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Abstract

It is proved that if G is a K2 s-minor-free graph with maximum
degree A, then A +1 < x(G?) < ch(G?) < A+2if A > 3, and
ch(G?) = x(G?) = A + 1 if A > 6. All inequalities here are sharp,
even for outerplanar graphs.

Keywords: Choosability; Outerplanar graph; Minor-free graph;
List square colouring

1 Introduction

We use standard terminology, as defined in the references: for example (5]
or [9]. The square G? of a graph G has the same vertex-set as G, and two
vertices are adjacent in G? if they are within distance two of each other
in G.

There is great interest in discovering classes of graphs G for which the
choosability or list chromatic number ch(G) is equal to the chromatic num-
ber x(G). The list-square-colouring conjecture (LSCC) [5] is that, for every
graph G, ch(G?) = x(G?). It is clear that this conjecture holds when the
maximum degree A(G) of G is 0 or 1, and it can be deduced from the
results of [7] when A(G) = 2: see [4]. In general, it is easy to see that
A(G) +1 < x(G?) < ch(G?).

It is well known that a graph is outerplanar if and only if it is both
K-minor-free and K3 s-minor-free. Squares of K4-minor-free graphs were
considered in [4]. For K3 s-minor-free graphs we have the following result,
which is the same as for the slightly smaller class of outerplanar graphs.
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Theorem 1. Let G be o Kj 3-minor-free graph with mazimum degree A.
Then A + 1 € x(G?) € ch(G?) < A+ 2 if A > 3, and ch(G?) = x(G?) =
A+1iAZ6.

We are indebted to the referee for telling us about reference [6}, which
led us indirectly to [1]. These papers contain alternative proofs of parts
of Theorem 1 when G is outerplanar: [6] proves most of the results for
x(G?), and [1] proves all of the results for x(G?) and also (‘as a bonus’)
that ch(G?) = A+ 1if A > 7. Both of these papers were motivated by the
conjecture of Wegner (8] that if G is a planar graph with maximum degree
A then x(G?) < A+5 if 4 < A < 7and x(G?) £3A/2+1if A>8. Our
motivation, the LSCC, is somewhat different.

When 3 € A < 5, the upper bound on ch(G2) in Theorem 1 is sharp
even for x(G2), and even for the smaller class of outerplanar graphs, as
shown by the graphs in Fig. 1. For each of the cases A = 3 and A = 4
there is an infinite family of minimal (under subgraph-inclusion) extremal
examples. One member of each family is shown in Fig. 1; in each case,
if only A + 1 colours are available, then all the vertices labelled a have
to have the same colour, which gives a contradiction on the bottom edge.
Fig. 1 also shows the smallest extremal example with A = 4 and a smallest
known extremal example with A = 5; in fact, for A = 5 we know of only
two minimal extremal examples, both of order 10.

For the case A = 6, the proof that ch(G2) = A + 1 in Theorem 1 is
exceptionally long and involved, and so we omit it from this paper, instead
proving only that ch(G?) < A+2 = 8; the proof that ch(G?) = A+1=7is



included in the first author’s doctoral thesis [3]. Since A(G)+1 < x(G?) <
ch(G?) for every graph G, in order to prove this weaker version of Theorem 1
it suffices to prove the following.

Theorem 2. Let G be a K 3-minor-free graph with mazimum degree A.
Then ch(G?) < A+2ifA >3, andch(G) S A+1ifA>T.

The rest of this paper is devoted to a proof of Theorem 2. We will need
the following simple lemma.

Lemma 1. Let G be a Ky 3-minor-free graph. Then each block of G is
either K4-minor-free (and hence outerplanar) or else isomorphic to K.

Proof. Suppose B is a block of G that has a K4 minor. Since A(K,) = 3,
it follows that B has a subgraph H homeomorphic to K. Since any graph
obtained by subdividing an edge of K4, or by adding a path joining two
vertices of K4, has a K3 3 minor, it follows that H =~ K; and B=H. O

As usual, d(v) = dg(v) will denote the degree of vertex v in graph G.

2 The start of the proof

Fix the value of A > 3, and suppose if possible that G is a Kj s-minor-free
graph with maximum degree at most A and with as few vertices as possible
such that ch(G%) > A+ 2 or A +1 as appropriate. By Lemma 1, every
block of G is outerplanar or isomorphic to K4. Clearly G is connected and
is not Kj. If G is 2-connected, let B := G and let zg be an arbitrary vertex
of G; otherwise, let B be an endblock of G with cutvertex zp. Assume
that every vertex v of G is given a list L(v) of A + 2 or A + 1 colours, as
appropriate, such that G2 has no proper colouring from these lists.

Claim 2.1. Not every vertez of B — zp is adjacent to z.

Proof. Suppose it is. Then every vertex of B — zp has degree at most A
in G2, since all its neighbours in G? are in the closed neighbourhood of 2
in G. Thus we can colour (G — (B — 2))? from its lists by the minimality
of G, and then colour all the remaining vertices. This contradiction proves
Claim 2.1. O

Claim 2.2. G does not contain three vertices u,v,w of degree 2 such that
uv,vw € E(G).

Proof. Suppose it does. Then dga(v) < 4. Let H := G — v + uw, so that
H is K3 3-minor-free and G? — v C H2. Then we can colour G2 from its
lists by first colouring G2 — v and then colouring v. This is the required
contradiction. O
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It follows from Claim 2.1 that B ¢ K>, K3 or K4; thus B is an outer-
planar graph that is 2-connected but not complete, and consists of a cycle
C with chords. (A chord is an edge that joins two nonconsecutive vertices
of the cycle.) Claim 2.2 shows that C has at least one chord.

Assume that B is embedded in the plane with C bounding the outside
face. In [2], a cap is defined to be a region R of the plane that is bounded
by a segment of C and one chord ujuz. We modify the definition slightly
here by insisting also that zp is not in the interior of this segment; so zp is
either u; or uz or is not in RB. We call u; and u; the endvertices of R. By
an abuse of terminology, the subgraph of B induced by all vertices in R will
also be referred to as a cap. We will refer to an edge of C as a trivial cap or
a 0-cap. For i > 1, an i-cap is a cap that properly contains an (i — 1)-cap
and is minimal with this property.

The proof now divides into two cases.

3 Proof that ch(G?) < A +2

In this section we assume that every vertex v of G has a list L(v) of
A + 2 colours, and G2 is not colourable from these lists, but if H is any
K3 3-minor-free graph with maximum degree at most A and fewer vertices
than G then ch(H2) < A +2.

Claim 3.1. Every l-cap in B is a triangle zujus where dg(z) = 2 and
do(w) > 4 (i=1,2).

Proof. By definition, a 1-cap is a region bounded by a chord ujus and
a segment 4173 ...Zrug of C, where dg(z;) = 2 for each i. By Claim 2.2,
r € 2. So if Claim 3.1 is false then either r = 2, or r = 1 and dg(u;) < 3 for
some j € {1,2}. But in either case G>~z; = (G—z1)? and dga(z1) < A+1,
and so we can colour G2 from its lists by first colouring (G — z1)? (by
the minimality of G) and then colouring z;. This contradiction proves
Claim 3.1. O

Claim 3.2. B has a cap that is not a 1-cap.

Proof. Suppose that every cap in B is a 1-cap. Then z is not the
endvertex of a chord, since a chord zpy bounds two caps, and if both of
these caps are 1-caps then dg(y) = 3, contrary to Claim 3.1. Also, at most
two chords of C are incident with any one vertex, since if there were three
(or more) chords incident with the same vertex then the middle one (or
more) of these chords would bound a cap that is not a 1-cap. It follows
from this and Claim 3.1 that the endvertices of every chord have degree
exactly 4 in G. The chords therefore form a cycle inside C, every edge of
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which joins vertices that are distance 2 apart around C, except possibly for
the edge e of the cycle that bounds a face of B with 2z in its boundary.
Now, a cap cannot contain 29 by definition, except as an endvertex of its
chord, which we have already shown to be impossible. Thus there is a
unique cap bounded by e, and this cap contains all the 1-caps in B and so
is not a 1-cap itself. This contradiction proves Claim 3.2. O

Claim 3.3. Every 2-cap in B looks like one of the caps in the sequence of
which Figs 2(a) and 2(b) are the first two members.

Proof. Let R be a 2-cap that is bounded by a chord u;us and a segment
of C. Since R properly contains a 1-cap and is minimal with this property,
there is at least one chord inside R, and everysuch chord cuts off a 1-cap. So
the chords inside R can be enumerated as I17q,. .., %, where the vertices

u1,ll,T1,-.-,lk,7’k,u2

occur in that order round C, but possibly u; = {3, or r; = l;4; for some 1,
or 7, = up. In fact, since d(!;) > 4 and d(r;) > 4 for each i by Claim 3.1,
necessarily u; = {j, and r; = l;4 for every i, and r; = uy, since otherwise
d(l;) = 3 or d(r;) = 3 for some i. Since, by Claim 3.1 again, every chord
l;ir; cuts off a triangle from R, the proof of Claim 3.3 is complete. O

It follows from Claims 3.2 and 3.3 that A > 4 and B contains one of
the configurations H shown in Fig. 2, where the dashed edge may or may
not be present in Fig. 2(c), and 2 is either u; or u, or is not in H.

Suppose first that B contains H as in Fig. 2(a). Then we can colour
(G — z1)? from its lists by the minimality of G, and then colour z;, since
dg2(z1) = dg(u1) + 1 < A + 1. This is the required contradiction.

Suppose next that B contains H as in Fig. 2(b). Colour the graph
(G - {=z1,72,z3,1,%2})? from its lists, and for each uncoloured vertex w
let L'(w) denote the ‘residual list’ of colours in L(w) that are not used
on any G2-neighbour of w and so are still available for use on w. Then
[L'(w)] 2 (A+2)-(A-1) =3 if we {z1,1,¥2, 23}, and |L/(z2)] >
(A +2) -2 > 4. So if we try to colour the vertices in the order

z1,Y1,Y2,23, 22, (1)
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it is only at xp that we may fail. If L'(z;) N L'(z3) # 0, give =3 and z3
the same colour; then y1, y2 and z2 can be coloured in the same order as
in (1). If however L/(z;) N L'(z3) = 0, then either [L'(z2)| > 6, or else z;,
say, has a usable colour c; not in L’(z2); in either case, the vertices can be
coloured in the order (1), with z; receiving colour c; if it exists.

Suppose finally that B contains H as in Fig. 2(c). Colour the graph
(G—(V(H)\{u1,u2}))? from its lists, and let each uncoloured vertex w have
residual list L'(w). Then |L'(w)| 2 3 if w € {z1,y1,¥3, 24}, |L'(v2)] 2 4,
and |L'(w)| > 5 if w € {z2,z3}. So if we try to colour the vertices in the
order

Y1, %4, Y3, Y2, T1, T2, T3, (2)

it is only at z3 that we may fail. If L'(31) N L'(z4) # 0, give y1 and z4 the
same colour, then colour the remaining vertices in the order (2). If however
L'(31) N L'(z4) = 0, then either |L’'(z3)| > 6, or else y; or z4 has a usable
colour ¢; not in L/(z3); in either case, the vertices can be coloured in the
order (2), with y; or x4 receiving colour ¢, if it exists.

In every case we have obtained a contradiction, and so we have proved
that ch(G?) < A+2forall A > 3.

4 Proof that ch(G?) < A+1when A>7

In this section we assume that every vertex v of G has a list L(v) of
A + 1 colours, and G2 is not colourable from these lists, but if H is any
K 3-minor-free graph with maximum degree at most A and fewer vertices
than G then ch(H?) < A + 1. To begin with we assume only that A > 6;
we will not use the fact that A > 7 until Claim 4.4.

Claim 4.1. Every verter of degree 2 in G has degree at least A +1 in G2.

Proof. Let v be a vertex of degree 2 in G with neighbours «,w, and
suppose that dg2(v) < A. Let H := G — v if uw € E(G) and let
H := G — v+ uw otherwise. Then H is K> 3-minor-free and G? — v C H?
and ch(G? —v) < ch(H?) < A+1 by the minimality of G. So we can colour
G? from its lists by first colouring G — v and then colouring v. This is the
required contradiction. 0O
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Claim 4.2, FEvery l-cap in B has the form shown in Fig. 3(a) or S(b),
where dg(uy) + de(uz) 2 A + 3 in Fig. 3(a), and dg(u1) =de(uz) = A in
Fig. 3(b).

Proof. The first part of the statement follows immediately from Claim 2.2
and the definition of a 1-cap. To prove the second part, note that, by

Claim 4.1,
A +1 < dga(z) < de(ur) + dg(ug) — 2

in Fig. 3(a), and
A+1<dg(zi) =de(w)+1  (i=1,2)
in Fig. 3(b). O

Claim 4.3. Every 2-cap in B has one of the forms shown in Fig. 4, where
the degrees of uy and uy are restricted as specified.

Proof. Let R be a 2-cap that is bounded by a chord u;u; and a segment
of C. As in the proof of Claim 3.3, the chords inside R can be enumerated
as ly7y,...,lkr,, where the vertices

ulall’rlv . ,lk,'l"k,ug

occur in that order round C, but possibly u; = I3, or r; = l;;; for some
i, or = ug. Thus every vertex of R other than u; and u; has degree
at most 4 in G. It follows from the degree conditions in Claim 4.2 that R
contains no 1-cap of the type in Fig. 3(b), and also, since A+3>9 > 2.4,
any l-cap in R of the type in Fig. 3(a) must share an endvertex with R.
Thus k=1or 2.

If k =1 then R is as in Fig. 4(a) (or its reflection). Note that if there
were no vertex Iz, just a single edge yuz, then we would have dgz2(z;) =
de(u1) < A, and if there were a further vertex z3 subdividing the edge
Zau2 then we would have dg2(z2) = 5 < A, contradicting Claim 4.1 in each
case. The degree conditions in Fig. 4(a) also follow from Claim 4.1, because
de2(z1) = do(u1) + 1 and dg2(z2) = dg(uz) + 2.
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So suppose k = 2. Then R is as in Fig. 4(b) or 4(c). Note that if there
were a further vertex w subdividing the edge 7132 in Fig. 4(c) then we
would have dg2(w) = 6 < A, contrary to Claim 4.1. The degree conditions
in the figures again follow from Claim 4.1, because dga(z;) = dg(w;) + 1
(i=1,2) in each case. O

From now on, we will assume that A > 7.
Claim 4.4. Every nontrivial cap in B is a 1-cap or a 2-cap.

Proof. Suppose this is not true. Then B contains a 3-cap. Let R be
a 3-cap in B, with endvertices u;, us. The chords inside R divide R into
faces. Let f be the face with u;up in its boundary. There are three possible
types for every other edge of f: it may be an edge of C, or a chord cutting
off a 1-cap, or a chord cutting off a 2-cap. There must be at least one
edge of f that is a chord cutting off a 2-cap, since otherwise R would itself
be a 1-cap or a 2-cap. So let u,v,w be three consecutive vertices in the
boundary of f, where uv is a chord cutting off a 2-cap. Then dg(v) < 6,
since the cap cut off by uwv, and the cap (possibly a 0-cap) cut off by vw,
each contribute at most 3 to the degree of v. Since A > 7, and in view
of the degrees indicated in Fig. 4, the only possibility is that uv cuts off
a 2-cap of the type in Fig. 4(a), and dg(v) = A — 1. But then this cap
contributes only 2 to the degree of v, so that dg(v) < 5 < A - 1. This
contradiction completes the proof of Claim 4.4. O

Claim 4.5. A(B) < 6, and if u is a vertez of B that is adjacent to zo then
de(u) < 5.

Proof. Suppose that u € V(B) and dg(u) > 7, or uzp € E(B) and
dp(u) = 6. Then there are chords uv;, uvz and uvz as shown in Fig. 5(a),
where 2g lies in the closed segment of C between u and vz that does not
contain v; and v2 (‘closed’ meaning that possibly 2o = u or 29 = v3). The
chord »v; cuts off a cap R; which, by Claim 4.4, is a 1-cap or a 2-cap. The
chord uvz cuts off a cap R that properly contains R; and so must be a
2-cap. The chord uwvg cuts off a cap that properly contains Rz and so is
neither a 1-cap nor a 2-cap. This contradicts Claim 4.4. O
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Claim 4.6. Every nontrivial cap in B is a 1-cap.

Proof. Suppose this is not true. Then, by Claim 4.4, B contains a 2-cap.
Suppose there is a 2-cap in B with endvertices u;, us, where w.l.o.g. uy # z.
Then dg(uz2) = dp(uz) < 6 by Claim 4.5, while dg(u2) > A -1 > 6 by
the degree constraints in Fig. 4. The only possibility is that dg(ug) =
A —1 = 6. This is impossible if u; = 2, since then Claim 4.5 implies that
dg(uz) € 5. So u3 # zo. But then the same argument as for ug shows that
de(w1) = A —1, which is impossible since every 2-cap in Fig. 4 has at least
one endvertex with degree A. O

Claim 4.7. A(B) < 4.

Proof. Suppose that u € V(B) and dg(u) > 5. Then there are chords
uv; and uve as shown in Fig. 5(b), where 2 lies in the closed segment of
C between u and vp that does not contain v;. The chord uv; cuts off a
cap R; which, by Claim 4.6, is a 1-cap. The chord uwvs cuts off a cap that
properly contains R; and so is not a 1-cap. This contradicts Claim 4.6. 0O

It is now easy to finish the proof. It follows from Claims 4.6 and 4.7 and
the degree conditions in Claim 4.2 that every nontrivial cap in B is a 1-cap
of the type in Fig. 3(a) with 29 as one endvertex. But then B consists of a
quadrilateral zgzyzzy with one chord 2y, and this contradicts Claim 2.1.
This finally completes the proof of Theorem 2.
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