List-colouring the square of an outerplanar graph

Timothy J. Hetherington, Douglas R. Woodall*
School of Mathematical Sciences, University of Nottingham,
Nottingham NG7 2RD, UK

Abstract

It is proved that if G is a $K_{2,3}$ -minor-free graph with maximum degree Δ , then $\Delta+1\leqslant \chi(G^2)\leqslant \operatorname{ch}(G^2)\leqslant \Delta+2$ if $\Delta\geqslant 3$, and $\operatorname{ch}(G^2)=\chi(G^2)=\Delta+1$ if $\Delta\geqslant 6$. All inequalities here are sharp, even for outerplanar graphs.

Keywords: Choosability; Outerplanar graph; Minor-free graph; List square colouring

1 Introduction

We use standard terminology, as defined in the references: for example [5] or [9]. The square G^2 of a graph G has the same vertex-set as G, and two vertices are adjacent in G^2 if they are within distance two of each other in G.

There is great interest in discovering classes of graphs G for which the choosability or list chromatic number $\operatorname{ch}(G)$ is equal to the chromatic number $\chi(G)$. The list-square-colouring conjecture (LSCC) [5] is that, for every graph G, $\operatorname{ch}(G^2) = \chi(G^2)$. It is clear that this conjecture holds when the maximum degree $\Delta(G)$ of G is 0 or 1, and it can be deduced from the results of [7] when $\Delta(G) = 2$: see [4]. In general, it is easy to see that $\Delta(G) + 1 \leq \chi(G^2) \leq \operatorname{ch}(G^2)$.

It is well known that a graph is outerplanar if and only if it is both K_4 -minor-free and $K_{2,3}$ -minor-free. Squares of K_4 -minor-free graphs were considered in [4]. For $K_{2,3}$ -minor-free graphs we have the following result, which is the same as for the slightly smaller class of outerplanar graphs.

^{*}Email: pmxtjh@nottingham.ac.uk, douglas.woodall@nottingham.ac.uk

Fig. 1

Theorem 1. Let G be a $K_{2,3}$ -minor-free graph with maximum degree Δ . Then $\Delta + 1 \leq \chi(G^2) \leq \operatorname{ch}(G^2) \leq \Delta + 2$ if $\Delta \geq 3$, and $\operatorname{ch}(G^2) = \chi(G^2) = \Delta + 1$ if $\Delta \geq 6$.

We are indebted to the referee for telling us about reference [6], which led us indirectly to [1]. These papers contain alternative proofs of parts of Theorem 1 when G is outerplanar: [6] proves most of the results for $\chi(G^2)$, and [1] proves all of the results for $\chi(G^2)$ and also ('as a bonus') that $\operatorname{ch}(G^2) = \Delta + 1$ if $\Delta \geqslant 7$. Both of these papers were motivated by the conjecture of Wegner [8] that if G is a planar graph with maximum degree Δ then $\chi(G^2) \leqslant \Delta + 5$ if $4 \leqslant \Delta \leqslant 7$ and $\chi(G^2) \leqslant 3\Delta/2 + 1$ if $\Delta \geqslant 8$. Our motivation, the LSCC, is somewhat different.

When $3 \leq \Delta \leq 5$, the upper bound on $\operatorname{ch}(G^2)$ in Theorem 1 is sharp even for $\chi(G^2)$, and even for the smaller class of outerplanar graphs, as shown by the graphs in Fig. 1. For each of the cases $\Delta = 3$ and $\Delta = 4$ there is an infinite family of minimal (under subgraph-inclusion) extremal examples. One member of each family is shown in Fig. 1; in each case, if only $\Delta + 1$ colours are available, then all the vertices labelled a have to have the same colour, which gives a contradiction on the bottom edge. Fig. 1 also shows the smallest extremal example with $\Delta = 4$ and a smallest known extremal example with $\Delta = 5$; in fact, for $\Delta = 5$ we know of only two minimal extremal examples, both of order 10.

For the case $\Delta=6$, the proof that $\operatorname{ch}(G^2)=\Delta+1$ in Theorem 1 is exceptionally long and involved, and so we omit it from this paper, instead proving only that $\operatorname{ch}(G^2) \leq \Delta+2=8$; the proof that $\operatorname{ch}(G^2)=\Delta+1=7$ is

included in the first author's doctoral thesis [3]. Since $\Delta(G) + 1 \leq \chi(G^2) \leq \text{ch}(G^2)$ for every graph G, in order to prove this weaker version of Theorem 1 it suffices to prove the following.

Theorem 2. Let G be a $K_{2,3}$ -minor-free graph with maximum degree Δ . Then $\operatorname{ch}(G^2) \leq \Delta + 2$ if $\Delta \geq 3$, and $\operatorname{ch}(G^2) \leq \Delta + 1$ if $\Delta \geq 7$.

The rest of this paper is devoted to a proof of Theorem 2. We will need the following simple lemma.

Lemma 1. Let G be a $K_{2,3}$ -minor-free graph. Then each block of G is either K_4 -minor-free (and hence outerplanar) or else isomorphic to K_4 .

Proof. Suppose B is a block of G that has a K_4 minor. Since $\Delta(K_4) = 3$, it follows that B has a subgraph H homeomorphic to K_4 . Since any graph obtained by subdividing an edge of K_4 , or by adding a path joining two vertices of K_4 , has a $K_{2,3}$ minor, it follows that $H \cong K_4$ and B = H. \square

As usual, $d(v) = d_G(v)$ will denote the degree of vertex v in graph G.

2 The start of the proof

Fix the value of $\Delta \geqslant 3$, and suppose if possible that G is a $K_{2,3}$ -minor-free graph with maximum degree at most Δ and with as few vertices as possible such that $\operatorname{ch}(G^2) > \Delta + 2$ or $\Delta + 1$ as appropriate. By Lemma 1, every block of G is outerplanar or isomorphic to K_4 . Clearly G is connected and is not K_2 . If G is 2-connected, let B := G and let z_0 be an arbitrary vertex of G; otherwise, let B be an endblock of G with cutvertex g. Assume that every vertex g of g is given a list g0 of g1 or g2 or g3. Assume appropriate, such that g3 has no proper colouring from these lists.

Claim 2.1. Not every vertex of $B - z_0$ is adjacent to z_0 .

Proof. Suppose it is. Then every vertex of $B-z_0$ has degree at most Δ in G^2 , since all its neighbours in G^2 are in the closed neighbourhood of z_0 in G. Thus we can colour $(G-(B-z_0))^2$ from its lists by the minimality of G, and then colour all the remaining vertices. This contradiction proves Claim 2.1. \square

Claim 2.2. G does not contain three vertices u, v, w of degree 2 such that $uv, vw \in E(G)$.

Proof. Suppose it does. Then $d_{G^2}(v) \leq 4$. Let H := G - v + uw, so that H is $K_{2,3}$ -minor-free and $G^2 - v \subseteq H^2$. Then we can colour G^2 from its lists by first colouring $G^2 - v$ and then colouring v. This is the required contradiction. \square

It follows from Claim 2.1 that $B \ncong K_2$, K_3 or K_4 ; thus B is an outer-planar graph that is 2-connected but not complete, and consists of a cycle C with chords. (A *chord* is an edge that joins two nonconsecutive vertices of the cycle.) Claim 2.2 shows that C has at least one chord.

Assume that B is embedded in the plane with C bounding the outside face. In [2], a cap is defined to be a region R of the plane that is bounded by a segment of C and one chord u_1u_2 . We modify the definition slightly here by insisting also that z_0 is not in the interior of this segment; so z_0 is either u_1 or u_2 or is not in R. We call u_1 and u_2 the endvertices of R. By an abuse of terminology, the subgraph of B induced by all vertices in R will also be referred to as a cap. We will refer to an edge of C as a trivial cap or a 0-cap. For $i \ge 1$, an i-cap is a cap that properly contains an (i-1)-cap and is minimal with this property.

The proof now divides into two cases.

$3 \quad Proof \ that \ ch(G^2) \leqslant \Delta + 2$

In this section we assume that every vertex v of G has a list L(v) of $\Delta + 2$ colours, and G^2 is not colourable from these lists, but if H is any $K_{2,3}$ -minor-free graph with maximum degree at most Δ and fewer vertices than G then $ch(H^2) \leq \Delta + 2$.

Claim 3.1. Every 1-cap in B is a triangle xu_1u_2 where $d_G(x) = 2$ and $d_G(u_i) \ge 4$ (i = 1, 2).

Proof. By definition, a 1-cap is a region bounded by a chord u_1u_2 and a segment $u_1x_1 \ldots x_ru_2$ of C, where $d_G(x_i) = 2$ for each i. By Claim 2.2, $r \leq 2$. So if Claim 3.1 is false then either r = 2, or r = 1 and $d_G(u_j) \leq 3$ for some $j \in \{1, 2\}$. But in either case $G^2 - x_1 = (G - x_1)^2$ and $d_{G^2}(x_1) \leq \Delta + 1$, and so we can colour G^2 from its lists by first colouring $(G - x_1)^2$ (by the minimality of G) and then colouring x_1 . This contradiction proves Claim 3.1. \square

Claim 3.2. B has a cap that is not a 1-cap.

Proof. Suppose that every cap in B is a 1-cap. Then z_0 is not the endvertex of a chord, since a chord z_0y bounds two caps, and if both of these caps are 1-caps then $d_G(y) = 3$, contrary to Claim 3.1. Also, at most two chords of C are incident with any one vertex, since if there were three (or more) chords incident with the same vertex then the middle one (or more) of these chords would bound a cap that is not a 1-cap. It follows from this and Claim 3.1 that the endvertices of every chord have degree exactly 4 in G. The chords therefore form a cycle inside C, every edge of

Fig. 2

which joins vertices that are distance 2 apart around C, except possibly for the edge e of the cycle that bounds a face of B with z_0 in its boundary. Now, a cap cannot contain z_0 by definition, except as an endvertex of its chord, which we have already shown to be impossible. Thus there is a unique cap bounded by e, and this cap contains all the 1-caps in B and so is not a 1-cap itself. This contradiction proves Claim 3.2. \Box

Claim 3.3. Every 2-cap in B looks like one of the caps in the sequence of which Figs 2(a) and 2(b) are the first two members.

Proof. Let R be a 2-cap that is bounded by a chord u_1u_2 and a segment of C. Since R properly contains a 1-cap and is minimal with this property, there is at least one chord inside R, and every such chord cuts off a 1-cap. So the chords inside R can be enumerated as l_1r_1, \ldots, l_kr_k , where the vertices

$$u_1, l_1, r_1, \ldots, l_k, r_k, u_2$$

occur in that order round C, but possibly $u_1 = l_1$, or $r_i = l_{i+1}$ for some i, or $r_k = u_2$. In fact, since $d(l_i) \ge 4$ and $d(r_i) \ge 4$ for each i by Claim 3.1, necessarily $u_1 = l_1$, and $r_i = l_{i+1}$ for every i, and $r_k = u_2$, since otherwise $d(l_i) = 3$ or $d(r_i) = 3$ for some i. Since, by Claim 3.1 again, every chord $l_i r_i$ cuts off a triangle from R, the proof of Claim 3.3 is complete. \square

It follows from Claims 3.2 and 3.3 that $\Delta \ge 4$ and B contains one of the configurations H shown in Fig. 2, where the dashed edge may or may not be present in Fig. 2(c), and z_0 is either u_1 or u_2 or is not in H.

Suppose first that B contains H as in Fig. 2(a). Then we can colour $(G-x_1)^2$ from its lists by the minimality of G, and then colour x_1 , since $d_{G^2}(x_1) = d_G(u_1) + 1 \leq \Delta + 1$. This is the required contradiction.

Suppose next that B contains H as in Fig. 2(b). Colour the graph $(G - \{x_1, x_2, x_3, y_1, y_2\})^2$ from its lists, and for each uncoloured vertex w let L'(w) denote the 'residual list' of colours in L(w) that are not used on any G^2 -neighbour of w and so are still available for use on w. Then $|L'(w)| \ge (\Delta + 2) - (\Delta - 1) = 3$ if $w \in \{x_1, y_1, y_2, x_3\}$, and $|L'(x_2)| \ge (\Delta + 2) - 2 \ge 4$. So if we try to colour the vertices in the order

$$x_1, y_1, y_2, x_3, x_2,$$
 (1)

Fig. 3

it is only at x_2 that we may fail. If $L'(x_1) \cap L'(x_3) \neq \emptyset$, give x_1 and x_3 the same colour; then y_1 , y_2 and x_2 can be coloured in the same order as in (1). If however $L'(x_1) \cap L'(x_3) = \emptyset$, then either $|L'(x_2)| \geq 6$, or else x_1 , say, has a usable colour c_1 not in $L'(x_2)$; in either case, the vertices can be coloured in the order (1), with x_1 receiving colour c_1 if it exists.

Suppose finally that B contains H as in Fig. 2(c). Colour the graph $(G-(V(H)\setminus\{u_1,u_2\}))^2$ from its lists, and let each uncoloured vertex w have residual list L'(w). Then $|L'(w)| \ge 3$ if $w \in \{x_1,y_1,y_3,x_4\}, |L'(y_2)| \ge 4$, and $|L'(w)| \ge 5$ if $w \in \{x_2,x_3\}$. So if we try to colour the vertices in the order

$$y_1, x_4, y_3, y_2, x_1, x_2, x_3,$$
 (2)

it is only at x_3 that we may fail. If $L'(y_1) \cap L'(x_4) \neq \emptyset$, give y_1 and x_4 the same colour, then colour the remaining vertices in the order (2). If however $L'(y_1) \cap L'(x_4) = \emptyset$, then either $|L'(x_3)| \geq 6$, or else y_1 or x_4 has a usable colour c_1 not in $L'(x_3)$; in either case, the vertices can be coloured in the order (2), with y_1 or x_4 receiving colour c_1 if it exists.

In every case we have obtained a contradiction, and so we have proved that $ch(G^2) \leq \Delta + 2$ for all $\Delta \geq 3$.

4 Proof that $ch(G^2) \leq \Delta + 1$ when $\Delta \geq 7$

In this section we assume that every vertex v of G has a list L(v) of $\Delta+1$ colours, and G^2 is not colourable from these lists, but if H is any $K_{2,3}$ -minor-free graph with maximum degree at most Δ and fewer vertices than G then $\operatorname{ch}(H^2) \leq \Delta+1$. To begin with we assume only that $\Delta \geq 6$; we will not use the fact that $\Delta \geq 7$ until Claim 4.4.

Claim 4.1. Every vertex of degree 2 in G has degree at least $\Delta + 1$ in G^2 .

Proof. Let v be a vertex of degree 2 in G with neighbours u, w, and suppose that $d_{G^2}(v) \leq \Delta$. Let H := G - v if $uw \in E(G)$ and let H := G - v + uw otherwise. Then H is $K_{2,3}$ -minor-free and $G^2 - v \subseteq H^2$ and $\operatorname{ch}(G^2 - v) \leq \operatorname{ch}(H^2) \leq \Delta + 1$ by the minimality of G. So we can colour G^2 from its lists by first colouring $G^2 - v$ and then colouring G. This is the required contradiction. \square

Claim 4.2 Every 1-cap in B has the form shown in Fig. 3(a) or 3(b), where $d_G(u_1) + d_G(u_2) \ge \Delta + 3$ in Fig. 3(a), and $d_G(u_1) = d_G(u_2) = \Delta$ in Fig. 3(b).

Proof. The first part of the statement follows immediately from Claim 2.2 and the definition of a 1-cap. To prove the second part, note that, by Claim 4.1,

$$\Delta + 1 \leqslant d_{G^2}(x) \leqslant d_G(u_1) + d_G(u_2) - 2$$

in Fig. 3(a), and

$$\Delta + 1 \leqslant d_{G^2}(x_i) = d_G(u_i) + 1$$
 $(i = 1, 2)$

in Fig. 3(b). \square

Claim 4.3. Every 2-cap in B has one of the forms shown in Fig. 4, where the degrees of u_1 and u_2 are restricted as specified.

Proof. Let R be a 2-cap that is bounded by a chord u_1u_2 and a segment of C. As in the proof of Claim 3.3, the chords inside R can be enumerated as l_1r_1, \ldots, l_kr_k , where the vertices

$$u_1, l_1, r_1, \ldots, l_k, r_k, u_2$$

occur in that order round C, but possibly $u_1 = l_1$, or $r_i = l_{i+1}$ for some i, or $r_k = u_2$. Thus every vertex of R other than u_1 and u_2 has degree at most 4 in G. It follows from the degree conditions in Claim 4.2 that R contains no 1-cap of the type in Fig. 3(b), and also, since $\Delta + 3 \ge 9 > 2 \cdot 4$, any 1-cap in R of the type in Fig. 3(a) must share an endvertex with R. Thus k = 1 or 2.

If k=1 then R is as in Fig. 4(a) (or its reflection). Note that if there were no vertex x_2 , just a single edge yu_2 , then we would have $d_{G^2}(x_1)=d_G(u_1) \leqslant \Delta$, and if there were a further vertex x_3 subdividing the edge x_2u_2 then we would have $d_{G^2}(x_2)=5<\Delta$, contradicting Claim 4.1 in each case. The degree conditions in Fig. 4(a) also follow from Claim 4.1, because $d_{G^2}(x_1)=d_G(u_1)+1$ and $d_{G^2}(x_2)=d_G(u_2)+2$.

Fig. 5

So suppose k=2. Then R is as in Fig. 4(b) or 4(c). Note that if there were a further vertex w subdividing the edge y_1y_2 in Fig. 4(c) then we would have $d_{G^2}(w)=6 \leq \Delta$, contrary to Claim 4.1. The degree conditions in the figures again follow from Claim 4.1, because $d_{G^2}(x_i)=d_G(u_i)+1$ (i=1,2) in each case. \square

From now on, we will assume that $\Delta \geqslant 7$.

Claim 4.4 Every nontrivial cap in B is a 1-cap or a 2-cap.

Proof. Suppose this is not true. Then B contains a 3-cap. Let R be a 3-cap in B, with endvertices u_1, u_2 . The chords inside R divide R into faces. Let f be the face with u_1u_2 in its boundary. There are three possible types for every other edge of f: it may be an edge of C, or a chord cutting off a 1-cap, or a chord cutting off a 2-cap. There must be at least one edge of f that is a chord cutting off a 2-cap, since otherwise R would itself be a 1-cap or a 2-cap. So let u, v, w be three consecutive vertices in the boundary of f, where uv is a chord cutting off a 2-cap. Then $d_G(v) \leq 6$, since the cap cut off by uv, and the cap (possibly a 0-cap) cut off by vw, each contribute at most 3 to the degree of v. Since $\Delta \geq 7$, and in view of the degrees indicated in Fig. 4, the only possibility is that uv cuts off a 2-cap of the type in Fig. 4(a), and $d_G(v) = \Delta - 1$. But then this cap contributes only 2 to the degree of v, so that $d_G(v) \leq 5 < \Delta - 1$. This contradiction completes the proof of Claim 4.4. \square

Claim 4.5. $\Delta(B) \leq 6$, and if u is a vertex of B that is adjacent to z_0 then $d_G(u) \leq 5$.

Proof. Suppose that $u \in V(B)$ and $d_B(u) \ge 7$, or $uz_0 \in E(B)$ and $d_B(u) = 6$. Then there are chords uv_1 , uv_2 and uv_3 as shown in Fig. 5(a), where z_0 lies in the closed segment of C between u and v_3 that does not contain v_1 and v_2 ('closed' meaning that possibly $z_0 = u$ or $z_0 = v_3$). The chord uv_1 cuts off a cap R_1 which, by Claim 4.4, is a 1-cap or a 2-cap. The chord uv_2 cuts off a cap R_2 that properly contains R_1 and so must be a 2-cap. The chord uv_3 cuts off a cap that properly contains R_2 and so is neither a 1-cap nor a 2-cap. This contradicts Claim 4.4. \square

Claim 4.6. Every nontrivial cap in B is a 1-cap.

Proof. Suppose this is not true. Then, by Claim 4.4, B contains a 2-cap. Suppose there is a 2-cap in B with endvertices u_1, u_2 , where w.l.o.g. $u_2 \neq z_0$. Then $d_G(u_2) = d_B(u_2) \leq 6$ by Claim 4.5, while $d_G(u_2) \geq \Delta - 1 \geq 6$ by the degree constraints in Fig. 4. The only possibility is that $d_G(u_2) = \Delta - 1 = 6$. This is impossible if $u_1 = z_0$, since then Claim 4.5 implies that $d_G(u_2) \leq 5$. So $u_1 \neq z_0$. But then the same argument as for u_2 shows that $d_G(u_1) = \Delta - 1$, which is impossible since every 2-cap in Fig. 4 has at least one endvertex with degree Δ . \square

Claim 4.7. $\Delta(B) \leq 4$.

Proof. Suppose that $u \in V(B)$ and $d_B(u) \ge 5$. Then there are chords uv_1 and uv_2 as shown in Fig. 5(b), where z_0 lies in the closed segment of C between u and v_2 that does not contain v_1 . The chord uv_1 cuts off a cap R_1 which, by Claim 4.6, is a 1-cap. The chord uv_2 cuts off a cap that properly contains R_1 and so is not a 1-cap. This contradicts Claim 4.6. \square

It is now easy to finish the proof. It follows from Claims 4.6 and 4.7 and the degree conditions in Claim 4.2 that every nontrivial cap in B is a 1-cap of the type in Fig. 3(a) with z_0 as one endvertex. But then B consists of a quadrilateral z_0xyzz_0 with one chord z_0y , and this contradicts Claim 2.1. This finally completes the proof of Theorem 2.

References

- G. Agnarsson and M. M. Halldórsson, On coloring squares of outerplanar graphs, Technical report VHI-04-2005, Engineering Research Institute, University of Iceland, Reykjavík, December 2005.
- [2] O. V. Borodin and D. R. Woodall, Thirteen colouring numbers for outerplane graphs, Bull. Inst. Combin. Appl. 14 (1995), 87–100.
- [3] T. J. Hetherington, List-colourings of near-outerplanar graphs, PhD Thesis, University of Nottingham, 2006.
- [4] T. J. Hetherington and D. R. Woodall, List-colouring the square of a K₄-minor-free graph, Discrete Math. 308 (2008), 4037-4043.
- [5] A. V. Kostochka and D. R. Woodall, Choosability conjectures and multicircuits, *Discrete Math.* **240** (2001), 123-143.
- [6] K.-W. Lih and W.-F. Wang, Coloring the square of an outerplanar graph, *Taiwanese J. Math.* 10 (2006), 1015-1023.

- [7] A. Prowse and D. R. Woodall, Choosability of powers of circuits, *Graphs Combin.* 19 (2003), 137-144.
- [8] G. Wegner, Graphs with given diameter and a coloring problem, Technical report, University of Dortmund, 1977.
- [9] D. R. Woodall, List colourings of graphs, Surveys in Combinatorics, 2001 (ed. J. W. P. Hirschfeld), London Math. Soc. Lecture Note Series 288, Cambridge University Press, Cambridge, 2001, 269-301.