A Note on Spanning Eulerian Graphs

Liangchen Li and Xiangwen Li*
Department of Mathematics
Huazhong Normal University
Wuhan 430079, China

Abstract

A graph is called biclaw-free if it has no biclaw as an introduced subgraph. Lai and Yao [Discrete Math., 307 (2007) 1217] conjectured that every 2-connected biclaw-free graph G with $\delta(G) \geq 4$ has a spanning eulerian subgraph H with maximum degree $\Delta(H) \leq 4$. In this note, the conjecture is answered to the negative.

1 Introduction

We use [1] for terminology and notation not defined here and consider only finite, undirected graphs and we allow graphs to have multiple edges but no loops.

Let G be a graph and H be a connected subgraph of G. Denote by $d_H(v)$ the degree of v in subgraph H. We use d(v) instead of $d_G(v)$ for a vertex v of G. The graph G/H is the multigraph obtained from G by replacing H by a vertex v_H such that the number of edges in G/H joining any $v \in V(G-H)$ to v_H in G/H equals the numbers of edges joining v in G to V(H). Note that in contraction there may be multiple edges. A graph G is eulerian if G is connected and G(v) is even for each vertex $f(v) \in V(G)$. A graph is called supereulerian if it has a spanning eulerian subgraph.

^{*}Partially supported by the Natural Science Foundation of China (10571071) and Partially supported by SRF for ROCS, State Education Ministry of China

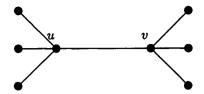


Fig 1. The biclaw and its center edge uv

A claw is a graph isomorphic to $K_{1,3}$. A biclaw is defined as the graph obtained from two vertex disjoint claws by adding an edge to the two vertices of degree 3 in each of the claws (see Fig 1). The center edge of a biclaw H is an edge uv such that $d_H(u) = d_H(v) = 4$. For each biclaw, there exists a unique center edge. A graph is called biclaw-free if it does not have a biclaw as an induced subgraph. A bipartite graph $G = (V_1, V_2)$ is called balanced if $|V_1| = |V_2|$.

Li [5] conjectured that there exists a constant c such that every connected bipartite biclaw-free graph G with $\delta(G) \geq c$ is hamiltonian. Lai and Yao [3] observed that if a bipartite graph G is hamiltonian, then G must be balanced. Naturally, Lai and Yao revised the conjecture as follows: There exists a constant c such that every connected balanced biclaw-free bipartite graph G with $\delta(G) \geq c$ is hamiltonian. Meanwhile, Lai and Yao [4] relaxed this conjecture and posed the following conjecture.

Conjecture 1.1 (Lai and Yao, [4]) Every 2-connected biclaw-free graph G with $\delta(G) \geq 4$ has a spanning eulerian subgraph H with maximum degree $\Delta(H) \leq 4$.

In the next section, we will show that Conjecture 1.1 fails in the sense that there exist infinite 2-connected biclaw-free graphs, both non-bipartite and balanced bipartite, with the minimum degree at least 4 which has no spanning eulerian subgraph H with maximum degree $\Delta(H) \leq 4$.

2 Counterexamples

This section is devoted to showing a class of counterexamples to Conjecture 1.1. For this purpose, at first let G_m be the graph obtained by replacing each vertex v of the Petersen graph by a complete graph K_m , $m \geq 3$, such that three distinct edges incident with v are incident with three distinct vertices of K_m which replaces v in G_m , respectively (see Fig 2.).

Proposition 2.1 For $m \geq 5$, G_m is a counterexample to Conjecture 1.1.

Proof. For simplicity, let K_m^i be a copy of K_m for $i=1,2,\cdots,10$. For $m\geq 5$, it is easy to see that G_m is 3-connected with $\delta(G_m)\geq 4$. Let $E_1=\{e=uv: \text{both } u \text{ and } v \text{ are in } K_m^i \text{ for some } i\}$ and $E_2=\{e=uv: u \text{ is in } K_m^i \text{ and } v \text{ is in } K_m^j, i\neq j\}$. Then $E(G_m)=E_1\cup E_2$ and $E_1\cap E_2=\emptyset$.

Now we prove that G_m contains no biclaw. Suppose otherwise that G_m has a biclaw H with the center edge uv. If $uv \in E_1$, then $m \geq 6$. Let $N(u) \cap V(H) = \{u_1, u_2, u_3, v\}$ and $N(v) \cap V(H) = \{v_1, v_2, v_3, u\}$. Since K_m^i is a complete graph, there exist at least one vertex in $N(u) \cap V(H)$, say u_1 and at least one vertex v_1 in $N(v) \cap V(H)$ such that $u_1v_1 \in E(H)$, which contradicts to that uv is the center edge of H. If $uv \in E_2$, then all neighbors of u except v are in K_m^i and hence they are adjacent, which contradicts to that uv is the center edge of H. Thus, H is not a biclaw in G, a contradiction.

Next, we prove that G_m has no spanning eulerian subgraph with maximum degree less than 4. To the contrary, suppose that H is such a subgraph. We contract each K_m^i to one vertex and the resulting graph is the Petersen graph. It is clear that G_m has a spanning eulerian subgraph H with maximum degree $\Delta(H) \leq 4$ if and only if the Petersen graph contains a spanning eulerian subgraph H_0 with maximum degree $\Delta(H_0) \leq 4$ but the Petersen graph has no such subgraph. This contradiction proves our proposition.

If n=10m, then G_m is 3-connected and $\delta(G_m)=m-1=\frac{n}{10}-1$. Proposition 2.1 tells us that when G is 3-connected and $\delta(G)\geq c$ for any constant c, Conjecture 1.1 still fails. One naturally ask whether

Conjecture 1.1 may hold for bipartite graphs. In fact, when $n \geq 3m$ and $m \geq 4$, $K_{m,n}$ is a counterexample to Conjecture 1.1(the proof is similar to that of Proposition 2.2). Proposition 2.2 shows a stronger result that Conjecture 1.1 does not hold for 2-connected biclaw-free balanced bipartite graphs.

Denote by $G_i = (V_{i1}, V_{i2})$ two copies of $K_{m,n}$ where i = 1, 2. Let $|V_{i1}| = m$ and $|V_{i2}| = n$ for i = 1, 2. We define a balanced bipartite graph $G_{m,n} = (V_1, V_2)$ as follows. Let $V_1 = V_{11} \cup V_{22} \cup \{u_1, u_2\}$ and $V_2 = V_{12} \cup V_{21} \cup \{v_1, v_2\}$. Pick $x_1, x_2 \in V_{12}, y_1, y_2 \in V_{11}, a_1, a_2 \in V_{21}, b_1, b_2 \in V_{22}$. Let $E(G_{m,n}) = E(G_1) \cup E(G_2) \cup \{u_1v_1, u_1v_2, u_2v_1, u_2v_2, v_1y_1, v_1y_2, u_1x_1, u_1x_2, v_2b_1, v_2b_2, u_2a_1, u_2a_2\}$. (see Fig 3.).

Proposition 2.2 If $n \geq 3m$ and $m \geq 4$, then $G_{m,n}$ is also a counterexample to Conjecture 1.1.

Proof. Clearly, $G_{m,n}$ is a 2-connected balanced bipartite graph with $\delta(G_{m,n}) \geq 4$. Now we show that $G_{m,n}$ is biclaw-free.

Suppose otherwise that $G_{m,n}$ has a biclaw H with the center edge uv. If $uv \in E(G_1)$, then let $N(u) = \{v, u_1, u_2, u_3\}$ and $N(v) = \{u, v_1, v_2, v_3\}$. Since $G_1 \cong K_{m,n}$, $u_1v_1 \in E(G_{m,n})$, which contradicts to that H is a biclaw. Similarly, $uv \notin E(G_2)$. Thus, $uv \notin E(G_1) \cup E(G_2)$. It follows that $uv \in \{u_1v_1, u_1v_2, u_2v_1, u_2v_2, u_1x_1, u_1x_2, v_1y_1, v_1y_2, u_2a_1, u_2a_2, v_2b_1, v_2b_2\}$. By symmetry, $uv \in \{u_1v_1, u_1v_2, u_1x_1\}$.

Suppose that $uv=u_1v_1$. We assume, without loss of generality, that $u=u_1$ and $v=v_1$. Then $N(u)=\{v_1,x_1,x_2,v_2\}$ and $N(v)=\{y_1,y_2,u_1,u_2\}$. Since $x_1y_1,x_2y_1\in E(G_{m,n}),$ uv is not the center edge of H, a contradiction. Since $v_1u_2\in E(G_{m,n}),$ u_1v_2 is not the center edge of H. Thus, $uv=u_1x_1$. We assume that $u=u_1$ and $v=x_1$. Then $N(u_1)=\{x_1,x_2,v_1,v_2\}$ and $N(x_1)=V_{11}\cup\{u_1\}$. Since $y_1x_2\in E(G_{m,n}),$ u_1x_1 is not the center edge of H, a contradiction.

We then show that $G_{m,n}$ has no spanning eulerian subgraph H with maximum degree $\Delta(H) \leq 4$. Suppose otherwise that $G_{m,n}$ has such a subgraph H. Since $\{u_1v_2, u_2v_1\}$ is a 2-edge-cut of $G_{m,n}, u_1v_2, u_2v_1 \in E(H)$. Clearly, both $d_H(u_1)$ and $d_H(v_1)$ are even. $u_1v_1 \notin E(H)$ if $d_H(u_1) = d_H(v_1) = 2$ and $u_1v_1 \in E(H)$ otherwise.

Define Γ to be the graph from $G_{m,n}$ by deleting u_2 , v_2 and all vertices of G_2 and by contracting an edge u_1v_1 . We also define H_1 to be the subgraph of Γ induced by the edge set $E(H) \cap E(\Gamma)$. Then H_1 is a spanning eulerian subgraph of Γ with $\Delta(H_1) \leq 4$.

Let x be the average degree of the vertices in $V(H_1) \cap V_{11}$. When $d_H(u_1) = d_H(v_1) = 2$ or $d_H(u_1) = d_H(v_1) = 4$,

$$mx - \epsilon \ge 2n - \epsilon \Longrightarrow x \ge \frac{2n}{m} \ge 6$$
,

where $\epsilon = 2$ if $d_H(u_1) = d_H(v_1) = 2$; $\epsilon = 4$ if $d_H(u_1) = d_H(v_1) = 4$. When $d_H(u_1) = 4$ and $d_H(v_1) = 2$,

$$mx \ge 2n - 2 \Longrightarrow x \ge \frac{2n - 2}{m} \ge \frac{6m - 2}{m} > 5.$$

When $d_H(u_1) = 2$ and $d_H(v_1) = 4$,

$$mx - 2 \ge 2n \Longrightarrow x \ge \frac{2n+2}{m} \ge 6.$$

All cases contradict to $\Delta(H_1) \leq 4$. This contradiction proves our proposition.

Catlin [2] introduced the concept of collapsible graphs. Let G be a graph and let O(G) to denote the set of odd degree vertices of G. A graph G is called *collapsible* if for every even subset R of V(G) there is a spanning connected subgraph Γ_R of G such that $O(\Gamma_R) = R$. Thus, if G is collapsible, then G is superculerian and hence G is 2-edge connected.

Lai and Yao [4] proved that every connected bipartite biclaw-free graph G with $\delta(G) \geq 5$ is collapsible. When G is superculerian, G may not contain a spanning culcrian subgraph H with maximum degree $\Delta(H) \leq 4$. We notice that $G_{m,n}$ is a 2-edge connected balanced bipartite biclaw-free graph with $\delta(G_m) = 4$ in Proposition 2.2. We construct a graph $G_{m,n}^*$ from $G_{m,n}$ by deleting an edge u_1v_1 and adding u_1a_1 and v_1b_1 . It is easy to check that $G_{m,n}^*$ is 4-edge connected balanced bipartite biclaw-free with $\delta(G) \geq 4$. By the technique in the proof of Proposition 2.2, we can prove that $G_{m,n}^*$ has no a spanning culcrian subgraph H with maximum degree $\Delta(H) \leq 4$. Motivated by G_m and $G_{m,n}^*$, we ask whether every 3-edge

connected balanced bipartite biclaw-free graph G with $\delta(G) \geq 5$ has a spanning eulerian subgraph H with maximum degree $\Delta(H) \leq 4$.

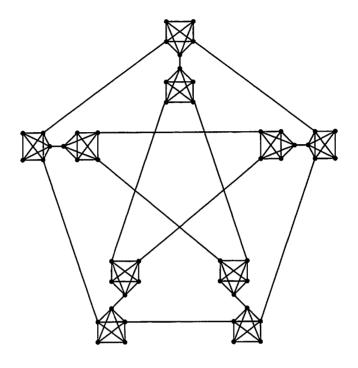


Fig 2. G₅

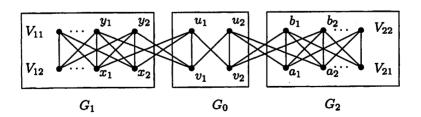


Fig 3. $G_{m,n}$

References

- [1] J. A. Bondy, U. S. R Murty, Graphs Theroy with Applications, American Elsevier, New York, 1976.
- [2] P. A. Catlin, A reduction method to find spanning Eulerian subgraphs,J. Graph Theory, 16 (1988) 29-44.
- [3] H.-J. Lai, X. Yao, Collapsible biclaw-free graphs, Discrete Math., 306 (2006) 2115-2117.
- [4] H.-J. Lai, X. Yao, Erratum to collapsible biclaw-free graphs [Discrete Math. 306 (2006) 2115-2117], Discrete Math., 307 (2007) 1217.
- [5] H. Li, Problem A15, Memorandum 1076, University of Twente, Enschede, 1992, p. 119.