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Abstract

For a connected graph G of order p > 2, a set S C V(G) is an
z-geodominating set of G if each vertex v € V(G) lies on an z-y
geodesic for some element y in S. The minimum cardinality of an
z-geodominating set of G is defined as the z-geodomination number
of G, denoted by g.(G) or simply g.. An z-geodominating set of
cardinality g-(G) is called a g.-set. A connected graph of order p
with vertex geodomination numbers either p — 1 or p — 2 for every
vertex is characterized. It is shown that there is no graph of order p
with vertex geodomination number p—2 for every vertex. Also, for an
even number p and an odd number n with 1 < n < p— 1, there exists
a connected graph G of order p and gz(G) = n for every vertex £ in G
and for an odd number p and an even number n with 1 <n <p-1,
there exists a connected graph G of order p and g;(G) = n for every
vertex z in G. It is shown that for any integer n > 2, there exists a
connected regular as well as a non-regular graph G with g(G) = n
for every vertex z in G. For positive integers r,d and n > 2 with
r < d < 2r, there exists a connected graph G of radius r, diameter d
and g-(G) = n for every vertex z in G. Also, for integers p,d and n
with3<d<p-1,1<n<p-landp-d—n+1> 0, there exists
a graph G of order p, diameter d and g-(G) = n for some vertex =
in G.
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1. Introduction

By a graph G = (V, E) we mean a finite undirected connected graph
without loops or multiple edges. The order and size of G are denoted by p
and g respectively. For basic graph theoretic terminology we refer to Harary
[5]. For vertices z and y in a connected graph G, the distance d(z,y) is
the length of a shortest z-y path in G. An z-y path of length d(z,y) is
called an z-y geodesic. A vertex v is said to lie on an z-y geodesic P if v
is a vertex of P including the vertices z and y. The diameter diam G of a
connected graph G is the length of any longest geodesic. For any vertex u
of G, the eccentricity of u is e(u) = maz{d(u,v) : v € V}. A vertex v of G
such that d(u,v) = e(u) is called an eccentric vertez of u. The neighborhood
of a vertex v is the set N(v) consisting of all vertices © which are adjacent
with v. A vertex v is a simplicial vertez if the subgraph induced by its
neighbors is complete. A nonseparable graph is connected, nontrivial, and
has no cut vertices. A block of a graph is a maximal nonseparable subgraph.
A connected block graph is a connected graph in which each of its blocks
is complete. A caterpillar is a tree for which the removal of all the end
vertices gives a path.

The closed interval I[z,y] consists of all vertices lying on some z-y
geodesic of G, while for S C V,I[S] = U I[z,y]. A set S of vertices

z,y€S

is a geodetic set if I[S] = V, and the minimum cardinality of a geodetic set
is the geodetic number g(G). A geodetic set of cardinality g(G) is called a
g-set. The geodetic number of a graph was introduced in [1, 6] and further
studied in [3]. It was shown in [6] that determining the geodetic number
of a graph is an NP-hard problem. Geodetic concepts were first studied
from the point of view of domination by Chartrand, Harary, Swart, and
Zhang in [4], where a pair z,y of vertices in a nontrivial connected graph
G is said to geodominate a vertez v of G if v € I[z,y], that is, v lies on
an z-y geodesic of G. In [4], geodetic sets and the geodetic number were
referred to as geodominating sets and geodomination number and it is this
terminology that we adopt in this paper.

The concept of vertex geodomination number was introduced by San-
thakumaran and Titus [8]. A vertex y in a connected graph G is said to
z-geodominate a vertex u if u lies on an z-y geodesic. A set S of vertices of
G is an z-geodominating set if each vertex v € V(G) is z-geodominated by
some element of S. The minimum cardinality of an z-geodominating set
of G is defined as the z-geodomination number of G, denoted by g(G) or
simply gz. An z-geodominating set of cardinality gz(G) is called a g, -set.
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Every vertex of an z-y geodesic is z-geodominated by the vertex y.
Since, by definition, a g,-set is minimum, the vertex z and also the internal
vertices of an z-y geodesic do not belong to a g-set. For the graph G given
in Figure 1.1, gu(G) = 1,94(G) = 2,9u(G) = 2,9:(G) = 2 and ¢,(G) =
1 with minimum vertex geodominating sets {y}, {u, v}, {u, z}, {u,w}, and
{u} respectively.

w

G

Figure 1.1

It is proved in (8] that for any vertex z in G, the g,-set is unique and
1 < gz(G) < p—1 for every vertex z in G. We characterized graphs which
realize the bounds. It is also proved that g(G) < g,(G) +1 for every vertex
z in G and graphs with geodomination numbers 2 and p are characterized
in terms of the vertex geodomination number. An elaborate study of results
in vertex geodomination with several interesting applications is given in [8).
The following theorems will be used in the sequel.

Theorem 1.1. [5] Letv be a vertez of a connected graph G. The following
statements are equivalent:

(i) v is a cut vertez of G.

(ii) There exist vertices u and w distinct from v such that v is on every
u-w path.

(iii) There exists a partition of the set of vertices V — {v} into subsets U
and W such that for any vertices u € U and w € W, the vertez v is
on every u-w path,

Theorem 1.2. [5] FEvery nontrivial connected graph has at least two ver-
tices which are not cut vertices.
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Theorem 1.3. [5] Let G be a connected graph with at least three vertices.
The following statements are equivalent:

(i) G 1is a block.
(ii) Every two vertices of G lie on a common cycle.

Theorem 1.4. [2] Let G be a connected graph of order p > 3. Then
g9(G) =p—1if and only if G = K| + Um; K, where 3 m; > 2.

Theorem 1.5. [8] Let G be a connected graph.

(i) Every simplicial vertez of G other than the vertez x (whether z is
simplicial or not) belongs to the g;-set for any vertez z in G.

(i) For any vertex z, eccentric vertices of x belong to the gz-set.

(iii) No cut vertez of G belongs to any g--set.

Theorem 1.6. [8] Let G be a connected graph. For a vertezz in G, g-(G) =
1 if and only if there is a unique eccentric vertez y of T such that every ver-
tez of G is on an x-y geodesic.

Theorem 1.7. [8] For any graph G,g:(G) =p—1 if and only if deg = =
p—1.

Theorem 1.8. [8] A graph G is complete if and only if g.(G) = p—1 for
every vertez = in G.

Throughout the following G denotes a connected graph with at least
two vertices.

2. Some Results on the Vertex Geodomination Number

In this section we characterize connected graphs G of order p having
vertex geodomination number g.(G) equaling either p—1 or p—2 for every
vertex z in G. Further, we discuss the realization of a graph with vertex
geodomonation number 7 such that 1 <n<p-—1.

Theorem 2.1. Let G be a connected graph with number of cut vertices
k. Then every vertez of G is either a cut vertez or a simplicial vertez if
and only if g-(G) =p—k orp—k — 1 for any vertez z in G.

Proof. Let G be a connected graph with every vertex of G is either a cut
vertex or a simplicial vertex. Since z does not belong to the g:-set of G, it
follows from Theorem 1.5 that ¢.(G) =p—k or p— k — 1 according as = is
a cut vertex or a simplicial vertex.
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Conversely, suppose g;(G) = p — k or p — k — 1 for any vertex z in
G. Suppose there is a vertex  in G which is neither a cut vertex nor a
simplicial vertex. Since z is not a simplicial vertex, N(z) does not induce
a complete subgraph and hence there exist « and v in N(z) such that
d(u,v) = 2. Also, since z is not a cut vertex of G, G — {z} is connected and
hence there exists a u-v geodesic say P : u,u;,...,u,,v in G — {z}. Then
P U {v,z,u} is a shortest cycle, say C, containing both the vertices u and
v with length at least 4 in G.

Case 1. Suppose either u or v is not a cut vertex of G. Assume that u
is not a cut vertex of G. Clearly, z lies on a u-v geodesic and hence u and
z do not belong to the gy-set. Thus by Theorem 1.5, ¢,(G) < p -k — 2,
which is a contradiction to the assumption.

Case 2. Suppose both u and v are cut vertices of G. By Theorem 1.1,
there exists a partition of the set of vertices V — {v} into subsets U and W
such that for vertices u; € U and w; € W, the vertex v is on every u;-w;
path. Without loss of generality, assume that z € U. Let y be a vertex
in W with maximum distance from v in W. By choice of ¥,y is not a cut
vertex of G. Since the order of the cycle C is at least 4, the vertices z and
y do not belong to the g,-set and hence by Theorem 1.5, g,(G) < p—k -2,
which is a contradiction to the assumption. Hence every vertex of G is
either a cut vertex or a simplicial vertex. a

Corollary 2.2. Let G be a connected block graph with number of cut
vertices k. Then g.(G) =p—k or p—k — 1 for any vertez = in G.

Proof.  Let G be a connected block graph. Then every vertex of G is either
a cut vertex or a simplicial vertex and hence by Theorem 2.1, g.(G) = p—k
or p — k — 1 for any vertex = in G.

T T

Z3 T4

Ts Ze

z7 s
G

Figure 2.1

141



Note 2.3.  The converse of Corollary 2.2 is not true. For the graph G
given in Figure 2.1, k =4 and 9-(G) =p—k orp—k —1 for any vertez
in G. However, it is not a connected block graph.

Corollary 2.4. Let T be a tree with number of pendent vertices t. Then
9z(T) =t — 1 ort according as z is a pendent or non-pendent vertex.

Proof.  This follows from Corollary 2.2. O

Theorem 2.5. Let G be a connected graph. Then G = K; + Um;K; if
and only if gz(G) =p—1 or p — 2 for any vertez z in G.

Proof. Let G = K+ Um;K;. Then G has at most one cut vertex.
Suppose G has no cut vertex. Then G = K, hence by Theorem 1.8,
9z(G) = p—1 for every vertex z in G. Suppose G has exactly one cut vertex.
Then all the remaining vertices are simplicial and hence by Theorem 2.1,
gz(G) =p—1 or p—2 for any vertex z in G.

Conversely, suppose g-(G) = p — 1 or p — 2 for any vertex z in G. If
p =2, then G = K = K; + K;. If p > 3, then by Theorem 1.2, there
exists a vertex z, which is not a cut vertex of G. If G has two or more
cut vertices, then by Theorem 1.5, g.(G) < p— 3, which is a contradiction.
Thus, the number of cut vertices k of G is at most one.

Case 1. If k = 0, then the graph G is a block. If p = 3, then G =
K3 = Ky + Kj. If p > 4, we claim that G is complete. Suppose G is not
complete. Then there exist two vertices z and y in G such that d(z,y) > 2.
By Theorem 1.3, z and y lie on a common cycle and hence z and y lie on
a smallest cycle C : z,z;,...,9,...,Za,Z of length at least 4. Then z,z;
and z,, do not belong to the g.-set of G and hence g;(G) < p— 3, which is
a contradiction to the assumption. Hence G is the complete graph K, and
soG=K;+K,-1.

Case 2. Ifk=1,let z be the cut vertex of G. If p=3,then G =P; =
K, +Um;K,, where 3_m; = 2. If p > 4, we claim that G = K; + Um; K},
where Y_m; > 2. It is enough to prove that every block of G is complete.
Suppose there exists a block B, which is not complete. Let » and v be two
vertices in B such that d(u,v) > 2. Then by Theorem 1.3, both u and v lie
on a common cycle and hence u and v lie on a smallest cycle of length at
least 4. Then as in case 1 g,(G) < p — 3, which is a contradiction. Thus
every block of G is complete so that G = K; + Um;Kj;, where K) is the
vertex  and ), m; > 2. 0

Theorem 2.6. Let G be a connected graph of order p > 3 with exactly
one cut vertez. Then G = K, + Um;Kj, where 3_m; > 2 if and only if
92(G) =p—1 or p— 2 for any vertez x in G.
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Proof.  The proof is contained in Theorem 2.5, O

Theorem 2.7.  Let G be a connected graph of order p > 3 with ezactly
one cut vertezx. Then the following are equivalent:

(@) 9(G)=p-1.
(i) G = K1 +Um;K;, where 3 m; > 2.
(i) 9z(G) =p—1 or p— 2 for any vertez z in G.
Proof.  This follows from Theorem 1.4 and Theorem 2.6. O

Now, Theorems 1.8 and 2.5 lead to the natural question whether there
exists a graph G for which g.(G) = p — 2 for every vertex z in G.

Theorem 2.8,  There is no graph G of order p with g.(G) = p — 2 for
every vertez z in G.

Proof.  Suppose there exists a graph G with g.(G) = p — 2 for every
vertex z in G. Let x be any vertex of G. Let S; be the g,-set of G so that
92(G) = |Sz| =p—2. Since z ¢ S; and g,(G) = p — 2, there exists exactly
one vertex y such that y ¢ S;. Hence y lies on the geodesic z, v, w for some
w € Sz.

Case 1. Suppose y is not a cut vertex of G. Then G—{y} is connected and
hence there is an z-w geodesic, say P, in G~ {y}. Thus C : PU(w,y,z) isa
shortest cycle containing both the vertices £ and w. Since y is the internal
vertex of the z-w geodesic, the number of vertices in C is at least 4 and
hence g:(G) < p ~ 3, which is a contradiction to the assumption.

Case 2.  Suppose y is a cut vertex of G. If deg y = p — 1, then by
Theorem 1.7, g,(G) = p — 1, which is a contradiction. If deg y < p — 2,
then there exists a vertex u in G such that d(u,y) > 2. Since the vertex
u, the internal vertices of u-y geodesic and the cut vertex y do not belong
to the gy-set of G, we have g,(G) < p — 3, which is a contradiction to the
assumption. Thus there is no graph G with g,(G) = p — 2 for every vertex
z in G. 0O

Note 2.9. It follows from Theorem 2.8 that for each pair n,p of integers
with 1 < n < p— 1, there does not ezist a graph G of order p with vertex
geodomination number g.(G) =n for every vertez z in G.

Theorem 2.10. Let p > 2 be any integer.

(i) If p is even, then for any odd integer n with 1 < n < p — 1, there
ezists a connected graph G with order p and g,(G) = n for any vertez
z in G.
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(ii) If p is odd, then for any even integer n with 1 < n < p — 1, there
ezists a connected graph G with order p and g.(G) = n for any vertez
zinG.

Proof. (i) Let p be even. For p = 2,G = K has the desired properties.
For p = 4, G = C4 or K4 has the desired properties according as n = 1
orn=3. Forp>6,let C: z1,23,...,Zp,%1 be an even cycle. Now we
consider three cases.

Case 1. Let n=1. Then G = C has the desired properties.

Case 2. Let3$n§p—3. Letm:’—‘-’{—3 andk=p—"T"1. Then it is
clear that 2 < m < k < p. Let G be the graph obtained from C' by joining

every pair of vertices of {z1,%2,...,Zm} and also every pair of vertices of
{k, Tk+1,- -, Zp,Z1}. The graph G is shown in Figure 2.2(i) for p = 12
and n = 7. Then S = {z2,%3,...,Tm~1,Tk+1,Tk4+2,...,Tp} is the set of

all simplicial vertices of G with |S| =n — 1.

Subcase 2.1. Let z € S. Without loss of generality we take z = z3.
Then z lies on the cycle C’ : 1,2, Tm,Zm+1y- -, Tk—1,Zk, 1 Of length
p —n + 2, which is an odd integer greater than or equal to 5. Let y; and
12 be the eccentric vertices of z in C’. It follows from the construction of
G that y; and y2 are also eccentric vertices of z in G. Hence every vertex
on C’ is z-geodominated by either y; or y2. Further, all the remaining
vertices of G which are not on C’ are simplicial. Hence the g;-set of G is

{y1,y2} U (S — {z}) so that g-(G) = n.

7

G G
Figure 2.2(i) Figure 2.2(ii)

144



Subcase2.2. Letz € V-S. Thenz lieson thecycle C” : 1, Zm, Tm41,
Tm42y ...y Tk—1,Zk, T} of length p — n + 1, which is an even integer greater
than or equal to 4. Let y be the eccentric vertex of z in C”. It follows from
the construction of G that y is also an eccentric vertex of £ in G. Then
as in Subcase 2.1, it can be seen that the g;-set of G is {y} US. Thus
9z(G) = n.

Case 3. Let n =p— 1. Then by Theorem 1.8, G = K,, gives the desired
result.

(ii) Let p be odd. For p = 3, G = K3 has the desired properties. For
p =5, G = Cs or Ks has the desired properties according asn = 2orn = 4.
Forp>7,let C:z,23,...,2,,z; be an odd cycle. Now we consider three
cases.

Case 1. Let n=2. Then G = C has the desired properties.

Case 2. Let 4 <n<p-3. Letm = !‘—gﬁandk=p—§. Then
it is clear that 3 < m < k < p. Let G be the graph obtained from C by
joining every pair of vertices of {z3,z3,...,Zm} and every pair of vertices of
{Zk, Tk+1,- .., Zp} and also adding the edge z2zp. The graph G is shown in
Figure 2.2(ii) for p = 11 and n = 6. Then § = {z1,23,24,...,Zm—1, Tk+1,
Tk+2,..+1Tp-1} is the set of all simplicial vertices of G with |§| =n — 1.

Subcase 2.1. Let z € S. Let ¢ = z;. Then z lies on the cycle
C' 1 21,22, Tm, Tm41y- - -, Th=1, Tk Tp, 1 Of length p — n + 2, which is an
odd integer greater than or equal to 5. Let y; and y; be the eccentric
vertices of  in C’. Then as in Subcase 2.1 of (i), it can be seen that the
gz-set of G is {y1,y2} U (S — {z}) so that g.(G) =n.

Let z = z;(3 < i < m—1). Thenzliesonthecycle C” : z,Zym, Tmy1, ...,
Tk-1,Tk, Tp, T2, T of length p — n + 2, which is an odd integer greater than
or equal to 5. Let y; and z; be the eccentric vertices of z in C”. Then as in
the first part of this subcase the g;-set of G is {y;, 2} U (S — {z}) so that
9z(G) = n. Similarly for z = z:(k+1 < i < p— 1) it can be proved that
9:(G) = n. Thus for all z in S, ¢g-(G) = n.

Subcase2.2. Letx € V—S. Then x lies on the cycle C" : 23, Zp, Ty 1,
ZTm+2,- .+ Tk-1, Tk, Tp, T2 of length p—n+1, which is an even integer greater
than or equal to 4. Let y be the eccentric vertex of = in C’. Then as in
Subcase 2.2 of (i), it can be seen that the g,-set of G is {y} US. Thus
9:(G) =n.

Case 3. Let n=p— 1. Then by Theorem 1.8, G = K, gives the desired
result. O

It is proved in Theorem 2.8 that there is no graph G of order p with
9z(G) = p—2 for every vertex  in G. This result and Theorem 2.10 suggest
the following problem.
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Problem 2.11. Let p > 5 be any integer.

(i) Ifp is even and n is even with1 < n < p—1 and n # p—2, does there
erist a connected graph G of order p and gz(G) = n for any vertez =
in G?

(ii) Ifp is odd and n is odd with 1 <n < p—1 end n # p — 2, does there
erist a connected graph G of order p and g:(G) = n for any verter z
inG?

Now we proceed to construct regular as well as non-regular graphs G
for which g-(G) = n for any vertex z in G, when an integer n > 2 is given.

Theorem 2.12.  For any integer n > 2 there erist connected regular as
well as non-regular graphs G for which gz(G) = n for every vertez z in G.

Proof. The complete graph Kp4; is regular and by Theorem 1.8,
gz(Kn+1) = n for every vertex z in Kp41.

Now to construct a non-regular graph we proceed as follows: Let p =
n+ 3. Then n = p — 3. If n is odd, then the graph constructed in case 2
of the proof of Theorem 2.10(i) satisfies the required properties. Similarly,
if n is even, then the graph constructed in case 2 of the proof of Theorem
2.10(ii) satisfies the required properties. In both cases, it is clear from the
construction that G is non-regular. The graphs in both cases are given in
Figure 2.3(i) and Figure 2.3(ii) when n = 7 and n = 8 respectively. O

T

Z10

g
zg
Ty
Te
G G
Figure 2.3(i) Figure 2.3(ii)

3. Bounds for the Vertex Geodomination Number of a graph

We have seen that if G is a connected graph of order p > 2, then
1< g+(G) € p—1 for any vertex = in G. Also we have for a vertex z in
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G, 9:(G) = 1 if and only if there is a unique eccentric vertex y of = such
that every vertex of G is on an z-y geodesic and a graph G is complete
if and only if g-(G) = p — 1 for every vertex z in G. Now it is proved in
Theorem 2.5 that for a connected graph G, G = K; +Um;K; if and only if
9:(G) =p—1or p—2 for any vertex z in G. Also it is proved in Theorem
2.8 that there is no graph G of order p with g;(G) = p — 2 for every vertex
z in G. In the following theorem we give an improved upper bound for the
vertex geodomination number of a graph in terms of its order and diameter.

Theorem 3.1.  If G is a connected graph of order p and diameter d, then
92(G) < p—d+1 for any vertez z in G.

Proof. If G = K,, then g;(G) =p—1 = p—d for every vertex z in G.
So, let G # Kp. Let u and v be two vertices of G such that d(u,v) = d
and let 4 = wp,vy,...,94 = v be a u-v geodesic of length d. Now let
S =V(G)—{v1,v2,...,v4-1}. If 2 =v;(1 < i < d—1), then clearly S is an
z-geodominating set of G so that g-(G) < |S| = p—d+1. If z = v;(i = 0, d),
then S$—{z} is an z-geodominating set of G so that g;(G) < |S|-1=p—d.
Let ¢ # v;(0 < 7 < d). Let P and Q be z-vp and z-vg geodesics
respectively. Let y be the last vertex common to both P and Q. Let P,
be the y-vp geodesic on P and let Q; be the y-vg geodesic on Q. Let
T = (V(G) - [V(P) U V(Q1)]) U {vo,va}. Then it is clear that T is an
z-geodominating set of G and so
92(G) < p — [d(y,vo) + d(y,va) + 1] + 2
< p — [d(vo,va) + 1] + 2, by triangle inequality
=p—-d+1
Thus g;(G) < p—d+1 for any vertex z in G. O

Theorem 3.2.  There erists no graph G for which g-(G) =p—-d+1 for
every vertex x in G.

Proof.  The proof is contained in Theorem 3.1. a

Theorem 3.3.  If G is a connected graph of order p and diameter d, then
9z(G) < p —d for at least two vertices of G.

Proof. The proof is contained in Theorem 3.1. a

Remark 3.4.  For the complete graph G = K, g-(G) = p — d for every
vertex z in G. Further, Theorem 2.8 shows that there is no graph of order
p and diameter d = 2 for which g;(G) = p—d for every vertex = in G. This

suggests the following problem. -

Problem 3.5.  Characterize graphs G of order p with diameter d > 3 for
which g.(G) = p — d for every vertez z in G.
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Theorem 3.8.  For every non-trivial tree T, g-(T) =p—dorp—d+1
for any vertez = in T if and only if T is a caterpillar.

Proof. Let T be any non-trivial tree. Let P : u = vp,v1,...,04 = v
be a diametral path. Let k& be the number of end vertices of T and [
be the number of internal vertices of T other than v;,vs,...,va—3. Then
d-1+1+k =p. By Corollary 2.4, g.(T) = k or k — 1 for any vertex z in
T and so g-(T) =p—d—1!+1orp—d-—1{for any vertex z in T. Hence
gz(T) =p—d+1 or p—dfor any vertex z in T if and only if | = 0, if and
only if all the internal vertices of T lie on the diametral path P, if and only
if T is a caterpillar. a

For every connected graph G, rad G < diam G < 2 rad G. Ostrand
(7] showed that every two positive integers a and b with a < b < 2a are re-
alizable as the radius and diameter, respectively, of some connected graph.
Ostrand’s theorem can be extended so that the vertex geodomination num-
ber can be prescribed.

Theorem 3.7.  For positive integersr,d andn > 2 withT < d < 2r, there
ezists a connected graph G with rad G =r, diam G =d and g;(G) =n or
n —1 for any vertez = in G.

Proof Ifr=1,thend=1or2 Ifd=1,let G= Kn;1. Then by
Theorem 1.8, g-(G) = n for any vertex z in G. If d = 2, let G = K 5.
Then by Corollary 2.4, g:(G) = n or n— 1 for any vertex z in G. Now, let
r > 2. We construct a graph G with the desired properties as follows:

Case 1. Suppose r = d. For n = 2, let G = Car41. Then r = d and
gz(G) = 2 for any vertex = in G. Now, let n > 3. We split into two
subcases.

Subcase 1. Suppose n is odd. Let p=n+2r — 1. Then p is even and
3 < n < p—3. Hence by Theorem 2.10(i), there exists a connected graph
G of order p and g.(G) = n for any vertex z in G. The required graph
is the one constructed in the proof of Theorem 2.10(i) (Case 2). For this
graph it is easily verified that the eccentricity of each vertex of G is 7 so
that rad G = diam G =r.

Subcase 2. Suppose n is even. Let p = n+ 2r — 1. Then p is odd and
4 < n < p— 3. Hence by Theorem 2.10(ii), there exists a connected graph
G of order p and ¢.(G) = n for any vertex z in G. The required graph
is the one constructed in the proof of Theorem 2.10(ii) (Case 2). For this
graph it is easily verified that the eccentricity of each vertex of G is r so
that rad G = diam G =r.

Case 2. Suppose r < d < 2r. Let Cor : v1,v2,...,%2-, 01 be a cycle of
order 2r and let Py_,41 : %0, %1,...,Ud~r De & path of order d — 7+ 1. Let
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H be a graph obtained from Cy, and Py, by identifying v; in C,, and
ug in Py_r41. If n =2, then let G = H. Clearly, g.(G) = 1 or 2 according

a8 T € {Ur41,Ud—r} OF T € {U1,Uns vy Udero 1y V1, V2, ooy Uy Vp g2y - -+, Ugr }
Thus g,(G) = 1 or 2 for any vertex z in G. If n > 3, then we add n—2 new
vertices wy, wy,...,wn—2 to H by joining each vertex w;(1 <i<n-2) to

the vertex ug_,—; and obtain the graph G of Figure 3.1.

Var

Ud—r—1 Uder

Vps1 - e L L]
r+ V1 U1 ug A

V2 w; W2 Wnp-2

G
Figure 3.1

Now rad G = r, diam G = d and G has n — 1 end vertices. Clearly,
9z(G) =nor n—1 according as z € {u1,uU,...,Uder—1,V1,02,- -+, Up, Ur42,
ceesVr} OF T € {Urg1, Ud—r, W1, W2, ..., Wn-2}. Thus g.(G) =norn-1
for any vertex z in G. O

In the following, we construct a graph of prescribed order, diameter and
vertex geodomination number under suitable conditions.

Theorem 3.8. If p,d and n are integers such that 3 < d < p -1,
1<n<p-1,andp—d—n+12>0, then there exists a graph G of order
p, diemeter d and g,(G) = n for some verter x in G.

Proof. Ifn=1or2,let Pyy : up,u1,u2,...,uq be a path of length d.
Add p — d — 1 new vertices w1, ws,...,Wp—4—1 to Payy and join these to
both 4o and u,, there by producing the graph G of Figure 3.2(i). Then
G has order p and diameter d. For the vertex z = uy, clearly {uq} is the
gz-set of G so that g.(G) = 1. For the vertex z = uy, clearly {ug,uq} is
the g.-set of G so that g,(G) = 2.

If 3 <n < p—1, then add n—2 new vertices vy, vy, ...,vp—2 to Pys; and
join these to u;, also add p — d ~ n + 1 new vertices w;, ws,... sy Wp—d—n+1
to Pj4+1 and join these to both up and ug, there by producing the graph
G of Figure 3.2(ii). Then G has order p and diameter d. Let S, =
{v1,v2,...,vn—2,uq} be the set of all simplicial vertices of G. Let = = Uug.
By Theorem 1.5(i), g-(G) > |S,] = n—1. Clearly ug is not z-geodominated
by any vertex in S; and s0 g,(G) > n—1. Let T = S, U {uo}. Then T is
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an z-geodominating set of G so that g;(G) = n. Thus G has the desired

properties. a
Uo u Ug us Ug Ud—-2 Ud-1 Uud
® , ® s ... —@ 7 3 ®
Wp-d-1
G

Figure 3.2(i)

v V2 Un—2

ug Ug us Uq Ud-2 Ud—1 Ug

Wp—-d—n+1
G
Figure 3.2(ii)
Problem 3.9. Under the conditions given in Theorem 3.8, does there
exist a graph G of order p and diameter d such that g-(G) = n for every
vertezx in G ?
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