(G).

Theorem 23. Every graph G which belongs to £,y verifies §(G) = g(G)/4.

Proof. Assume that G belongs to £,(¢). Then, for any fixed G,,, Proposi-
tion 21 gives that we have either 6(G,) = 0 or §(G,) = g(G)/4. Since G
is not a tree, there exists ng with 6(Gr,) = g(G)/4 and g(Gn,) = g(G).
Hence, Lemma 8 gives §(G) = sup, 6(Gr) = g(G)/4. 0

The following results characterize the classes of graphs with loops or
multiple edges which attain the inequality in Theorem 17.

Theorem 24. Let G be any graph with every edge of length k and with
some loop. Then the following conditions are equivalent:

* §(G) =4(G)/4.
o A(G) is a tree.
® §(G)=k/4.
* §(G) < k/2.
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Proof. Assume first that §(G) = g(G)/4. Since G has at least a loop, then
9(G) = k. Consequently, §(G) = g(G)/4 = k/4, and Theorem 11 gives that
A(G) is a tree.

Assume now that A(G) is a tree. Then every cycle in G is a loop.
Since G has at least a loop, then g(G) = k. Since G is not a tree, Theorem
11 gives that §(G) = k/4, and consequently, §(G) = g(G)/4.

The equivalence of the three last statements is a consequence of The-
orem 11, since G has at least a loop. a

Theorem 25. Let G be any graph with every edge of length k and with
some multiple edge. Then the following conditions are equivalent:

* §(G) =9(G)/4.

e B(G) is a tree.

¢ §(G) =k/2 and G has not loops.
e §(G) < 3k/4 and G has not loops.

Proof. First of all, assume that 6(G) = g(G)/4. Seeking for a contradiction,
assume that G has some loop; hence, Theorem 24 gives that A(G) is a tree,
and then G has not multiple edges, which is a contradiction. Consequently,
G has not loops and B(A(G)) = B(G). Since G has at least a multiple
edge, then g(G) = 2k. Consequently, §(G) = g(G)/4 = k/2, and Theorem
11 gives that B(A(G)) = B(G) is a tree.

Assume now that B(G) is a tree. Then G has not loops and B(A(G)) =
B(G) is a tree. Theorem 11 gives that §(G) € {0,k/4,k/2}. Since G has
some multiple edge, §(G) > g(G)/4 = k/2 by Theorem 17. Consequently,
5(G) = 9(G)/4 = k/2.

The equivalence of the three last statements is a consequence of The-
orem 11, since G has at least a multiple edge and has not loops. (]

4 Relations between the hyperbolicity cons-
tant, edges and order of a graph

Since Theorem 4 gives that K, (for every n > 4) and Km n (for every
m,n > 2) are graphs with § = k, one can think that any graph obtained by
adding edges to K , must satisfy § = k. However, this is false, as shows
the following result.

Proposition 26. Let G be a graph obtained from Kpmyn (m,n = 2) by
adding some edges. Assume that there ezist vertices u,v,w, in the same part
of Kmn with [u,v] € E(G) and [u,w], [v,w] ¢ E(G). Then §(G) = 5k/4
and diam G = 5k/2.
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Proof. Let us consider vertices z,y, in the other part of K, ,, and the
cycle with length 5 given by {u,z,w,y,v,u}. Since [w,z],[w,y] € E(G)
and (u, w], [v,w] ¢ E(G), Theorem 12 implies that §(G) > 5k/4.

Therefore, Lemma 6 gives 5k/4 < 6(G) < 1 diamG and diamG >
5k/2. Let p be the midpoint of [u, v]; then d(p, w) = d(p, {u, v})+d({x, v}, w)
= k/2+2k = 5k /2. Hence, diam G = 5k/2, and applying Theorem 6 again,
we obtain §(G) < 1 diam G = 5k/4. Then we conclude §(G) = 5k/4. O

On the other side, if we have “many edges” in the graph, then we have
d=k.
We denote by deg(v) the degree of a vertex in a graph.

Proposition 27. Let G be a graph with edges of length k and with n > 4
vertices. If deg(v) > n —2 for every vertezx v € V(G), then §(G) = k and
diam G = 2k.

Proof. First of all we are going to prove that diam G = 2.

Let us consider points z,y € G and the edges [z}, 3], [y1,¥2]) € E(G)
with z € [z),72),¥ € [y1,y2). Without loss of generality we can assu-
me that ¢ := d(z,z;) and s := d(y,y;) verify 0 < ¢t < s < k/2. If
[z1,91] € E(G), then d(z,y) < d(z,z1)+d(z1,y1)+d(v1,y) = t+k+s < 2.
If [z1,41] € E(G), then [z1,y2] € E(G) since deg(z;) > n — 2, and con-
sequently, d(z,y) < d(z,z;) + d(z1,¥2) + d(y2,y) = t + 2k — s < 2k since
t < s. Therefore, diam G < 2k.

Consider now two edges [a1,a3), [b1,b2] € E(G), with a; # b;, 1 <
i,j <2 (we can do it since n > 4), and their midpoints a of [a;,a3] and b of
[b1,b2]. Then d(a,b) = k/2+d({a1, as}, {b1,b2})+k/2 > k/2+k+k/2 = 2k.
Hence, diam G = 2k.

Lemma 6 gives now that §(G) < § diamG = k. We have deg(v) >
n —2 > n/2 for every vertex v € V(G), since n > 4; hence, by Dirac’s
Theorem (see [9]) there exists a Hamiltonian cycle g in G. Since g is a
cycle in G with length L(g) = nk > 4k, Theorem 7 implies that §(G) > k.
Therefore, §(G) = k. O

Theorem 28. For eachn > 5 and1 < m < n—2, let Gn,m be the
graph with edges of length k obtained by removing m edges starting in the
same vertez from the complete graph K,. Then 6(Gnm) =k if m=1 or
m=n-2, and §(G,n) =5k/4ifl<m<n-2.

Proof. If m = 1, then Proposition 27 gives that §(Gpn,1) = k. f m =n -2,
then the canonical tree-decomposition of Gy, ,, has two components: K,_;
and an edge; therefore, Lemma 8 implies §(Gy n—2) = §(Kn_1); finally,
Theorem 4 gives that §(Gp n-2) = k.

Assume now that 1 < m < n—2. Let u € V(Gy, ) be the vertex with
less degree. Let us consider v,w € V(Gn,m) two vertices with d(u,v) > 1
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and d(u,w) > 1, and v',w’ € V(Gn,m) two vertices with d(u,v’) = 1 and
d(u,w’) = 1. If g is the cycle g := {u,',v,w,w'}, then Theorem 12 gives
0(Gn,m) = 5k/4.

We prove now that diam G, ,, = 5k/2. It easy to check that diam G, m
= max{d(u,p) : p € Gn,m} and that d(u, q) = 5k/2 if ¢ is the midpoint of v
and w. If p belongs to some edge starting in u, then d(u, p) < k; If p does not
belong to the edges starting in u, then d(v/, p) < 3k/2 and d(u,p) < 5k/2.
Then diam G,,m = 5k/2 and Lemma 6 gives 6(Gn,m) < 5k/4. Hence,
8(Gn,m) = 5k /4. O

The following family of graphs allows to characterize the extremal
graphs in Theorem 30. Let F, be the set of Hamiltonian graphs G of order
n with every edge of length k¥ and such that there exists a Hamiltonian
cycle Gy which is the union of two geodesics I'1, s in G with length nk/2
such that the midpoint z¢ of I'; satisfies dg(zo,I's) = nk/4.

Note that the endpoints of I',I'; do not have to belong to V(G).

We have a precise description of F,.

Proposition 29. Forn > 3, let us consider the cycle graph C,, with edges
of length k. Fir o vertex z € V(C,) and the geodesics (in Cpn) I'f,I'3
with lengths nk/2 joining the verter z and the point w and C, =T'] UT5.
Denote by w! the vertez in '} with d(w},2) = jk, fori=1,2andj > 1
(with w] # w).

o Ifn is even, we have 1 < j < n/2 — 1. Then a graph belongs to
Fn if and only if it is isomorphic (and hence, isometric) to a graph
obtained by adding to C,, any amount of multiple edges and/or loops
and o subset (proper or not) of either

ﬂ/ﬁ— n/2— ] [wn/z—

{['whwz] [wnwzl [wy 'y W ;/2_2]}

or
{ [z, ], (" w371}

o Ifn is odd, we have 1 < j < (n—1)/2. Then a graph belongs to
Fn if and only if it is isomorphic (and hence, isometric) to a graph
obtained by adding to C,, any amount of multiple edges and/or loops
and a subset (proper or not) of

-1)/2 n—1)/2—-1
{ [}, wi], b w], (w072, w021 )

Proof. Assume that a graph G belongs to F,,. We deal first with the case

n even. Let z and y be the points at distance nk/2 in Go joined by the
geodesics (in G) 'y, 'y with Go =TI’ UT';. Denote by v} the nearest vertex
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in T; to z (different from z if z € V(G)) and ¢; := d(v},z) € (0, k], for
i = 1,2 (notice that t; = k if and only if t; = k; otherwise, ¢; + t; = k).
Denote also by v] the vertex in I'; with d(v/,v}) = (j — 1)k and d(v{,z) >
(j—1k,fori=1,2and 2 < j £ jz, Where vf“ is the nearest vertex in I';
to y (different from y if y € V(G)) (notice that d(v{®,y) = t2). If t; =k,
then j. =n/2 —1; if t; € (0,%), then j; =n/2.

First of all, note that if we add to a graph in F,, any amount of multiple
edges and/or loops, then we also obtain a graph in F,. Therefore, without
loss of generality we can assume that G has not multiple edges or loops.

Note also that in G there is not an edge joining two non-adjacent
vertices in the same geodesic I';, for ¢ = 1,2, since if there is such edge then
I'; would not be a geodesic.

If t; € (0,k/2), then in E(G) \ E(Gy) there is not an edge starting in
v} (note that [v},v}] € E(Go) C E(G)): if [v},v}] € E(G) with j > 2, then
2k —t1 < jk —t1 = d(v},z) < d(v],v}) + d(v},z) = k: +t; and we deduce
t1 > k/2, which is a contradiction. Hence, deg('v}) =

If ¢, € [k/2,k), then 1t is possible to have [vl,vz] € E(G), but there is
not any edge starting in v} and finishing in v} with j > 2: if [v}, v]] € E(G)
with j > 2, then 3k —t; < jk—1t; = d(v{,,x) < d(v%,vl)+d(vl,x) k+ty
and we deduce ¢; > k, which is a contradiction. Hence, deg(v}) < 3.

A similar argument gives that if ¢; = k, then it is possxble to have
[v},v}], (v}, v2] € E(G), but there is not any edge starting in v} and finish-
ing in v with j > 2%.

We have similar results for the vertex vi=.

If a vertex v} with 2 < j < j, — 1 has deg(v]) > 3, then it belongs to
an edge finishing in some vertex of I';. But this is not possible, since then
dg(zo,T'2) < nk/4. Hence, every vertex v] with 2 < j < j; — 1 has degree
2, and consequently, every vertex v} with 2 < j < j, — 1 has degree 2 also.

Therefore, we have proved the result if ¢, = k by identifying = and
z, and considering the first set of edges in the statement of the Proposi-
tion. It suffices to deal with the case t; = t; = k/2, since this case allows
more edges: if t; € (0,%/2), then deg(v}) = 2 and if t; € (0,k/2), then
deg(vi) = 2. In this case, it is possible to have (v}, v ] P2 v5% Y e
E(G); hence, we have proved the result by identifying v} and z, and con-
sidering the second set of edges in the statement of the Proposition.

We deal now with the case n odd. We use the same notation that in
the case n even. The previous arguments give that if ¢, = k and we identify
z and z, then G is isomorphic to a graph obtained by adding to C, any
amount of multiple edges and/or loops and a subset (proper or not) of

n—1)/2 - —
{ [w%’ w%]’ [w}: wg]: ["”1 v/ ,'wgn 1)/2 1] }
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(note that in this case w is the midpoint of [w{™ /% w{*~1/?]). Now,
by symmetry, it suffices to deal with the case t; € (k/2,k), and then
d('vg"_l)/ 2,y) € (k/2,k). In this case, the previous arguments give that
it is possible to have [v},v2], p{"/2,u{" V%] ¢ E(G); hence, we have
proved the result by identifying v} and z.

It is not difficult to check that if a graph can be obtained by adding
to C,, some of those edges, then it belongs to F,. a

The following result gives an optimal inequality between the order of
a graph and its hyperbolicity constant. Furthermore, it is useful in the
study of the hyperbolicity of complement of graphs (see [4]).

Theorem 30. Let G be any graph with n vertices. If every edge has length
k, then 6(G) < nk/4. Moreover, if n > 3 we have §(G) = nk/4 if and only
if G € Fn; if n =2, §(G) = k/2 if and only if G has a multiple edge; if
n =1, §(G) = k/4 if and only if G has a loop.

Proof. It is not difficult to check the result for n =1 and n = 2. Assume
now that n > 3.

Let T = v; U2 Uy be any geodesic triangle in G. By Lemma 18, we
can assume that T is a cycle. Since G has n vertices and L(e) = k for every
e € E(G), we have L(T') < n and L(v;) < nk/2 for j =1,2,3. If y1 = [zy]
and p € 71, then d(p,y2 U v3) < d(p, {z,y}) < nk/4. Hence §(T) < nk/4,
and consequently §(G) < nk/4.

If §(G) = nk/4, then every inequality in the previous argument must
be equality. Hence, there exists a geodesic triangle T in G with L(T') = nk,
and there exists a geodesic v; in T such that L(y;) = nk/2. With-
out loss of generality we can assume that the midpoint zo of 7, verifies
de(xo,v2U7s) = nk/4; since T is a cycle, then L(y2U~s) = nk/2 = L(m);
consequently, I'; := 2 U 3 is a geodesic; we define I'y := v, and Gp :=
T UTy = T. Then dg(zo,I'2) = nk/4. Furthermore, L(Go) = L(T') = nk,
and this implies V(G) = V(Gy) and Gy isomorphic to Cy,. Consequently,
GeF,.

If G € F,, then there exists a bigon B = {I';,[2} such that L(T;) =
L(T'2) = nk/2 and the midpoint zo of 'y satisfies dg(xo,'2) = nk/4. Then
we deduce that §(T) > nk/4 and §(G) > nk/4. Since we have proved
§(G) € nk/4, we conclude §(G) = nk/4. O

Note that it is not possible to obtain the reverse inequality §(G) = cnk
for some positive constant c, since any tree T has §(T") = 0.
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