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Abstract

Informally, a e-switchable G-deisgn is a decomposition of the com-
plete graph into subgraphs of isomorphic copies of G which have the
property that they remain a G-decomposition when e-edge switches
are made to the subgraphs. This paper determines the spectrum
of e-switchable G-design where G is a kite (a triangle with an edge
attached) and ¢ takes t-edge, h-edge and l-edge.

Key words: complete multipartite graph, G-design, switchable
kite system, group divisible design

1 Introduction

Let G and H be simple finite graphs, and let AH denotes the graph H with
each of its edges replicated A times. The graph K,, denotes the complete
graph with n vertices. The graph Ky, n,,..», denotes the complete mul-
tipartite graph with ¢ partite sets of size ny,ny,...,n; respectively. For
convenience, we use K, \ K, to denote the graph K ; ., withn —m 1s.
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Note that K, \ K, is sometimes referred to as a complete graph of order
n with a hole of size m. A A-fold G-design of AH, (AH, G)-design, is a pair
(X, B) where X is the vertex set of H and B is a collection of isomorphic
copies (called blocks) of the graph G whose edges partition the edges of
MH. If H is a complete graph K,,, we refer to such a A-fold G-design as
one of order n. If A = 1, we drop the term “1-fold”. Let H be a partition
of X into subsets called holes. Let H = {X1,Xa,..., X} with | X;| = n;
for 1 <i < t. Let Ky, ny,..,n, on X with the i-part (or i-hole) on X;. A
A-fold holely G-design, (G, \)-HD, is a triple (X, H,B) where (X,B) is a
(AKp, ns,....ne» G)-design. The hole-type of the HD is {ny,n2,...,n:}. We
usually use an “exponential” notation to describe hole-types: the hole-type
1¢293% ... denotes 7 occurrences of 1, j occurrences of 2, etc.

Let G be a simple finite graph. V(G) and E(G) denote the vertex-set
and edge-set of G, respectively. For an edge ¢ € E(G), G — € denotes
the graph obtained from G by deleting the edge e. If ¢ ¢ E(G) and
V(¢') € V(G), G + € denotes the graph obtained from G by adding the
edge ¢. An edge ¢ of graph G is said to be admissible if the graph (G—¢)+¢'
is isomorphic to G for some edge ¢ € E(G) and V(¢') C V(G).

Let (X,H,B) be a (G, ))-HD and ¢ a fixed admissible edge of graph G.
For each block B € B, delete an edge eg € E(B) (called e-edge of B) such
that the graph B — ¢p is isomorphic to G — €. Define D, = {ep : B € B}
(called a e-set of (X, B)). If there exists a bijection o between B and D, such
that V(o(B)) C V(B), 0(B) # ep and the graph [(B—eg)+0(B)] = G for
each B € B, then we call (X,H, B) e-switchable. Note that if A > 1, B and
D, are multiset. The repeated elements in them are regarded as different.

For each B € B, (B — €g) + o(B) is called an e-transformation of B.
Let B = {(B — €g) + o(B) : B € B}. It is easy to see that (X,H,B’) is
also a (G, A\)-HD of the same type as (X, H, B). (X,H,B’) is said to be an
e-transformed design of (X, H, B).

For simple finite graphs G and H, we can similarly define e-switchable
(AH,G)-design. The motivation for the concept of e-switchable G-design
can be found in [1].

In what follows we will denote the copy of K3 + e with vertices a, b, ¢,
d and the dangling edge cd by {a,b,c — d} and it is called a kite. In a kite
{a,b,c — d}, edge {a,b} is called head-edge (or h-edge); edges {a,c} and
{b,c} are called lateral edge (or l-edge); edge {c,d} is called tail-edge (or
t-edge). A A-fold (K3 + e)-design of order v is called a A-fold kite system
of order v, and denoted by KS(v, A).

In this paper we will investigate the existence of the three types of
e-switchable kite systems when ¢ takes t-edge, h-edge and l-edge.
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2 Working lemmas

A group-divisible design (or GDD) with index ) is a triple (X, H, A), which
satisfies the following properties:

(1) H is a partition of X into subsets called groups.

(2) A is a set of subsets of X (called blocks) such that a group and a
block contain at most one common point.

(3) Every pair of points from distinct groups occurs in exactly A blocks.

The group-type of a GDD (X, H, A) is the multiset {| H|: H € H}. We also
usually use an “exponential” notation to describe group-types: the group-
type 11273k, denotes i occurrences of 1, j occurrences of 2, etc. We call
the GDD (X, H, A) a (K,A)-GDD if | A |€ K for every A € A. A ({k},A)-
GDD is briefly written as (k, A\)-GDD. A (v, K, A)-PBD is a (K, A)-GDD of
type 1%, and a (v, {k}, A)-PBD is called a (v, k, A)-BIBD.

The following construction is a variation of Wilson’s Fundamental Con-
struction in [5].

Construction 2.1 (Weighting Construction) Let € be a fived admissible
edge of graph G. Suppose (X,H,A) is a (K,)A)-GDD, and let w : X +—s
Z*r U {0} be any function (we refer to w as a weighting). For everyz € X,
let S(z) be a set of w(z) “copies” of x. For every A € A, suppose that

(UzeaS(z), {S(z):z € A}, Ba)
ts an e-switchable (G, n)-HD with hole-type {w(z) : = € A} and bijection
04: By D(A) where D.(A) = {ep: B € Ba}. Then
(Uzex S(z), {UzenS(z): H € H}, UsecaBa)

is an e-switchable (G, Ap)-HD with hole-type {3} cyw(z) : H € H} and
bijection

0 : UseaBa — UseaDc(A)
where 0(B) = c4(B) if there erists a block A € A such that B € Bg.
Construction 2.2 (PBD-construction) Let € be a fized admissible edge of
graph G. Suppose that there ezists a (v, L,1)-PBD. For eachl € L, if there

is an e-switchable (G, )\)-HD of hole-type g*, then so does an e-switchable
(G, A)-HD of hole-type g*.

Proof A (v,L,1)-PBD can be regarded as a (L, 1)-GDD with group type
1. Give each point of this GDD a weight of g, and apply the Weighting
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Construction to get an e-switchable (G, A)-HD of hole-type g¥. The input
designs are given by the hypothesis. o

Construction 2.3 (Filling subdesigns) Let a be a nonnegative integer and
€ be a fired admissible edge of graph G. Suppose that there exists an e-
switchable (G, \)-HD of hole-type {ni,n2,...,n:}. If there is an e-switcha-
ble (A\(Kn,+a \ Ka),G)-design for each 1 < i <t — 1, then so does an ¢-
switchable (M(Kya \ Kn,+a), G)-design where v = Yt _ n;. If further there
exists an e-switchable (AKy, +q, G)-design, then an e-switchable (AKy4q,G)-
design ezists.

We quote the following known results for later use.

Lemma 2.4 [3] Let g, t and u be nonnegative integers. There ezists a
(3,1)-GDD of type g*u® if and only if the following conditions are all sat-
isfied:

(1) ifg>0,thent >3, ort=2andu=g,ort=1andu=0, or
t=0;

2 u<g(t—1) orgt=0;

(3) g(t —1)+u =0 (mod 2) or gt =0;
(4) gt =0 (mod 2) oru=0;

(5) g%t(t —1)/2 + gtu =0 (mod 3).

Lemma 2.5 ([2]) There ezists a (v, {3,4,5},1)-PBD for any integer v > 3
and v # 6, 8.

3 t-switchable kite systems

Let B = {a,b,c — d} where {c,d} is the unique t-edge of the kite. The
corresponding t-transformation of B is {a,c,b—d}, or {b,c,a — d}. In this
section we always write down the corresponding t-transformation of B as
the first one {a, ¢, b—d} for convenience. A t-switchable kite system of order
v is briefly denoted by tSKS(v).

Lemma 3.1 There exists a tSKS(n) forn =8, 9, 16, 17.
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Proof n=8: Let X = Z; U {co} and (X, B) be a kite system of order 8
with the base kite {0, 3,1 —co}. The corresponding ¢-transformation of the
base kite is {0,1,3 — oo}. It is readily checked that (X, B) is a tSKS(8).

n =9 Let X = Zg and (X, B) be a kite system of order 9 with the
base kite {0, 5,3 — 4}. The corresponding t-transformation of the base kite
is {0,3,5 — 4}. It is readily checked that (X, B) is a tSK.S(9).

n = 16: Let X = Z;5 U {0} and (X,B) be a kite system of order
16 with the base kites: {0,6,1 — oo}, {0,7,3 — 5}. The corresponding t-
transformations of the base kites are {0,1,6 — 0o}, {0, 3,7 —5}. It is readily
checked that (X, B) is a tSKS(16).

n =17 Let X = Z;7 and (X, B) be a kite systems of order 17 with the
base kites: {0,8,2 — 3}, {0,7,3 — 8}. The corresponding t-transformations
of the base kites are {0,2,8 — 3}, {0,3,7 — 8}. It is readily checked that
(X,B) is a tSKS(17). O

Lemma 3.2 There exists a t-switchable (K3 + e,1)-HD of hole-types 43
and 25.

Proof Hole-type 43: Let H = {3212 +i:i = 0,1,2}. We construct
a (K4,4,4, K3 + e)-design (Z;2,H,B) by the base kite {0,5,1 — 3}. The
corresponding ¢-transformation of the base kite is {0,1,5 — 3}.

Hole-type 2% Let X = Zjpand H = {{i,i+5}: 0 < i < 4}. We
construct a (K3, .. 2, K3+e)-design (X, H, B) with the base kite {3,0,2—6}.
The corresponding t-transformation of the base kite is {2,3,0 — 6}. O

Lemma 3.3 There exists a t-switchable (K3 + e,1)-HD of hole-types 83,
84 85,

Proof By Lemma 2.4 there exists a (3,1)-GDD with group types 22 and
2%, Give each point of the GDD a weight of 4, and apply the Weighting
Construction to get a t-switchable (K3 + e 1) HD of hole-types 8 and 84.
The input designs are from Lemma 3.2.

It is well known that there is a (5,1)-GDD of group type 4°. Give
each point of the GDD a weight of 2, and similarly apply the Weighting
Construction to get a t-switchable (K3 + ¢, 1)-HD of hole-type 85. &

Theorem 3.4 A tSKS(v) exists if and only ifv=0,1 (mod 8) and v > 8.
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Proof The necessity is obvious. The sufficiency follows as below. Let
v = 8t+a where a = 0,1. For t = 1, 2, the conclusion follows from Lemma
3.1.

For t > 3 and t # 6,8, by Lemma 2.5 there exists a (t,{3,4,5},1)-
PBD. There exists a t-switchable (K3 + e, 1)-HD of hole-types 8%, 84 and
8% by Lemma 3.3. Apply Construction-2.2 with g = 8 to get a t-switchable
(K3 + e,1)-HD of hole-type 8. By Construction 2.3 with a = 0,1, there
exists a tSKS(8t + a). The needed tSKS(8) and tSKS(9) come from

Lemma 3.1.

For t = 6, 8, by Lemma 2.4 there exists a (3, 1)-GDD with group types 43
and 4%. Give each point of the GDD a weight of 4, and apply the Weighting
Construction to get a t-switchable (K3+e, 1)-HD of hole-types 162 and 164.
The input designs are from Lemma 3.2. Applying again Construction 2.3
with @ = 0,1, there exists a tSKS(8¢t + a). The needed tSKS(16) and
tSKS(17) come from Lemma 3.1.

4 h-switchable kite systems

Let B = {a,b,c — d} where {a,b} is the unique h-edge of the kite. The
corresponding h-transformation of B is {b,d,c— a}, or {a,d,c— b}. In this
section we always write down the corresponding h-transformation of B as
the first one {b,d,c — a} for convenience. An h-switchable kite system of
order v is briefly denoted by ASK S(v).

Lemma 4.1 There does not exist an hSKS(8).

Proof Let (X,B) be an h-switchable kite system of order 8. For each
kite B = {a,b,c — d} of B, the corresponding h-transformation of B is
Bp = {b,d,c —a}. Let B' = {B, : B € B}. Then (X,B') is also a kite

system of order 8.

For any z € X, denote by di(z), ¢ = 1,3, the number of kites in B
in which the degree of z is i. Similarly, denote by da(z) the number of
kites B € B such that the degree of z is 2 in both B and its corresponding
transformation Bj; denote by di(z) the number of kites B € B satisfying
that the degree of z is 2 in B, but 1 in its corresponding transformation
By,

Since both (X, B) and (X, B’) are kite systems of order 8, we have
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di(z) + 3d3(z) + 2[d2(z) + dy(z)) =7,
d’2(x) + 3d3(x) + 2[d2($) +d; (z)] =17.

Solving the equations gives dy(z) = 2 for any z € X. This implies that the
number of kites in (X, B) would be at least 16. It is impossible. &

Lemma 4.2 There exists an hSKS(n) forn =29, 16, 17.

Proof n =9: Let X = Zg and (X, B) be a kite system of order 9 with
the base kite {0, 3,2 — 6}. The corresponding h-transformation of the base
kite is {3,6,2 — 0}. It is readily checked that (X, B) is an hSKS(9).

n=16: Let X = (Z5 x {0,1,2}) U {00} and (X, B) be a kite system of
order 16 with the base kites in mod (5, —): {20, 31,0032}, {31,32,42—40},
{Oo, 42, 10 —22}, {22,42, 01 - 11}, {42, 11, 20—41}, {11,41, 10 —30}. For each
base kite B = {a,b,c — d}, take the corresponding h-transformation of B
as {b,d,c — a}. It is readily checked that (X, B) is an hSK S(16).

n=17: Let X = Z)7 and (X, B) be a kite system of order 17 with the
base kites: {0,10,4~5}, {0,12,3—5}. The corresponding h-transformations
of the base kites are {5,10,4 — 0}, {5,12,3 — 0}. It is readily checked that
(X,B) is an hRSKS(17). o

Lemma 4.3 There erists an h-switchable (K24 \ K9, K3 + €)-design.

Proof LetY = {001,002,...,000}. We construct a (Ka4 \ Ko, K3 + €)-
design (Z15UY, B) with hole Y and 60 kites. The first 15 kites are obtained
by developing the base kite {3,7,0—9} in Z;5. The other 45 kites are listed
as below:

{2,0,001 — 4}, {11,9,001 — 13},  {5,3,00; — 7}, {8,6,001 — 10},
{14,12,00; —= 1}, {13,11,002 -0},  {4,2,002 — 6}, {7,5,002 — 9},
{10,8,002 — 12}, {1,14,002 -3},  {0,13,003 -2},  {9,7,00s — 11},

{3,1,003 -5},  {6,4,003 — 8}, {12,10,003 ~ 14}, {0,1, 004 — 2},
{3,4,004 — 5}, {6,7,004 — 8}, {9,10,004 — 11},  {12,13,004 — 14},
{13,14,005 — 0}, {1,2, 005 — 3}, {4,5, 005 — 6}, {7,8, 005 — 9},
{10,11,005 — 12}, {14,0,006 —1},  {2,3,006—4},  {5,6,006 — 7},

{8,9,006 =10},  {11,12,006 — 13}, {0,5,00r —10},  {1,6,007 — 11},
{2,7,001 =12},  {3,8,00r~13},  {4,9,00r— 14},  {5,10,00s — 0},
{6,11,008 =1},  {7,12,008 =2},  {8,13,008 —3},  {9,14,00s — 4},
{10,0,000 -5},  {11,1,000 -6},  {12,2,000 =7},  {13,3,000 — 8},
{14, 4, 000 — 9}.
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For each kite B = {a, b, c— d}, take the corresponding h-transformation
of B as {b,d,c— a}. It is readily checked that (Z;5 UY, B) is h-switchable.
¢

A Kirkman triple system of order v (briefly KT'S(v)) is a (v, 3, 1)-BIBD
(X, B) together with a partition R of the set of triples B into subsets R;,
Rs, ..., R, called parallel classes such that each R; (i = 1,2,...,n) is
a partition of X. It is well known that a KTS(v) exists if and only if
v = 3 (mod 6) (see [4]).

Lemma 4.4 There exists an h-switchable (K32 \ K17, K3 + €)-design.

Proof Let I)s = {1,2,...,15}. A KTS(15) (I15,.A) with parallel classes
{P:;:1 < i< T} is listed as follows:

P P, Ps P, Ps Ps Pq

11415 1 67 189 11011 11213 123 145
257 2810 21315 21214 2 46 41014 2 911
31013 3914 347 356 31115 5 813 3 812
4912 41113 51114 4 815 5 910 6 915 61314
6 811 51215 61012 7 913 7 814 71112 71015

Let Y = {007,002,...,0017}. We construct a (K3z \ K17, K3 +e)-design
(I15UY, B) with hole Y and 90 kites. The three parallel classes P;, 5 <i < 7
serve to give the following 30 kites:

(2,3,1-12},  {14,4,10-5}, {5,13,8—14}, {15,9,6 — 2},
{12,7,11 =15}, {12,13,00, — 6}, {5,9,001 =11}, {14,7,00; — 10},
{2,4,001 — 1}, {15,3,001 — 8}, {1,13,002 — 5}, {10,9,002 — 15},
{8,7,000 12}, {6,4,002 — 14}, {11,3,000 -2}, {1,5,003 —9},
{10,15,003 — 3}, {8,12,00s — 13}, {6,14,005 — 7}, {11,2,003 — 4},
{4,1,004 — 5}, {7,10,004 — 15}, {3,8,004 — 12}, {13,6,004 — 14},
{9,11,00a — 2}, {5,4,005—6},  {15,7,005 —8}, {12,3,005 — 11},
{14,13,005 — 1}, {2, 9, 005 — 10}.

The other 60 kites are constructed as follows:
{a'a b: o03i4-3 — C}, {by C, 003i4+4 — a'}a {C, a, 0345 — b})

for each 1 < ¢ < 4 and each {a,b,c} € P;.

For each kite B = {a, b,c— d}, take the corresponding h-transformation
of B as {b,d,c— a}. It is readily checked that (Z;5 UY, B) is h-switchable.
¢
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Lemma 4.5 There ezists an hSKS(40).

Proof Let X = (Z13 x {0,1,2}) U {oo} and (X, B) be a kite system of
order 40 with the base kites in mod (13,-):

{(1,0),(3,1),00 = (10, 2)},
{(0’ O)v (4) 0): (81 1) - (5» 0)}1
{(O’O)r (6: 0)7 (5s 1) - (11’0)}v
{(0, 0), (9, 1)» (9’ 2) - (11’0)}!
{(Oa 1)’ (21 l)v (6’ 1) - (3a 1)}7
{(Os 2)7 (27 1)7 (121 2) - (7) 1)}7
{(0, 0)’ (2’ 2)1 (61 2) - (11»0)}a
{(0,1),(7,2),(9,2) — (4,0)}.

{(01 0)1 (1)0)! (31 0) - (3: 1)}’
{(Oa 0)1 (5, O)) (6, 1) - (9) 0)}1
{(0,1),(2,0),(2,2) - (8,0)},
{(Ov 1)1 (1: 1)’ (4: 2) - (5, 0)}’
{(01 1), (5: l)y (6) 2) - (71 1)}a
{(01 0), (4: 2)) (1! 2) - (6: 1)}’
{(0,2),(10,0),(7,2) — (12,2)},

For each base kite B = {a, b, ¢ — d}, take the corresponding h-transformation
of B as {b,d,c — a}. It is readily checked that (X,B) is an hSK S(40). ¢

Lemma 4.6 There ezists an hSKS(56).

Proof Let X = (Z1; x {0,1,2,3,4}) U {oo} and (X, B) be a kite system of order

56 with the base kites in mod (11, —):

{(5,2),(10,4),00 — (0,0)},
{(O’ 0)7 (0, 2)1 (1’0) - (1’4)}’
{(01 1)) (1! 0)1 (4: 0) - (1» 1)}1
{(Ov 0)’ (51 0)7 (6’ 2) - (9'0)}’
{(Ov 0)’ (21 1)1 (2’ 3) - (71 0)}7
{(0’ 0): (4a 1)’ (51 3) - (110)}:
{(0, 1), (39 1)1 (71 2) - (4’ 1)}’
{(07 1)’ (5s 1)7 (51 4) - (g’ 1)}3
{(O’ 1)7 (5v2)1 (8a 4) - (77 1)}a
{(Os 1)» (8’ 2)’ (41 4) - (21 1)};
{(0’ 2)9 (212): (6’2) - (3’ 2)}1
{(0’ 0)’ (0’ 3)’ (8’ 3) - (1’ 2)}’
{(Or 0), (3$ 3): (39 4) - (21 0)})
{(01 2): (4v 3)) (6, 4) - (Bs 0)}»
{(0’ 3)! (5’ 2)) (7: 4) - (2’ 3)}:
{(O) 4)1 (2: 3)v (7» 3) - (101 4)}1

{(07 3): oo, (8’ 1) - (23 3)})
{(0,1),(0,0), (2,0) — (0,2)},
{(Ov 0)1 (41 O)v (5v 1) - (3, 1)}=
{(0’ 1)1 (5! 0)1 (lv 2) - (10’ 0)}’
{(03 0)1 (31 1)’ (5, 2) - (1’0)})
{(01 1)1 (1) 1)7 (0: 2) - (8’ 0)})
{(0» l)r (41 1)1 (61 3) - (71 1)}1
{(01 2)a (21 1)) (0’ 3) - (7, 1)}1
{(01 l)a (6’ 2): (8, 3) - (11 1)}:
{(Ov 2)a (1’ 2)! (10, 4) - (4, 1)};
{(0? 3)’ (172)a (4)3) - (3, 2)}’
{(0, 0)) (11 3)’ (10’ 3) - (1»0)}»
{(0,0), (7, 3),(8,4) — (4,0)},
{(0) 2)’ (87 3)7 (9, 3) - (4) 2)}v
{(07 4): (3! 3)! (21 4) - (8’ 2)}i
{(01 2)! (Or 4)1 (81 4) - (21 3)})

{(01 1)1 (10! 4)! (3r 4) - (10, 2)}’ {(07 0): (71 4)1 (614) - (81 1)}:

{(0’ 0)1 (107 4)9 (5’4) - (3’ O)}

For each base kite B = {a, b, ¢ — d}, take the corresponding k-transformation
of B as {b,d,c — a}. It is readily checked that (X, B) is an hSK S(56). o
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Lemma 4.7 There exists an h-switchable (K3 + e,1)-HD of hole-types 4° and
25,

Proof Hole-type 43: Let X = {z,y,2} x Zs and H = {{i} x Z4 : i € {z,y,2}}.
We construct a (K4,4,4, K3 + €)-design (X, H, B) by listing its kites as follows:

{0, 22,20 — y3}, {22,y3,22— 21}, {v3,21,23— %}, {21,%,21 — 22},
{20,%2,90 — 23}, {z2,23,32 — =1}, {2, 21,93 — 2}, {Z1,20,5n — 22},
{z0,y2,20 — x3}, {v2,%3,22 -}, {z3, 41,23 —2o}, {v1,%0,21 —y2}.

For each kite B = {a,b,c — d}, take the corresponding h-transformation of B as
{b,d,c — a}. It is readily checked that (X,H, B) is h-switchable.

Hole-type 2°: Let X = Zjo and H = {{i,i+5}: 0 < i < 4}. We construct
a (Ka,..2, K3 + e)-design (X, ™, B) with the base kite {0,7,8 — 4}. The corre-
sponding h-transformation of the base kite is {7,4,8 — 0}. It is readily checked
that (X, H, B) is h-switchable. o

Lemma 4.8 There exists an h-switchable (K3 +e, 1)-HD of hole-types 83, 8* and
8% There erists an h-switchable (K3 + e,1)-HD of hole-types 163, 16* and 16°.

Proof The proof of the first assertion is similar as that of Lemma 3.3.

The second assertion is proved as follows: By Lemma 2.4 there exists a (3, 1)-
GDD with group types 4° and 4%. Give each point of the GDD a weight of 4,
and apply the Weighting Construction to get an h-switchable (K3 + e, 1)-HD of
hole-types 16° and 16%. The needed h-switchable (K3 + e, 1)-HD of hole-type 4°
is from Lemma 4.7.

It is well known that there is a (5, 1)-GDD of group type 8°. Give each point
of the GDD a weight of 2, and similarly apply the Weighting Construction to
get an h-switchable (K3 + e,1)-HD of hole-type 16°. The needed h-switchable
(K3 + e,1)-HD of hole-type 2° is from Lemma 4.7. o

Lemma 4.9 There exists an hSK S(v) for any integer v =1 (mod 8) and v > 9.

Proof Let v = 8t+ 1 wheret > 1. The conclusion follows by Lemma 4.2 for
t=1,2. Fort >3 and t # 6,8, by Lemma 2.5 there exists a (¢, {3,4,5}, 1)-PBD.
There exists an h-switchable (K3 +e, 1)-HD of hole-types 8°, 8¢ and 8° by Lemma
4.8. Apply Construction 2.2 with g = 8 to get an h-switchable (K3 + ¢,1)-HD
of hole-type 8. By Construction 2.3 with a = 1, there exists an hSKS(8t + 1).
The needed hSK S(9) comes from Lemma 4.2.

We remain to deal with ¢ = 6,8. By Lemma 2.4 there exists a (3,1)-GDD
with group type 4'/2. Give each point of the GDD a weight of 4, and apply
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the Weighting Construction to get an h-switchable (K3 + e, 1)-HD of hole-type
16*/2, The input design is from Lemma 4.7. Applying again Construction 2.3
with a = 1, there exists an hSKS(8t + 1). The needed ASKS(17) comes from
Lemma 4.2. o

Lemma 4.10 There ezists an hSKS(v) for any integer v = 0 (mod 8) and
v 2> 16.

Proof For v = 16, the conclusion follows from Lemma 4.2. For v = 24, there
exists an h-switchable (K24 \ K9, K3 + €)-design by Lemma 4.3. By Construction
2.3 with an ASK S(9) from Lemma 4.2, there exists an hSKS(24).

For v = 32, there exists an h-switchable (K32 \ K17, K3 + ¢€)-design by Lemma
4.4. By Construction 2.3 with an hSKS(17) from Lemma 4.2, there exists an
hSKS(32).

For v = 40, the conclusion follows by Lemma 4.5.

Next we deal with the case v > 48. Let v = 16t + 6 where t > 3 and § =0, 8.
We divide the problem into three cases.

Case 1: v = 16t where t > 3. For t # 6,8, by Lemma 2.5 there exists a
(t,{3,4,5},1)-PBD. There exists an h-switchable (K3 + e,1)-HD of hole-types
16, 16* and 16° by Lemma 4.8. Apply Construction 2.2 with g = 16 to get an
h-switchable (K3 + e,1)-HD of hole-type 16°. By Construction 2.3 with a = 0,
there exists an hSKS(16t). The needed hSKS(16) comes from Lemma 4.2.

We remain to deal with ¢ = 6,8. By Lemma 2.4 there exists a (3,1)-GDD
with group type 4%/2. Give each point of the GDD a weight of 8, and apply
the Weighting Construction to get an h-switchable (K3 + e, 1)-HD of hole-type
32%/2. The needed h-switchable (K3 + e, 1)-HD of hole-type 8% is from Lemma
4.8. Applying again Construction 2.3 with @ = 0, there exists an hSKS(16t).
The needed hSK S(32) exists as pointed before.

Case 2: v = 16t + 8 where t = 1,2 (mod 3) and ¢ > 3. By Lemma 2.4 there
exists a (3,1)-GDD with group type 4:7!6!. By Lemma 4.7 there exists an A-
switchable (K3 + e, 1)-HD of type 4°. Give each point of the GDD a weight of 4,
and apply the Weighting Construction to get an h-switchable (K3 + e, 1)-HD of
hole-type 16°~124'. Applying Construction 2.3, there exists an hSK S(16¢ + 8).
The needed hSKS(16) and hSK S(24) exist as above.

Case 3: v = 16t + 8 where t = 0 (mod 3) and ¢ > 3.
For ¢t = 3, the conclusion follows from Lemma 4.6.

For t = 6 (i.e., v = 13 x 8), there exists a (4,1)-GDD of type 4°. Take a
block B of this GDD, and give three point of B a weight of zero and each other
point of the GDD a weight of 8. By Lemma 4.8 there exists an h-switchable
(K3 +¢,1)-HD of types 8 and 8%. We apply the Weighting Construction to get
an h-switchable (K3 + e, 1)-HD of hole-type 24°32'. Applying Construction 2.3,
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there exists an hSK.S(13 x 8). The needed hSKS(24) and hSKS(32) come as
above.

For ¢ > 9, by Lemma 2.4 there exists a (3,1)-GDD with group type 4314,
By Lemma 4.7 there exists an h-switchable (K3 + e, 1)-HD of type 4%, Give each
point of the GDD a weight of 4, and apply the Weighting Construction to get an
h-switchable (K3 + e,1)-HD of hole-type 16°~356'. Applying Construction 2.3,
there exists an hSK S(16t +8). The existence of an hSK S(16) and an hSK S(56)
are pointed as before. &

Theorem 4.11 An hSKS(v) exists if and only if v=0,1 (mod 8) and v > 8.

Proof The necessity follows from Lemma 4.1 and the necessary condition of
the existence of a kite system of order v. The sufficiency follows by Lemmas 4.9
and 4.10. O

5 [-switchable kite systems

Let B = {a,b,c — d} where {a,c} and {b,c} are the only two l-edge of the kite.
The corresponding I-transformation of B is {c,d,b ~ a}, or {c,d,a — b}. In this
section we always write down the corresponding [-transformation of B as the first
one {c,d, b— a} for convenience. An l-switchable kite system of order v is briefly
denoted by ISKS(v).

Lemma 5.1 There does not exist an ISKS(8).

Proof Let (X,B) be an l-switchable kite system of order 8. For each kite
B = {a, b, c—d} of B, the corresponding I-transformation of B is B = {c,d, b—a}.
Let B' = {B,: B € B}. Then (X, B') is also a kite system of order 8.

For any = € X, denote by d:(z), i = 1, 3, the number of kites in B in which the
degree of z is i. Similarly, denote by d2(z) the number of kites B € B satisfying
that the degree of z is 2 in B, but 1 in its corresponding transformation Bi;
denote by ds(z) the number of kites B € B satisfying that the degree of z is 2 in
B, but 3 in its corresponding transformation B;.

Since both (X, B) and (X, B’) are kite systems of order 8, by counting the
pairs containing z in both B and B’ we have

di(z) + 2[d2(z) + da(z)] + 3ds(z) = 7,
da(x) + 2[da(2) + di(z)] + 3da(z) = 7.

Solving the equations gives dy(z) > 1 for any z € X. This implies that the
number of kites in (X, B) would be at least 8. It is impossible. ¢



Lemma 5.2 There exists an ISKS(n) forn=29, 16, 17.

Proof n = 9: Let X = Zg and (X, B) be a kite system of order 9 with the
base kite {0,5,2 — 3}. The corresponding l-transformation of the base kite is
{2,3,5 — 0}. It is readily checked that (X, B) is an ISKS(9).

n=16: Let X = (23 x {0,1,2,3,4}) U {00} and (X, B) be a kite system of
order 16 with the base kites in mod (3, -):

{(0,2),(1,3),00 - (1,1)}, {(0,1),(0,0),(0,3) - (2,0)},
{(0’0)»(1’1): (2,0) - (114)}! {(0v4)a (1,1),(0, 1) - (132)}’
{(01 1)1 (2s 2)1 (0’ 2) - (2’0)}1 {(0, 2): (2’ 3): (07 0) - (01 4)}7
{(0,4),(1,3),(2,3) - (0,1)}, {(0,1),(1,4),(1,3) - (1,2)},
{(01 4)1 (2’ 4)’ (0: 2) - (110)}7 {(O: 0),00, (1)4) - (0’ 2)}

For each base kite B = {a, b, c — d}, take the corresponding I-transformation of
B as {c,d,b— a}. It is readily checked that (X, B) is an ISKS(16).

n = 17: Let X = Zi17 and (X, B) be a kite system of order 17 with the
base kites: {0,6,2—3}, {0,8,3—10}. The corresponding I-transformations of the
base kites are {2,3,6 — 0}, {3,10,8 — 0}. It is readily checked that (X, B) is an
ISKS(17). $

Lemma 5.3 There exists an l-switchable (K3 + e, 1)-HD of hole-types 8%, 8* and
2%,

Proof Hole-type 8%: Let H = {8Z2¢ 4+i : i = 0,1, 2}. We construct a
(K3,8,8, K3+ ¢)-design (Z24, H, B) by listing its base kites: {1,5,0—7}, {2,10,0—
11}. The corresponding I-transformations of the base kites are: {0,7,5 — 1},
{0,11,10 — 2}. It is readily checked that (Z24, H, B) is I-switchable.

Hole-type 8%: Let H = {4Z32+i:4=0,1,2,3}. We construct a (Ks ss.s, K3+
e)-design (Z32, M, B) by listing its base kites: {0, 1,3 ~ 10}, {0, 15,9 —20}, {0, 18,
5 —15}. The corresponding I-transformations of the base kites are: {3,10,1 ~ 0},
{9,20,15-0}, {5,15,18-0}. It is readily checked that (Za2, H, B) is I-switchable.

Hole-type 2%: Let X = Zj0 and H = {{4,i + 5} : 0 < i < 4}. We construct
a (Ka,...,2, K3 + e)-design (X, H, B) with the base kite: {0,4,1 — 3}. The corre-
sponding l-transformation of the base kite is {1,3,4 — 0}. It is readily checked
that (Z10, H, B) is l-switchable. o

Lemma 5.4 There exists an [-switchable (K24 \ Ko, K3 + €)-design.

Proof LetY = {001,002,...,009}. We construct a (K24 \ Ko, K3 + €)-design
(Z15UY, B) with hole Y and 60 kites. The first 15 kites are obtained by developing
the base kite {7,6,0 — 13} in Z15. Let G = (V, E) be the graph where V = Z;5
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and E = {{z,z+d}: z € Z15,d = 3,4,5}. In order to obtain the other 45 kites,
partition the graph G into the following 3 2-factors (note that the size of cycles
in each 2-factor is 3k where k= 1,3, or 4):

Fy: (0,11,14,10,6,9,5,1,4), (12,7,2), (3,13,8);
Fo: (12,8,4,7,3,14,2,13,9), (0,10,5), (6,1,11);
Fs: (0,12,1,13,10,7,11,8,5,2,6,3), (9,4,14);

and for each 2-factor arrange three infinity points as follows: for every 3k-cycle
(zo, Yo, 20, T1, Y1, 21, - -+, Tk=1, Yk-1, 2k—1) of F1 form the kites

{oo1, ¥i, Ti — 002}, {002,zi,yi — 003}, {003, ZTit1,2 — 001},

where i = 0,1,...,k — 1 and the subscript ¢ + 1 is reduced modulo k. Similarly,
arrange 004, 005,006 With Fy and 0oz, 008,009 with Fi.

For each kite B = {a,b,c — d}, the corresponding I-transformation of B is
{c,d,b— a}. It is readily checked that (Z;s UY, B) is l-switchable. o

Lemma 5.5 There erists an l-switchable (Ka2 \ K17, K3 + €)-design.

Proof LetY = {o00,001,...,0016}. We construct a (K32 \ K17, K3 + e)-design
(Z15VY, B) with hole Y and 90 kites. Firstly, we arrange ocg, 001,002, 003,004 and
the differences 3, 6, and 7 of Z15 into the following 30 kites: {,7+3,00: —(i+9)}
and {i+ 1,004, (i + 7) — i} where i € Z15 and the subscripts of the infinite points
are taken modulo 5.

Note that each of the remaining 4 differences gives a 2-factor of Zis which is
the union of 3k-cycles, for k = 1 or 5. Then the graph G = (V, E), where V = Z5
and E = {{z,z+d}: = € Zi5,d = 1,2,4,5}, can be partitioned into 4 2-factors,
say, Fi, F2, F3 and Fy. In order to obtain the other 60 kites, for each 2-factor we
arrange three of the remaining 12 infinity points as follows. For every 3k-cycle
(0, Y0, 20, Z1, Y1, 21, + « . s Th=1, Yk—1, 2k—1) Of F1 form the kites

{00513/.1')1]' - 006}7 {°°6yzjsyj - 007}, {007,13j+l,2j - 005},

where § =0,1,...,k — 1 and the subscript j + 1 is reduced modulo k. Similarly,
arrange oog, 00g, 0010 With Fy, 0011,0012,0013 with F3 and oco14, 0015, 0016 With

Fy.

For each kite B = {a,b,c — d}, the corresponding I-transformation of B is
{c,d,b— a}. It is readily checked that (Z;5 UY, B) is l-switchable. O

Lemma 5.6 There exists an ISKS(40).
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Proof Let X = (Z13 x {0,1,2}) U {oo} and (X, B) be a kite system of order 40
with the base kites in mod (13, -):

{(0,1),(2,2), (5,0) - oo}, {00, (5,1),(2,2) - (10, 0)},
{(0,0),(1,0),(3,0) - (3,1)},  {(0,1),(2,0),(11,0) - (12, 1)},
{(0,1),(8,0),(3,0) - (7, 1)},  {(0,0),(6,0),(12,1) — (0,1)},
{(0’ 0)’ (3! 1)5 (7» 1) - (9’ 1)}1 {(0’ l)r (0: 2): (67 1) - (10’ 0)}1
{(07 0)’ (01 2)’ (3’ 2) - (41 0)}9 {(07 0)1 (1’ 2)7 (91 2) - (3' 0)}1
{(0) 0)1 (21 2)» (11) 2) - (12, 1)}1 {(0: 2): (21 1): (10’ 1) - (6, 2)}:
{(0, 1)’ (3: 1); (4) 2) - (11’ 2)}» {(0» 2)1 (11» 2)’ (5) 1) - (10: 2)}:
{(0’ 2)’ (5a 0)’ (121 2) - (8) 0)}

For each base kite B = {a, b, c — d}, take the corresponding I-transformation of
B as {c,d,b~ a}. It is readily checked that (X, B) is an {SK S(40). o

Lemma 5.7 There ezists an ISKS(56).

Proof Let Y = {oc01,002,...,0017}. We construct a (Kse \ K17, K3 + €)-design
((Z13 x Is) U Y, B) with hole Y and with the base kites in mod (13, —):

{(5’ 1)= (0’ 0): (111 2) - (21 1)}5 {(11’ 1), (6’ 2): (9, 0) - (0, 1)}:
{(1:0)1 (31 0)' (07 0) - (4’0)}1 {(4! 1)» (1’ l)a (0, 1) - (5’ 1)}1
{(4$ 2)1 (31 2)! (0: 2) - (79 2)}’ {(0) 0)! (75 0)! (6) 1) - (0: 1)}!
{(0’ 1)1 (11’ 1)) (2’ 2) - (0’ 2)}= {(Oa 2)’ (8, 2)’ (5’ 0) - (0- 0)}:
{(7: 1)1 (Oa 0)1 (7y 2) - (0: 1)}’ {001’ (61 1)) (510) - (Gv 2)};

{002:(0:0):(4; 2) - 001}, {003:(4’ 2)’(171) _°°2}!
{004,(0, l),(4,0) - °°3}v {°°5’(0:0)x(012) _°°4}’
{06, (1,2),(0,1) — 005}, {o07,(1,1),(4,0) — o6},
{°°8a(410):(0: 2) _007}: {009:(11 2)1(411) -008}:

{°°107 (Ov 1)’ (2y 0) - 009}, {00111 (Os 0)1 (2’ 2) - 0010}1
{w121 (7: 2)) (2v 1) - ooll}a {0013) (2y 1)) (7, 0) - 0012},
{00147 (21 O)v (71 2) - 0013}) {°°15: (0, 2)) (29 1) - 0014})
{0015, (4s 1)’ (1’ 0) - °°l5}v {°°l7) (79 0), (09 2) - °°16}!
{(0) 0)1 (121 2)1 (0’ 1) - 0017}'

For each base kite B = {a,b, ¢ — d}, take the corresponding [-transformation
of B as {¢,d,b—a}. It is readily checked that ((Z,3 x Is)UY, B) is l-switchable. By
Construction 2.3 with an ISKS(17) from Lemma 5.2, there exists an {SK S(56).

¢

Lemma 5.8 There erists an l-switchable (K3 +e,1)-HD of hole-types 82, 8% and
85, There ezists an l-switchable (K3 + e,1)-HD of hole-types 163, 16% and 165.

Proof By Lemma 5.3 there exists an [-switchable (K3 + e, 1)-HD of hole-types
83 and 8*. Note that a (5,1)-GDD of group type 4% exists. Give each point of the
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GDD a weight of 2 and apply the Weighting Construction to get an {-switchable
(K3 + e,1)-HD of hole-type 8°. The needed l-switchable (K3 + e, 1)-HD of hole-
type 2° is from Lemma 5.3.

The second assertion is proved as follows: By Lemma 2.4 there exists a (3, 1)-
GDD with group types 23 and 2%. Give each point of the GDD a weight of 8,
and apply the Weighting Construction to get an l-switchable (K3 + ¢,1)-HD of
hole-types 16% and 164, The needed l-switchable (K3 + e, 1)-HD of hole-type 8°
is from Lemma 5.3.

It is well known that there is a (5,1)-GDD of group type 8°. Give each
point of the GDD a weight of 2, and similarly apply the Weighting Construction
to get an l-switchable (K3 + e,1)-HD of hole-type 16°. The needed l-switchable
(K3 + e,1)-HD of hole-type 2° is from Lemma 5.3. &

Lemma 5.9 There erists an ISKS(v) for any integer v =1 (mod 8) end v > 9.

Proof Let v = 8t + 1 where ¢t > 1. The conclusion follows by Lemma 5.2 for
t=1,2. Fort> 3 andt# 6,8, by Lemma 2.5 there exists a (¢, {3,4,5}, 1)-PBD.
There exists an I-switchable (K3 +e, 1)-HD of hole-types 82, 8 and 8° by Lemma
5.8. Apply Construction 2.2 with g = 8 to get an l-switchable (K3 + e,1)-HD of
hole-type 8. By Construction 2.3 with a = 1, there exists an ISKS(8t+1). The
needed I{SK S(9) comes from Lemma 5.2.

We remain to deal with ¢ = 6,8. By Lemma 2.4 there exists a (3,1)-GDD
with group type 2¢/2. Give each point of the GDD a weight of 8, and apply
the Weighting Construction to get an l-switchable (K3 + e,1)-HD of hole-type
16*/2. The input design is from Lemma 5.3. Applying again Construction 2.3
with a = 1, there exists an [SKS(8t + 1). The needed {SKS(17) comes from
Lemma 5.2.

Lemma 5.10 There exists an LSKS(v) for any integer v = 0 (mod 8) and v >
16.

Proof For v = 16, the conclusion follows from Lemma 5.2. For v = 24, there
exists an [-switchable (K24 \ Ko, K3 + €)-design by Lemma 5.4. By Construction
2.3 with an ISKS(9) from Lemma 5.2, there exists an LSK S(24).

For v = 32, there exists an l-switchable (K32 \ K17, K3 + e)-design by Lemma
5.5. By Construction 2.3 with an I[SKS(17) from Lemma 5.2, there exists an
ISK5(32).

For v = 40, the conclusion follows by Lemma 5.6.

Next we deal with the case v > 48. Let v = 16t +  wheret > 3 and § = 0, 8.
We divide the problem into two cases.



Case 1: v = 16t where t > 3. For t # 6,8, by Lemma 2.5 there exists a
(¢,{3,4,5},1)-PBD. There exists an l-switchable (K3 + e,1)-HD of hole-types
16, 16* and 16° by Lemma 5.8. Apply Construction 2.2 with g = 16 to get an
I-switchable (K3 + e,1)-HD of hole-type 16°. By Construction 2.3 with o = 0,
there exists an ISKS(16t). The needed ISK S(16) comes from Lemma 5.2,

We remain to deal with ¢t = 6,8. By Lemma 2.4 there exists a (3,1)-GDD
with group type 4'/2. Give each point of the GDD a weight of 8, and apply
the Weighting Construction to get an l-switchable (K3 + e, 1)-HD of hole-type
322, The needed l-switchable (K3 + e, 1)-HD of hole-type 83 is from Lemma
5.8. Applying again Construction 2.3 with a = 0, there exists an ISK S(16t). The
needed ISKS(32) exists as pointed before.

Case 2: v = 16t + 8 where ¢ > 3. For t = 3, the conclusion follows from
Lemma 5.7.

Fort = 4 (i.e., v = 9 x 8), by Lemma 2.4 there exists a (3, 1)-GDD with group
type 3°. By Lemma 5.3 there exists an l-switchable (K3 + e,1)-HD of type 8°.
Give each point of the GDD a weight of 8, and apply the Weighting Construction
‘to get an l-switchable (K3 + e,1)-HD of hole-type 24%. Applying Construction
2.3, there exists an {SK'S(9 x 8). The needed 15K S(24) exists as above.

Fort =5 (i.e., v = 11 x 8), there exists a (4, 1)-GDD of type 3*. Take a block
B of this GDD, and give one point of B a weight of zero and each other point of
the GDD a weight of 8. By Lemma 5.8 there exists an l-switchable (K3 +¢, 1)-HD
of types 8% and 8. We apply the Weighting Construction to get an l-switchable
(K3 + e,1)-HD of hole-type 24°16!. Applying Construction 2.3, there exists an
ISK'S(11 x 8). The needed ISKS(16) and [SKS(24) come as above.

For t = 6 (i.e., v = 13 x 8), there exists a (4, 1)-GDD of type 4*. Take a block
B of this GDD, and give three point of B a weight of zero and each other point of
the GDD a weight of 8. By Lemma 5.8 there exists an I-switchable (K3 +e, 1)-HD
of types 8% and 8*. We apply the Weighting Construction to get an l-switchable
(K3 + e,1)-HD of hole-type 24°32'. Applying Construction 2.3, there exists an
ISKS(13 x 8). The needed {SKS(24) and ISKS(32) come as above.

Next we deal with the case of ¢ > 7. Let t = 3s+i where s > 2and ¢ = 1,2, 3.
By Lemma 2.4 there exists a (3, 1)-GDD with group type 3%*(2i+1)!. By Lemma
5.3 there exists an l-switchable (K3 + e, 1)-HD of type 8%. Give each point of the
GDD a weight of 8, and apply the Weighting Construction to get an {-switchable
(K3 + e,1)-HD of hole-type 24%*(8(2i + 1))!. Applying Construction 2.3, there
exists an ISKS(8(6s + 2i + 1)), i.e., ISKS(16t + 8). The needed ISKS(24) and
ISKS5(8(2i + 1)) (i = 1,2,3) exist as above. O

Theorem 5.11 An ISKS(v) exists if and only if v =0,1 (mod 8) and v > 8.
Proof The necessity follows from Lemma 5.1 and the necessarv condition of

the existence of a kite system of order v. The sufficiency follows by Lemmas 5.9
and 5.10. o
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